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A B S T R A C T

Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological
factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of
skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle
growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow,
oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through
exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future
development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treat-
ment of sarcopenia.
1. Introduction

Sarcopenia is a progressive and generalized skeletal muscle disease
induced by various physiological and pathological factors,1,2 manifesting
as a decline in skeletal muscle mass and function.3,4 Sarcopenia is
commonly accompanied by profound negative effects on quality of life
and is associated with clinical complications, including obesity, hyper-
tension, diabetes, and cardiovascular diseases, which form a harmful
cycle, as it could lead to frailty, fractures, disability, hospitalization, and
even death.5 Therefore, it is of great significance to summarize the risk
factors and preventive strategies in patients with sarcopenia. The causes
of sarcopenia could be categorized into pathological and
non-pathological factors. Pathological factors include osteoarthrosis,
cardiovascular diseases, and metabolic diseases, whereas
non-pathological factors include aging, poor diet, and physical inactivity.

2. Pathological causes

The loss of skeletal muscle mass and function was related to the
activation of inflammation and biomechanical stress signaling in patients
with osteoarthritis.6 Patients with osteoarthritis of the hip and knee were
commonly accompanied by declines in muscle mass and strength,
resulting in further injury to the joint and reduced physical activity
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ability and quality of life.7 Clinical data showed that patients with
rheumatoid arthritis (RA) were particularly susceptible to sarcopenia,
with a 30% prevalence rate.8,9 In patients with cardiovascular disease
(CVD), cardiac dysfunction induces blood insufficiency and capillaries
closure in skeletal muscle, thereby aggravating the ischemia and hypoxia
injury of skeletal muscle cells.10 Ischemia and hypoxia injury triggered
excessive oxidative stress and inflammation, leading to mitochondrial
dysfunction, protein degradation, and apoptosis in skeletal muscle,
finally resulting in sarcopenia.10,11 Metabolic syndrome (Mets) and
non-alcoholic fatty liver disease (NAFLD) were prone to sarcopenia due
to their similar pathogenesis, such as insulin resistance and chronic
inflammation.12,13 Decreased insulin sensitivity induced muscle meta-
bolic dysfunction in patients with Type 2 diabetes, further leading to loss
of muscle mass.14 Mets patients were commonly accompanied by insulin
resistance and metabolic dysfunction of skeletal muscle, which led to
mitochondrial dysfunction, imbalance between protein synthesis and
degradation, and excessive oxidative stress and inflammation (Fig. 1). In
addition, cancer-induced sarcopenia, one of the major causes of death in
patients, is commonly caused by medication side effects with medical
therapy, malnutrition, vascular embolism, inflammation, metabolic
dysfunction, protein degradation, and exceed autophagy.15 Patients with
esophageal, gastric, lung and colorectal cancer, especially pancreatic
cancer, were accompanied by skeletal muscle atrophy in the progress of
chemotherapy, and which would lead to poor-prognosis in patients.16
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Abbreviations

ADP adenosine diphosphate
AIF apoptosis-inducing factor
Akt protein kinase B
ALCAT1 lysocardiolipin acyltransferase 1
ALS autophagy-lysosomal system
AMP adenosine monophosphate
AR androgen receptor
ATP adenosine triphosphate
Bax Bcl-2-associated X protein
BCAAs branched-chain amino acids
BMI body mass index
CKD chronic kidney disease
COPD obstructive pulmonary disease
CSA cross-sectional area
CVD cardiovascular disease
Endo G endonuclease G
ER endoplasmic reticulum
ERK extracellular regulated protein kinases
ERRα estrogen-related receptor-α
ES muscle electrical stimulation
FNDC5 fibronectin type III domain containing 5
GDF15 growth differentiation factor 15
GSH-Px glutathione peroxidase
HF heart failure
HR heart rate
HIIT high-intensity interval training
HFD high-fat diet
IGF-1 insulin-like growth factor-1
IL interleukin
iNOS inducible nitric oxide (NO) synthase
JAK Janus kinase
LCBE lonicera caerulea berry extract
LBP lipopolysaccharide-binding protein

MAPK mitogen-activated protein kinase
Mets metabolic syndrome
MI myocardial infarction
mTOR mammalian target of rapamycin
NADPH nicotinamide adenine dinucleotide phosphate
NAFLD non-alcoholic fatty liver disease
NO nitric oxide
NRF nuclear respiratory factors
PGC-1α peroxisome proliferator-activated receptor γ coactivator-1α
PHGG partially hydrolyzed guar gum
PI3K phosphatidylinositol 3 kinase
PKC protein kinase C
PPARγ peroxisome proliferator-activated receptor γ
p70S6K 70 kDa ribosomal protein S6 kinase
REDOX oxidation-reduction reaction
RM repetition maximum
RNS reactive nitrogen species
ROS reactive oxygen species
SC satellite cell
SCFA short-chain fatty acids
SOCS suppressor of cytokine signaling
SOD superoxide dismutase
STAT signal transducer and activator of transcription
TFAM transcription factor A
TGF-β transforming growth factor-β
TNF-α tumor necrosis factor-α
TNFRI tumor necrosis factor receptor I
UCP2 uncoupling protein 2
ULK1 uncoordinated 51-like kinase 1
UPR mt mitochondrial unfolded protein response
UPS ubiquitin-proteasome system
VC vitamin C
WBV whole-body vibration
wk week
YAP Yes-associated protein
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3. Non-pathological causes

3.1. Aging

The prevalence of sarcopenia increased with age, manifesting as
decreased muscle mass, strength, and exercise intolerance.4,17 Studies
showed that the skeletal muscle metrics decreased with increasing age,
including cross-sectional area (CSA) of skeletal muscle, calf circumfer-
ence, calf circumference/BMI ratio, knee extension strength, and gait
speed.18,19 Aging-induced alterations, such as denervation, chronic sys-
temic inflammation, and insulin resistance, could disrupt the balance of
protein synthesis and degradation, leading to mitochondrial dysfunction,
eventually resulting in the loss of skeletal muscle mass and function
(Fig. 1).

3.2. Irrational diet structure

There were associations between sarcopenia and nutrient absorption
and utilization abilities as well as dietary patterns consisting of protein,
fat, carbohydrates, and various micronutrients, especially vitamins.20,21

Low protein uptake led to the loss of muscle mass and strength.22,23

Meanwhile, a comparative study found a negative correlation between
the ‘mushrooms-fruits-milk’ diet and sarcopenia.24 Unhealthy long-term
living habits like smoking and drinking could induce brain-gut axis
dysfunction and oral diseases, resulting in nutritional deficiencies.25 In
addition, poor sleep quality disrupted the circadian rhythm and biolog-
ical clock, reduced dietary intake, and ultimately inhibited muscle
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protein synthesis.26 Proper nutrient supplementation, including
high-protein, high-quality fat, carbohydrate, and sufficient vitamins,
along with regular exercise, could effectively improve muscle mass and
function. As regular exercise promotes nutritional absorption and utili-
zation, thus preventing sarcopenia (Fig. 1).

3.3. Physical inactivity

A physically inactive lifestyle, such as sedentary and bedridden, could
reduce skeletal muscle function and contribute to the increased preva-
lence of sarcopenia. For example, hospitalized older adults were partic-
ularly susceptible to sarcopenia due to the loss of muscle mass, strength,
and mobility.27 Sarcopenia involves both mass loss and function decline.
Exercise, combined with a proper diet, could produce beneficial effects
on the prevention and treatment of sarcopenia (Fig. 1).

4. Prevention of sarcopenia

Currently, there is a lack of specific drugs for treating sarcopenia. This
study summarizes the pharmacological interventions based on clinical
and animal research findings28–31: vitamin D, combined
estrogen-progesterone, growth hormone, growth hormone-releasing
hormone, testosterone, combined testosterone-growth hormone,
insulin-like growth factor-1(IGF-1), angiotensin-converting enzyme in-
hibitors, dehydroepiandrosterone, and pioglitazone. However, some
pharmacological treatments could induce toxic damage to the heart,
liver, kidney, and other organs. Therefore, the administration route,



Fig. 1. Causes of sarcopenia can be categorized into pathologic and non-
pathologic. Pathologic causes consist of osteoarthrosis, metabolic diseases, and
cardiovascular diseases. Non-pathologic causes include aging, irrational diet
structure, and physical inactivity. These causes induce low blood flow, excessive
oxidative stress and inflammation, cell apoptosis, and protein degradation in
skeletal muscle, leading to sarcopenia.
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dosage, and duration of such treatment need to be considered and
explored with circumspection, and it should be performed in a stan-
dardized and personalized manner. Compared with pharmacological
therapy, non-drug methods such as exercise, muscle electrical stimula-
tion, and nutritional supplements are safer, especially with the combi-
nation of exercise and nutrition. Moreover, exercise could decrease the
side effects caused by the toxicity of drugs and promotes nutrient ab-
sorption and utilization, thereby helping to prevent and alleviate
sarcopenia.
4.1. Aerobic exercise training

Aerobic exercise, as a traditional exercise form, is more acceptable
among patients with sarcopenia due to its safety, effectiveness, and di-
versity of forms. Study demonstrated that aerobic exercise (50 min/d, 3
d/wk, 24 wk, 70% HRreserve) alone improved endurance and aerobic
fitness. Furthermore, when combined with essential amino acids sup-
plementation, it effectively increased muscle strength and protein syn-
thesis in older adults.32 Combined acute aerobic training (60 min/d, 7d,
60%–65% HRmax) and vitamin D potentiated the metabolic benefits of
exercise by reducing intramyocellular lipid and increasing _VO2 level in
muscle tissue.33 Insufficient nutrition and physical inactivity are critical
causes of sarcopenia, as it accelerates the loss of skeletal muscle during
aging or pathological states. Aerobic exercise could mobilize whole-body
muscles, increase peripheral capillary density,34,35 improve mitochon-
drial function and muscle metabolism,36 and balance
oxidation-reduction reaction (REDOX),37 ultimately alleviating sarcope-
nia. Therefore, combining such an approach with nutritional support
could further promote muscle mass and function, which is of great sig-
nificance in preventing sarcopenia.
4.2. Resistance exercise training

Resistance exercise has been well known for promoting muscle
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hypertrophy by activating myogenesis, increasing protein synthesis and
inhibiting protein degradation-related molecular signaling.38,39 Resis-
tance training (3 d/wk, 12 wk, 70%–80% 1 RM) increased myonuclear
and the percentage of the largest muscle fibers in older adults.40 Pro-
gressive resistance exercise of upper and lower (2-3 d/wk, 4 month, 75%
1 RM) was effective in improving lower limb muscle strength and exer-
cise performance in chronic obstructive pulmonary disease (COPD) pa-
tients with low muscle mass, and oral nutritional supplementation
further enhanced the beneficial effects of exercise.41 High-intensity
resistance exercise (2 d/wk, 18 month) combined with protein and cal-
cium intake significantly improved skeletal muscle mass and exercise
capacity in older patients with sarcopenia.42 Nevertheless, the effects of
resistance exercise on muscle mass declined after detraining.42 There-
fore, exercise should be performed on a long-term basis, and its forms
should be easy to persist.

4.3. High-intensity interval training

High-intensity interval training (HIIT) improved cardiac and pulmo-
nary function, skeletal muscle mass and function, exercise capacity, and
quality of life in older patients with systemic diseases.43,44 After a
12-week HIIT (3 d/wk, 90% HRmax), muscle mass, strength, and exercise
capacity were significantly increased in young and older people.45 HIIT
(25min/d, 3 d/wk, 8 wk, 70%–85%HRmax) improved aerobic fitness and
muscle strength. Furthermore, when combined with intermittent fasting,
it effectively promoted a greater gain in fat-free mass and greater loss of
body fat in women with obesity.46 Moreover, HIIT was also found to
promote protein synthesis, improve muscle metabolic capacity and in-
sulin sensitivity, and reverse high-fat diet (HFD)-induced sarcopenia, at
least partially via the modulation of mammalian target of rapamycin
(mTOR) signaling.47 Thus, HIIT could prevent and ameliorate sarcopenia
under various physiological or pathological conditions.

4.4. Whole-body vibration

Whole-body vibration (WBV) is a form of passive training initiated by
applying physical stimulation using vibration devices, which is suitable
for older adults and mobility-limited patients with various diseases. Low-
level WBV training with 6 Hz–26 Hz frequency and 2 mm–4 mm
amplitude (5-10 s/d� 60 s/d, 3 d/wk, 16 wk) increased muscle mass and
strength, exercise ability, and quality of life, as well as alleviated age-
related sarcopenia in frail older adults.48 Two studies demonstrated
that 12-week WBV intervention (40 Hz, 4 mm, 4 s/d � 90 s/d, 3 d/wk;
12 Hz, 3 mm, 10 s/d � 60 s/d, 3 d/wk) also improved neuromuscular
innervation, enhanced exercise ability, and increased skeletal muscle
mass and function of older patients with sarcopenia.49,50 Furthermore,
thigh muscle CSA and strength, and exercise ability were significantly
improved in older women after WBV training (20 Hz–40 Hz, 2 mm–4
mm, 3 d/wk-5 d/wk, 10 wk).51 Thus, the prevention and treatment of
WBV in sarcopenia is attributed to its effects on improving neuromus-
cular function and muscle mass. Importantly, it could be used as a
physiotherapy technique for older adults and post-menopausal women in
the community. Therefore, it is critical to establish a precise and
scientifically-based WBV training program for preventing and alleviating
sarcopenia in clinical practice, particularly with the appropriate fre-
quency and amplitude.

4.5. Muscle electrical stimulation

Muscle electrical stimulation (ES) is an individual intervention to
increase muscle mass and strength by external electrical pulse stimula-
tion of local muscles, such as pectoralis, dorsal, and limb muscles. Some
studies have revealed that whole-body ES with frequency of 85 Hz and
impulse width of 350 μs increased skeletal muscle mass and strength,
improves muscle function, promotes exercise ability, alleviates sarcope-
nia, and reduces sarcopenia-induced clinical complications.52–54 It has
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been gradually used as the treatment of clinical muscle diseases, which is
especially suitable for patients unable or unwilling to perform conven-
tional exercise training regularly. Further research should clarify the
molecular mechanisms and combine ES with current exercise in the
rehabilitation context.

4.6. Nutritional intervention

A proper dietary pattern, especially a protein-rich and antioxidant-
rich diet, is essential for maintaining muscle mass and strength. In
addition, vitamins, fatty acids, and antioxidants could also benefit muscle
mass. A 15-year study revealed that the traditional dietary pattern
increased muscle mass, and the anti-inflammatory dietary pattern con-
taining a wide variety of vegetables, fruits, whole grains, nuts and pro-
teins increased skeletal muscle mass and function.55 The
anti-inflammatory dietary pattern was found to be more effective than
the traditional one.55 The supplementation of vitamin E and high-quality
fats like omega-3 fatty acids and oleic acid significantly aggrandized
muscle mass and strength and walking speed and prevented muscle loss
in older adults.56 Branched-chain amino acids (BCAAs) such as leucine,
valine and isoleucine promoted protein synthesis, increased muscle mass
and strength, and improved muscle health in older adults.57 In order to
improve the dietary pattern, it is recommended to increase the propor-
tion of BCAAs-rich foods such as meat, fish, shellfish, legumes, and ce-
reals. Moreover, it was reported that L-glutamine products combined
with exercise training improved muscle antioxidant capacity and glyce-
mia balance, increased muscle mass, and alleviated diabetes-induced
sarcopenia.58 Thus, a rational dietary pattern combined with exercise
training could reverse the sarcopenia process.

Since sarcopenia is affecting skeletal muscles in all total body, we
recommend training the large muscle groups through total body
approach. Evidence showed positive and significant effects of resistance
training on muscle mass and strength, and physical performance.59

Furthermore, a systematic review and meta-analysis demonstrated that
among intervention methods such as aerobic, resistance, resistance with
aerobic, and whole-body vibration, resistance exercise is the most
effective for improving muscle mass and strength.60,61 The load methods
of resistance exercise can be divided into three types: body weight,
resistance band and free weight, but there was no significant difference
between the three methods.62 Although low-intensity resistance training
(50% 1 RM) is sufficient to induce gains in muscle strength, we recom-
mend high-intensity resistance training (80% 1 RM) to promote maximal
strength gains.59 In addition, after review of evidence for multinutrient
supplementation, best evidence is available to recommend leucine,
which has significantly beneficial effects on muscle mass in older adults
with sarcopenia.63,64 Protein supplementation on top of resistance
training is recommended to increase muscle mass and strength.64,65

5. Underlying mechanisms that exercise and nutrition
interventions prevent sarcopenia

5.1. Exercise and nutrition increased the muscular perfusion

Aging and physical inactivity could lead to an insufficient supply of
blood and nutrients to skeletal muscle, followed by a decline in skeletal
muscle mass and function. Evidence has demonstrated that combining
exercise with L-citrulline increased endothelial nitric oxide (NO) syn-
thesis, improved vascular and mitochondrial function, increased blood
perfusion and nutrition exchange, promoted oxygen utilization and
protein synthesis, inhibited apoptosis in skeletal muscle, and ultimately
contributed to reversing the process of sarcopenia.66 In both compensa-
tory cardiac hypertrophy rats and heart failure (HF) patients, HIIT, me-
chanical stretch, and voluntary wheel running were found to enhance
muscle angiogenesis and perfusion as well as improving skeletal muscle
performance and exercise endurance.67,68 Exercise alone (resistance ex-
ercise and HIIT) or in combination with whey protein promoted muscle
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capillarization and metabolite exchange, thereby increasing protein
synthesis and oxidative metabolism.69 In addition, studies have shown
that exercise increased muscle capillarization, shortened the distance
between capillaries and satellite cells, and optimized the spatial distri-
bution, which was conducive to satellite cell activation and proliferation
and inhibiting aging-induced sarcopenia.70–72 In summary, the combi-
nation of exercise and nutrition could improve muscle capillarization,
vascular function, and antioxidant enzyme activation, promote nutrient
exchange between blood and tissues, and further enhance muscle
metabolism and protein synthesis, thereby improving muscle mass and
function. Importantly, exercise could activate satellite cells to promote
the remodeling and regeneration of skeletal muscle fibers.70–72 There-
fore, combining exercise with nutrition supplements is an effective
strategy to maintain and improve skeletal muscle mass and function
under aging and pathologic conditions.

5.2. Exercise and nutrition promoted exerkines secretion to protect skeletal
muscle

Exerkines are cytokines, mRNAs, or gut microbiomes that are released
in response to exercise from many different organs and tissues (including
liver, skeletal muscle, heart, kidney, brain, and fat) and exert their effects
via autocrine, paracrine, or endocrine pathway.73,74 Notably, levels of
exerkines are closely related to exercise intensity and amount.

5.2.1. Exerkines acted on muscle themselves or mediated organizational
cross-talk

In humans and mice, the growth differentiation factor 15 (GDF15)
expression in serum and muscle increased with age, whereas exercise
reducing GDF15 level and improved aging muscle mass and function
and.75 It was preliminary showed that the potential use of GDF-15 as a
biomarker for sarcopenia in animal models and humans. IGF-1 is a key
factor in skeletal muscle growth and hypertrophy. Aerobic and resistance
exercise alleviated myocardial infarction (MI)-induced loss of muscle
mass by inhibiting protein degradation and apoptosis as well as pro-
moting myogenesis via IGF-1/IGF-1R-phosphatidylinositol 3 kinase
(PI3K)/protein kinase B (Akt) signaling pathway.76 A study revealed that
aerobic exercise could alleviate the levels of oxidative stress and
apoptosis in skeletal muscle following MI, partly via up-regulating
fibronectin type III domain containing 5 (FNDC5/Irisin) and inhibiting
lysocardiolipin acyltransferase 1 (ALCAT1) expression.77 In addition,
resistance exercise combined with Leucine supplement increased IGF-1
and FNDC5/Irisin levels in muscle and serum, which promoted muscle
protein synthesis.78 Aged mice-related study revealed that γ-Oryzanol
diet improved muscle antioxidant and anti-inflammation capacities by
activating peroxisome proliferator-activated receptor γ (PPARγ) coac-
tivator-1α (PGC-1α) and estrogen-related receptor-α (ERRα) signaling,
and inhibiting transforming growth factor-β (TGF-β)/Smad signaling,
which was conducive to skeletal muscle function and exercise ability.79

5.2.2. Exosomes mediated exercise-induced protection
Sarcopenia is a frequent complication of chronic kidney disease

(CKD), but exercise could reverse such a process. Exosomes play a pivotal
role in mediating exercise-related beneficial effects. A study revealed that
resistance exercise increased miR-23a and miR-27a expressions in mice
with CKD, and miR-23a/miR-27a activated Akt signaling, inhibited
myostatin and downstream Smad-2/3 signaling, decreased protein
degradation, reduced muscle loss, improved grip strength, and resulted
in alleviated CKD-induced sarcopenia.80 Exercise also improved PPARγ
expression, reduced miR-29b level, activated Akt/mTOR pathway,
inhibited protein degradation and apoptosis, increased muscle weight
and CSA, and ultimately ameliorated muscle atrophy following angio-
tensin II-induced HF.81 Moreover, the importance of miRNAs in medi-
ating the effects of exercise has been shown. A study demonstrated that
muscle miRNAs expressions were sensitive to carbohydrate intake during
the initial phase of recovery after aerobic exercise. After aerobic exercise,
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carbohydrate intake increased Let7i-5p and miR-195-5p levels, reduced
activities of ubiquitin-mediated proteolysis, autophagy-lysosome system,
myostatin, and caspase3 signaling, inhibited protein degradation, and
ultimately facilitated muscle recovery.82

5.2.3. Gut microbiome was closely linked with muscle health
Gut microbiota composition and diversity might be the determinants

of skeletal muscle metabolism and function.83 Partially hydrolyzed guar
gum (PHGG) contained-fiber-rich diet alleviated muscle wasting by fer-
menting dietary polysaccharides into short-chain fatty acids (SCFA),
restoring the gut barrier function, reducing systemic inflammation
lipopolysaccharide-binding protein (LBP) and interleukin (IL)-6 in
serum, suppressing ubiquitin-proteasome system (UPS) and autophagy
pathways, and resulting in inhibition of muscle protein degradation in
cancer mice.84

Skeletal muscle is the main site of protein storage and metabolism,
serving as an important source of cytokines, which is determined by
exercise training and nutritional intake. Thus, exercise combined with
nutrition could stimulate cytokine secretion in muscle or other organs
(fat, liver, heart, and brain), activate downstream signaling pathways,
improve muscle anti-inflammatory and antioxidant capacities, and pro-
mote muscle protein synthesis. At the same time, exercise combined with
nutrients alleviate oxidative stress, inflammation, and protein degrada-
tion, as well as prevent or reverse the loss of skeletal muscle via inhibiting
negative mechanisms of inflammatorymediator and protein degradation.
5.3. Exercise promoted mitochondrial homeostasis

Mitochondria play a crucial role in regulating the metabolic status of
skeletal muscle, which demonstrate remarkable plasticity, adjusting its
volume, structure, and function in response to chronic exercise, aging,
and disease.85 Mitochondrial biogenesis requires the coordination of
multiple cellular events, including mtDNA replication, transcription from
mitochondrial promoters, processing and stabilization of mitochondrial
RNAs, translation, assembly of respiratory chain complexes and electron
transport chain.86 Exercise activates a large number of signaling path-
ways that converge to initiate mitochondrial biogenesis.85 PGC-1α plays
an important role in regulating mitochondrial biogenesis and activates
multiple transcription factors, including nuclear respiratory factors
(NRF) 1 and 2, mitochondrial transcription factor A (TFAM), and
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uncoupling protein 2 (UCP2).87,88 PGC-1α cooperated with NRFs and
promoted the expression of TFAM to regulate mitochondrial biogen-
esis.89 During exercise, adenosine triphosphate (ATP) is continuously
synthesized and broken down into adenosine diphosphate (ADP) and
adenosine monophosphate (AMP).90 Binding of AMP to the γ subunit of
the heterotrimeric AMP-activated protein kinase (AMPK) causes AMPK
conformational changes and enhances its phosphorylation.91 AMPK
activation leads to the phosphorylation of PGC-1α, further stimulating
mitochondrial biogenesis.92 Exercise promote mitophagy and remove
dysfunctional mitochondria in skeletal muscle thought activating the
AMPK and its representative downstream signaling molecules, such as
PGC-1α and uncoordinated 51-like kinase 1 (ULK1).93 The activation of
AMPK signaling pathway promoted PGC-1α/NRFs/TAFM complex and
regulated mitochondrial biogenesis in response to exercise.87 Mitophagy
is important in removing damaged or dysfunctional mitochondria and
maintaining mitochondria homeostasis,94 which can be enhanced by
exercise through activating AMPK signaling in skeletal muscle.95 The
previous studies showed that running exercise promoted mitochondrial
biogenesis and triggered the antioxidant defence system in muscle,96 and
skeletal muscle demonstrated a greater mitophagy drive post-exercise.95

The mitochondrial unfolded protein response (UPR mt) is known as a
conservative mechanism in response to mitochondrial dysfunction.97

Mitophagy and UPR mt, two mitochondrial quality control mechanisms,
are central to maintaining mitochondrial homeostasis in skeletal muscle
and can be triggered by exercise.87,98,99 Therefore, exercise represents a
viable, nonpharmaceutical therapy with the potential to reverse and
enhance the impaired mitochondrial function (Fig. 2).
5.4. Exercise and nutrition inhibited excessive oxidative stress

A study showed that both aerobic and resistance exercise increased
activation of antioxidant enzymes, such as superoxide dismutase (SOD)
and glutathione peroxidase (GSH-Px), reduced reactive oxygen species
(ROS) level and cell oxidative damage, inhibited UPS activation, acti-
vated satellite cells, promoted muscle fibers repair and regeneration, and
ultimately alleviated HF-induced skeletal muscle atrophy.100 It has also
been reported that aerobic exercise improved mitochondrial function,
reduced oxidative stress and protein ubiquitin degradation, and inhibited
apoptosis via activating AMPK/PGC-1α and Akt/mTOR signaling path-
ways in skeletal muscle of aged mice.101 Exercise converted ROS into
Fig. 2. Exercise-mediated mitochondrial homeostasis.
Exercise activates AMPK and downstream signaling
molecules such as PGC-1α and ULK1, further promotes
mitochondrial biogenesis and mitophagy, partially via
through NRF and TFAM signaling, results in mito-
chondrial homeostasis. AMP: adenosine mono-
phosphate; AMPK: adenosine monophosphate-activated
protein kinase; ATP: adenosine triphosphate; NRF: nu-
clear respiratory factor; PGC-1α: peroxisome pro-
liferator activated receptor γ coactivator (PPARγ)-1α;
TFAM: mitochondrial transcription factor A; ULK1:
uncoordinated 51-like kinase 1.
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more stable molecules (oxygen and water molecules), scavenged free
radicals, regulated the production of ROS and RNS, and resulted in
maintaining oxidation-reduction homeostasis; importantly, apart from
exercise intervention, nutritional supplements, including vitamin
E/α-tocopherol, Vitamin C (VC)/L-ascorbic acid, carotenoids, and poly-
phenols, were effective strategies to alleviate oxidative stress, and in-
crease muscle mass and strength.102 Nutraceuticals combined with
exercise reduced ROS accumulation and inflammatory cytokines,
improved muscle antioxidant and anti-inflammatory capacities, allevi-
ated oxidative stress and inflammation, and inhibited skeletal muscle
atrophy induced by cancer.103 Therefore, combining exercise with
nutrition is beneficial to improving skeletal muscle mass and function
and preventing sarcopenia by regulating oxidative stress, inflammation,
and apoptosis within the physiological range (Table 1 and Fig. 3).

5.5. Exercise and nutrition alleviated inflammation

Inflammation is a complex physiological response to stimulation, and
there is an interaction between inflammation and oxidative stress.
Chronic systemic inflammation induced muscle mitochondrial dysfunc-
tion, excessive oxidative stress and apoptosis, resulting in metabolic
disorders and muscle loss. Exercise training has been shown to have
important anti-inflammatory effects by upregulating anti-inflammatory
cytokines through interlinked molecular mechanisms in skeletal mus-
cle.116 IL-6 is the main cytokine present in circulation during exercise,
which produced by skeletal muscle depending on the mode, frequency,
duration, and intensity of exercise.116,117 IL-6 has long been regarded as a
pro-inflammatory factor, but recent findings suggest that it also has
Table 1
Regulation of signaling pathways and biological effects under exercise and nutrition

Signaling
Pathways

Molecular and Biological effects

AMPK-PGC-1α ROS↓ MDA↓ SOD↑ CAT↑ GSH-Px↑ NRF1↑ NRF2↑ TFAM↑Bax↓

Bcl2↑ Cyt C↓ Caspase9↓
Caspase3↓

NRF2-AREs CAT↑ SOD1↑ SOD2↑ TUNEL positive particles↑
Pax7↑ MyoD↑

HSP27 signaling AIF↓ Endo G↓

PKC-Nox2/Nox4 ROS↓
iNOS-NO TNF-α↓ MCP1↓ NF-κB↓ NQO1↑ HO-1↑

PI3K-Akt Bax↓ Bcl2↑ Cyt C↓ Caspase3↓Atrogin-1↓MuRF1↓MAFbx↓ myostatin↓ m
p70S6K↑
4-EBP1↑ Pax7↑

TGF-β-smad Nox4↓ MuRF1↓

Pax7↑ MyoD↑
Wnt/β-catenin Pax7↑ Myf5↑ MyoD↑
Hippo/YAP Pax7↑ MyoD↑
JAK2-STAT3-
SOCS

Pax7↑ PCNA↑ MyoD↑
Myogenin↑

AIF: apoptosis-inducing factor; AREs: antioxidant-responsive DNA elements; Akt: pro
Bcl2-associated X; Bcl-2: B-cell lymphoma-2; CAT: catalase; Cyt C: Cytochrome C; En
heme oxygenase-1; HSP27: heat shock protein 27; iNOS: inducible NO synthase; JAK:
protein-1; MDA: malondialdehyde; mTOR: mammalian target of rapamycin; MuRF1: m
κB: nuclear factor-κB; NO: nitric oxide; Nox: nicotinamide adenine dinucleotide phosp
respiratory factor; PCNA: proliferating cell nuclear antigen; PGC-1α: peroxisome prol
protein S6 kinase; PI3K: phosphatidylinositol 3 kinase; PKC protein kinase C; ROS: re
SOD: superoxide dismutase; STAT: transducer and activator of transcription; TFAM: m
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anti-inflammatory effects,118,119 manifested by inhibitory effects on
pro-inflammatory cytokines (such as tumor necrosis factor-α (TNF-α) and
IL-1).116 IL-10 and IL-1Ra are well-known anti-inflammatory cyto-
kines,120 which is also associated with exercise.116,121 IL-10 can inhibit
the production of inflammatory cytokines IL-1α, IL-1β and TNF-α to
exhibit anti-inflammatory effects.122 IL-1Ra is an anti-inflammatory
cytokine of the IL-1 family, which blocked the action of IL-1α and IL-1β
by competitively ligand-specific binding to the IL-1R with higher affin-
ity.123,124 The appearance of circulating IL-10 and IL-1Ra following ex-
ercise contributes to mediating the anti-inflammatory effect of exercise.
IL-13 is an anti-inflammatory cytokine that regulates micro-
glia/macrophage polarization toward an anti-inflammatory phenotype
and stimulates the production of IL-10,125,126 which is also closely linked
to exercise. Studies showed that exercise could increase IL-13 level in
circulation,127 adipose tissue128 and muscle.129

5.6. Exercise and nutrition reduced cell apoptosis

Aging and diseases induced excessive accumulation of ROS, increased
inflammatory cytokine levels, triggered oxidative stress and inflamma-
tion, and resulted in cell apoptosis in muscle, whereas exercise reduced
oxidative stress and inflammation, inhibited apoptosis and protein
degradation, and alleviated muscle atrophy,130 partially via Akt and
AMPK pathways.131 Aging-related chronic systemic inflammation
increased TNF-α in circulation, which was bound with tumor necrosis
factor receptor I (TNFRI) to induce apoptosis, whereas exercise reduced
TNF-α, TNFRI, and pro-apoptotic proteins Caspase8 and Caspase9 levels,
inhibited apoptosis, maintained skeletal muscle mass.132 Caspase12, an
to inhibit sarcopenia.
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Fig. 3. Promoting anti-inflammation and antioxidant
capacity of skeletal muscle by exercise and nutrition
supplements. Exercise stimulates cytokine secretion
and further activates PI3K-Akt and AMPK-PGC-1α
pathways, to alleviate oxidative stress and inflamma-
tion by regulating NF-κB, NRF and TFAM and
reducing ROS production and accumulation. Mean-
while, exercise and nutrition interventions increase
glucose uptake and inhibit PKC-Nox2/Nox4 pathway
to reduce ROS levels. Akt: protein kinase B; AMPK:
adenosine monophosphate-activated protein kinase;
GPCRs: G protein-coupled receptors; mTOR:
mammalian target of rapamycin; Nox: nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase;
NRF: nuclear respiratory factor; PI3K: phosphatidyli-
nositol 3 kinase; PKC protein kinase C; ROS: reactive
oxygen species; TFAM: mitochondrial transcription
factor A.
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endoplasmic reticulum (ER) stress-specific indicator, activated Caspase9
and Caspase3, further inducing apoptosis. A study showed that six weeks
of swimming reduced Caspase12 expression in the skeletal muscle of
diabetic mice.133 Therefore, exercise is viewed as an effective strategy to
inhibit oxidative stress, inflammation, and cell apoptosis in skeletal
muscle as well as to ameliorate sarcopenia.

However, excessive oxidative stress and inflammation are induced by
fatigue after exercise. Therefore, it is important to relieve exercise fatigue
to enhance exercise protective effects. A study found that lonicera caer-
ulea berry extract (LCBE) and VC reduced apoptosis-related proteins Bax,
cytochrome C (Cyt C), Caspase9, and Caspase3 levels via inducible nitric
oxide (NO) synthase (iNOS)/NO and protein kinase C(PKC)-nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase 2(Nox2)/Nox4 path-
ways in muscle following exercise fatigue; meanwhile, mitochondrial
biosynthesis, antioxidant capacity, and exercise endurance were
improved by long-term exercise and LCBE through activating AMPK-
PGC-1α-NRF-1-TFAM pathway; and LCBE promoted cells proliferation by
up-regulating miR-NA-133a/IGF-1/PI3K/Akt/mTOR signaling, which
ultimately improved skeletal muscle mass and exercise capacity in
mice.104 Apoptosis-inducing factor (AIF) and endonuclease G (Endo G)
are caspase-independent mediators that induced apoptosis to accelerate
aging-induced muscle atrophy, whereas running exercise combined with
caloric restriction decreased the translocation of AIF and Endo G from the
cytoplasm to the nucleus and down-regulated pro-apoptotic signaling.106

In summary, the mechanisms by which exercise inhibited apoptosis to
prevent muscle atrophy might be involved in the following: (1) exercise
decreased oxidative stress and inflammation, and further inhibited the
activation of caspase8 and caspase3; (2) exercise improved mitochon-
drial function, reduced AIF and Endo G levels, inhibited pro-apoptotic
Bax and Cyt C release, and blocked Cyt C binding to caspase 9 to form
apoptosome; (3) exercise inhibited ER-mediated caspase12 activation,
further blocking the activation of caspase3 (Table 1 and Fig. 4).
5.7. Exercise and nutrition regulated protein synthesis and degradation

Skeletal muscle mass is determined by the balance between protein
synthesis and degradation. Physical inactivity and insufficient nutrition
decrease muscle protein synthesis and induce muscle mass and function
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decline. A study has demonstrated that resistance exercise improved the
rate of protein synthesis, inhibited protein degradation, and increased
aging muscle CSA and strength.134 Aerobic combined with resistance
exercise promoted protein synthesis, reducedmuscle protein degradation
by regulating inflammation, autophagy mediators, and UPS activation,
and ultimately alleviated muscle atrophy in aged obese patients.135

Moreover, resistance exercise combined with milk and vitamin D pro-
moted protein synthesis, and increased muscle mass and strength, which
were beneficial to preventing aging-induced muscle atrophy.136 Dietary
intake of protein after resistance exercise activated mTORC1 and
downstream target 70 kDa ribosomal protein S6 kinase (p70S6K),
improved protein synthesis, and increased aging muscle mass.137

Codium fragile is rich in lysophosphatidyl choline, α-tocopherol, and
unsaturated fatty acids, which are important to maintain and promote
skeletal muscle health.107 PGC-1α and mTORC1 are key regulators of
muscle protein synthesis, energy metabolism, and muscle mass and
function via regulating UPS and autophagy-lysosomal system
(ALS).107,138 The animal experiment revealed that muscle mass and ex-
ercise endurance were increased in mice fed with Codium fragile, and the
beneficial effects of Codium fragile on muscle were performed by acti-
vating PGC-1α-related signaling and Akt/mTORC1 pathway, promoting
mitochondrial biogenesis and protein synthesis, and increasing muscle
fibers CSA.107 It was demonstrated that lifelong aerobic exercise also
improved mitochondrial function, promoted protein synthesis, and
resulted in inhibiting aging-induced muscle atrophy via AMPK/PGC-1α
and Akt/mTOR pathways.101 An imbalance of protein synthesis and
degradation directly causes skeletal muscle atrophy, while inhibiting
excessive activation of UPS and ALS is beneficial to protein synthesis and
degradation balance. Exercise and nutrition interventions improve
mitochondrial function, promote protein synthesis, and reduce UPS and
ALS activation through Akt-mTORC1 and PGC-1α pathways in skeletal
muscle (Table 1).
5.8. Exercise and nutrition activated satellite cells

Satellite cells (SCs) are stem cells located between the basal membrane
and membrane of muscle fibers. They are activated by exercise and me-
chanical stimulations, leading to their proliferation and differentiation,



Fig. 4. Modulation of cell apoptosis pathways in skel-
etal muscle by exercise and nutrition intervention.
TNF-α binds to TNFRI, further activates caspase8 and
caspase 3, to induce apoptosis. And apoptosis executive
signal-caspase3 also is activated by ER stress-specific
indicator caspase 12, and Bax Cyt C is released by
mitochondria. Moreover, mitochondria release AIF and
Endo G to active caspase-independent apoptosis
signaling. Which could be reversed by exercise and
nutrition interventions. AIF: apoptosis-inducing factor;
Bax: Bcl2-associated X; Bcl-2: B-cell lymphoma-2; Cyt
C: Cytochrome C; Endo G: endonuclease G; FADD: Fas-
associating protein with a novel death domain; TNF-α:
tumor necrosis factor-α
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which promotes muscle fiber repair and regeneration.139–141 Exercise
activated SC proliferation and differentiation, increased muscle capillary
density in aged type II muscle fibers, improved muscle mass and strength,
and resulted in preventing aging-induced sarcopenia.142 The combinations
of resistance and aerobic exercise increased SC number and pool, muscle
capillarization and CSA, and inhibited muscle atrophy following bariatric
surgery.143 Endurance exercise training promoted muscle SC self-renewal
and proliferation, reduced mitochondrial respiration, and inhibited
inflammation and fibrosis in damagedmuscle fibers.144 Other studies have
found that voluntary wheel running alleviated skeletal muscle atrophy by
activating SC proliferation and differentiation and promoting myogenesis,
partially via Wnt/β-catenin and Hippo/Yes-associated protein (YAP)
pathways in skeletal muscle.113,114 Importantly, exercise also inhibited
muscle growth-inhibitory pathways and activated SCs to promote skeletal
muscle hypertrophy. High-expression TGF-β impeded SC activation and
protein synthesis, and weakened muscle hypertrophy via Smad signaling,
whereas resistance exercise reversed the negative effects caused by TGF-β
activation.108 A transcriptome study found that the PI3K/Akt pathway
played a key role in resistance exercise-induced SCs self-renewal and
proliferation.110 Apart from exercise, nutrients should be considered as a
feasible intervention. Sulforaphane, a natural compound derived from
cruciferous vegetables, activated SC proliferation and differentiation and
reversed aging-related loss of muscle mass and function via NRF2
signaling.105 A study has found that lemon myrtle extract activated SC
proliferation and promotedmuscle protein synthesis through interleukin-6
(IL-6).145 It has also been reported that in IL-6-treated C2C12 cells and
primary human myoblasts, high concentrations of IL-6 activated SCs and
promoted cell proliferation and differentiation via activating Janus kinase
(JAK)-signal transducer and activator of transcription (STAT)-suppressor
of cytokine signaling (SOCS) pathway.115 Thus, lemon myrtle could be
considered as a novel nutritional intervention for preventing sarcopenia.
Resistance exercise activated SC proliferation and differentiation, and
promoted muscle hypertrophy through IL-6/STAT inflammatory
signaling. Therefore, IL-6 and its downstream played an important role in
the effects of exercise or nutrients on activating muscle SCs proliferation
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and differentiation. In androgen receptor (AR)-treated C2C12 cells, stretch
(mimic appropriate exercise) promoted cell proliferation through the
AR-IGF-1/IGF-1R-p38 and extracellular regulated protein kinases (ERK)
1/2 pathways.111 Thus, it makes sense to explore whether exercise can
activate the proliferation and differentiation of satellite cells to promote
muscle fibers regeneration and hypertrophy through the
AR-IGF-1/IGF-1R-mitogen-activated protein kinase (MAPK) pathway.
Combining exercise with nutrient ingestion is an effective and feasible
strategy for promoting SC activation and myogenic differentiation.

Activation of SCs was beneficial to muscle fibers regeneration, while
excessive activation led to SC exhaustion. Thus, when SCs participated in
muscle fiber repair and regeneration, treadmill training prevented
excessive activation of SCs and maintained its regenerative potential by
up-regulating IGF binding protein 7 (IGFBP7), blocking the binding of
IGF receptor (IGFR) to its ligands, further inhibiting PI3K/Akt/mTOR
pathway.109 In conclusion, activation of SCs requires mechanical stimu-
lation and cytokines, and capillary, as the transport channels of oxygen,
nutrient and cytokines, are also critical factors in regulating the state and
function of SCs. Exercise activates SC proliferation and differentiation to
improve muscle fiber regeneration by promoting capillarization in skel-
etal muscle and up-regulating SC activation-related signaling; mean-
while, it inhibits SC excessive activation and damage by blocking
activation-related signaling pathways (Table 1 and Fig. 5).

6. Conclusion and perspective

Sarcopenia is a progressive and degenerative skeletal muscle disease,
and its prevention and treatment are major areas of scientific research.
Advances in research on its definition, adverse outcomes, diagnosis,
causes, and interventions are important to prevent and treat sarcopenia.
Compelling evidence has confirmed that aging, insufficient nutrition,
physical inactivity, and diseases contribute to sarcopenia. In addition,
some lifestyle habits, such as smoking and excess alcohol consumption,
are also conducive to sarcopenia. Therefore, it is of great significance to
maintain a rational diet and regular exercise. Furthermore, sufficient



Fig. 5. Activation of satellite cells proliferation and differentiation to muscle fibers regeneration. The complex mechanisms were activated by exercise and nutrients,
as shown in the picture. Satellite cell activation-related Pax7, Myf5 and MyoD were up-regulated via the above pathways to promote the proliferation and differ-
entiation of satellite cells. Importantly, exercise could up-regulate IGFBP7 to inhibit IGF/PI3K/Akt/mTOR for preventing excessive activation of satellite cells, which
was benefitial to maintaining satellite cell survival and regenerative potential. Akt: protein kinase B; AR: androgen receptor; IGF-1: insulin-like factor-1; IGF-1R: IGF-1
receptor; IL-6: interleukin-6; JAK: Janus kinase; MAPK: mitogen-activated protein kinase; mTOR: mammalian target of rapamycin; Myf5: myogenic factor 5; MyoD:
myogenic differentiation.
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accumulation of muscle mass and strength in mid-life is beneficial in
preventing age-related muscle atrophy. Maintaining regular physical
activity and an optimized diet during young adulthood or middle age are
effective strategies to prevent sarcopenia. Exercise and nutrition in-
terventions regulate complex pathological or physiological mechanisms,
including oxidative stress, inflammation, apoptosis, cytokines release,
protein synthesis, and activation of SCs (Fig. 6), which are critical for
Fig. 6. Protective effects of exercise and nutrition interventions in sarcopenia. Th
function are resistance exercise, aerobic exercise, high-intensity interval training, w
supplements stimulate cytokines secretion and activate mechanisms and downstream
reduce cell apoptosis, promote protein synthesis, and activate satellite cells, result in
AMPK: adenosine monophosphate-activated protein kinase; CAT: catalase; GDF15: g
like factor-1; PGC-1α: peroxisome proliferator-activated receptor γ coactivator (PPA
mycin; MyoD: myogenic differentiation factor D; Myf5: myogenic factor 5; MyoD: myo
vascular endothelial growth factor; ROS: reactive oxygen species; SCs: satellite cells
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sarcopenia prevention and treatment. Most importantly, lifelong exercise
and a reasonably good diet also have practical significance.

Exerkines (including cytokines and gut microbiome-related target
molecules) are involved in exercise-induced beneficial effects via
exosome-mediated cross-talk between distant organs and muscle, which
are new mechanisms of exercise protecting skeletal muscle. The discov-
ery of organ-derived new exerkines and their complex network
e current concerning types of exercise in improving skeletal muscle mass and
hole-body vibration, and muscle electrical stimulation. Exercise and nutrition
to increase muscle blood flow, ameliorate oxidative stress and inflammation,
preventing muscle atrophy and improving hypertrophy. Akt: protein kinase B;

rowth differentiation factor 15; GSH-Px: glutathione peroxidase; IGF-1: insulin-
Rγ)-1α; PI3K: phosphatidylinositol 3 kinase; mTOR: mammalian target of rapa-
genic differentiation; NO: nitric oxide; UPS: ubiquitin-proteasome system; VEGF:
; SOD: superoxide dismutase; TNF-α: tumor necrosis factor-α
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interaction will be conducive to comprehensively investigating the
mechanisms of exercise-induced protection of muscle. With the deep-
ening of life science, sports science and medical research, spatial tran-
scriptomics (emerging from phenotypes andmetabolomics development)
and the spatial multi-omics (forming by spatial transcriptomics and
spatial proteomics) will provide more possibilities to clarify the mecha-
nisms of protection for skeletal muscle comprehensively.
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