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ABSTRACT

Motivation: Measurements of gene expression over time enable
the reconstruction of transcriptional networks. However, Bayesian
networks and many other current reconstruction methods rely
on assumptions that conflict with the differential equations that
describe transcriptional kinetics. Practical approximations of kinetic
models would enable inferring causal relationships between genes
from expression data of microarray, tag-based and conventional
platforms, but conclusions are sensitive to the assumptions made.
Results: The representation of a sufficiently large portion of
genome enables computation of an upper bound on how much
confidence one may place in influences between genes on the
basis of expression data. Information about which genes encode
transcription factors is not necessary but may be incorporated
if available. The methodology is generalized to cover cases in
which expression measurements are missing for many of the genes
that might control the transcription of the genes of interest. The
assumption that the gene expression level is roughly proportional
to the rate of translation led to better empirical performance than
did either the assumption that the gene expression level is roughly
proportional to the protein level or the Bayesian model average of
both assumptions.
Availability: http://www.oisb.ca points to R code implementing the
methods (R Development Core Team 2004).
Contact: dbickel@uottawa.ca
Supplementary information: http://www.davidbickel.com

1 INTRODUCTION

1.1 Transcriptional network reconstruction
Much of the recent interest in biomolecular network reconstruction
is motivated by the desire to map microscopic interactions to
macroscopic traits that are of interest to the medical and food

∗To whom correspondence should be addressed.

industries (Peccoud et al., 2004). For example, pharmaceutical
companies have an interest in reverse-engineering molecular
networks to find druggable targets (Hopkins and Groom, 2002;
Schadt et al., 2007) or otherwise find genes that strongly influence
disease and that could respond to therapy (Chen et al., 2008).
Markowetz and Spang (2007) provide an introduction to the
literature.

Transcriptional networks have been reconstructed from gene
expression measured at a snapshot in time, often in response to
some set of perturbations or treatments. Expression time-course
experiments have also raised the prospect of inferring not only
the existence of causal relationships between genes, but also the
direction of causality from regulating genes to regulated genes,
without requiring the manipulation of genes one by one.

1.2 Bayesian inference of biomolecular networks
1.2.1 Bayesian statistics Approximate Bayesian inference tends
to achieve a level of conservatism between, on one hand,
hypothesizing the network deemed most likely irrespective of the
degree of uncertainty in that network (e.g. Friedman et al., 2000;
Husmeier, 2003) and, on the other hand, correcting P-values for
multiple testing.

A recent hierarchical model for inferring regulatory networks
via Bayes’s theorem is a case in point; information that provides
evidence of transcription factors is represented in terms of a prior
distribution, whereas the evidence associated with gene expression
data remains in the likelihood function (Jensen et al., 2007).
Such modeling of transcription factors seeks a more detailed
understanding than does allowing unknown mediating genes that
may encode transcription factors and other intermediate connections
between genes in the network to remain unmodeled.

For the purpose of inferring previously unknown influences
between transcriptional network components given appropriate data
and any well specified model of such influences, many of the most
important causal models may be classified either as directed acyclic
graphs or as kinetic models. The use of Bayesian probability theory
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results in Bayesian networks when applied to directed acyclic graphs
but can result in the methodology of this araticle when applied to
kinetic models.

1.2.2 Bayesian networks A Bayesian network is a directed
acyclic graph whose nodes are random variables and whose edges
are associations expressed in terms of conditional probabilities
(Jensen, 2001). Bayesian networks interpreted causally (Pearl, 2000)
have often been the tool of choice for biomolecular network
reconstruction; they have, for example, been employed to uncover
evidence of physical relationships between proteins after applying
several perturbations (e.g. Sachs et al., 2005). Bayesian networks
have also been applied to time course data when generalized to
networks called dynamic because each node corresponds to a gene
at a given time (e.g. Husmeier, 2003; Kim et al., 2003). If the
conditional independence topology of the network is unknown, as
is the case in frontier network reconstruction, then edge indicators,
conveniently labeled as 0 or 1 for absent or present edges, also have
a joint prior distribution. In principle, the problem is solved with
Bayes’s theorem by computing the joint posterior distribution of the
latent variables, edge indicators and parameters conditional on the
observed data. Mathematical difficulties make the exact solution
unattainable, sometimes leading to computational searches for a
single network that, although optimal in some sense, may have very
low posterior probability.

The simplicity of Bayesian networks have made them natural
preliminary tools for applying Bayesian inference to the problem
of biomolecular network reconstruction. However, the Bayesian
statistical framework is general enough to instead incorporate
knowledge of the dynamics of physical gene–gene interactions.

1.2.3 Bayesian inference of kinetic models In common with
other statistical approaches, Bayesian inference can give misleading
results when used without adequate modeling. Consequently,
rather than using Bayesian networks, we apply Bayes’s theorem
to a well studied class of kinetic models to infer causal
relationships between genes. Such models have attracted recent
attention, but usually without computing the posterior distributions
of their parameters (e.g. Chen et al., 1999; de Hoon et al.,
2002; Vander Velden and Peccoud, 2003). A discussion of two
important non-Bayesian approaches to kinetic models appears
in Section S5 of the Supplementary Material (Bonneau et al.,
2006; Bonneau et al., 2007; Gardner et al., 2003). Modeling
at a sufficiently high level is supported by the finding that
modeling the dynamical system in too much detail can lead to
differential equation or stochastic process parameters that can
only be identified, even in the absence of statistical error, when
there are not only measurements of the abundance of transcripts
over time, but also other information such as knowledge of
specific interactions between promoters and transcription factors
(Zak et al., 2002). More generally, model complexity at an
inappropriate level for the data at hand often leads to wasted
analyst effort, to computational intractability and to parameter
overfitting.

Bridging the gap between high-level statistical methods and low-
level differential equation models, we herein describe a Bayesian
method of inferring causal relationships between genes on the
basis of gene expression measurements that have little or no
replication and that only roughly reflect numbers of molecules.

This is accomplished by carefully approximating both the kinetic
models that describe transcriptional dynamics and the posterior
probabilities of gene–gene influences based on such models.
Compared with other Bayesian methods of inferring kinetic
model parameters (Wilkinson, 2006), our approach is simple in
that it does not require advanced computation such as that of
Markov chain Monte Carlo simulations. Select approximations
may be relaxed for more precise inference once higher quality
expression data or reliable information from other sources becomes
available.

In the transcriptional network reconstruction method, our propose
is applicable to studies of gene expression measured at four or
more consecutive points separated by equal intervals of time (e.g.
Serban and Wasserman, 2003; Spellman et al., 1998), provided
that such intervals are small enough to capture the transcriptional
dynamics, that the total time of measurement is large enough to
capture translation, and that there is only one dominant cell type in
the tissue samples. While the method requires neither replication
(unless there are fewer than five time points) nor information
about which genes encode transcription factors, straightforward
ways to incorporate either or both into the data analysis are
provided. Replication is handled at the level of the statistical
model, whereas transcription factor information becomes part of
a prior distribution. These necessary requirements for application of
the proposed methodology are not sufficient to ensure that there
are enough biological samples to obtain reliable predictions of
regulation; statistical power depends on the extent of biological
variability as well as the sample size. However, the methods
are designed to be robust to insufficient data in the sense that
all the reported probabilities of regulatory relationships would
in that case tend to be very small, thereby helping prevent
unwarranted predictions. Section S4 of the Supplementary Material
supplies details on the number of time points needed and on the
reliability of network inference at different levels of biological
variability. Section S5 relaxes the requirement of equal sampling
times.

Section 2 describes the kinetic models that, under the conditions
specified, hold in all cell systems. Section 3 introduces the regression
model and prior distribution used to infer the model parameters
representing gene–gene influences. The Supplementary Material
reports the findings of a simulation study and illustrates this
gene network reconstruction methodology by applying it to the
replicated plant cell culture experiment that initially motivated
the methodology. The results of applications to data of non-
replicated yeast and bacteria experiments are also presented in
the Supplementary Material and are summarized Section 4. In the
Section 5, we draw general conclusions.

2 TRANSCRIPTIONAL NETWORK MODELS
Consider the set of genes any of which might be the dominant
regulator of any gene of interest i. The number m of such potentially
regulating genes may equal the genome size in the absence of
adequate information about transcription factors. Let xi(t) denote
the transcript abundance of the i-th gene at time t, βij correspond
to a real-valued strength of influence associated with a product of
the j-th gene affecting the i-th gene and Di correspond to the non-
negative degradation rate of the transcript of the i-th gene. βij >0
corresponds to activation, whereas βij <0 corresponds to repression.
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The linear transcription model of Chen et al. (1999) reduces to

dxi (t )

dt
=

m∑
j=1,j �=i

βijxj (t )−Dixi (t ), (1)

under the assumption that the transcript concentrations are
proportional to the concentrations of the proteins they encode, or to

d2xi (t )

dt2
≈

m∑
j=1

βijxj (t ), (2)

under the assumption that the transcript concentrations are
proportional to the rates of concentration change of the proteins
they encode, as found empirically (Chechik et al., 2008) and
as expected from mass-action kinetics, given that such rates
dominate degradation. Due to their linearity, these equations may
alternatively be derived as approximations to other models in the
literature. For example, in the case of the first-order model (1),
dx1(t)/dt =β1,2x2(t)−D1x1(t) approaches a rate-law kinetic model
of transcription (Gardner and Faith, 2005) if x2(t) is proportional to
the concentration of the transcription factor, if that concentration
is far from saturation and if the transcription factor binds to a
single motif. Equation (1) may be written more concisely by letting
βii = −Di:

dxi (t )

dt
=

m∑
j=1

βijxj (t ), (3)

equivalent, in the absence of perturbations, to a model applied to
a transcript network in bacteria (Gardner et al., 2003). In contrast,
some of the simplest corresponding static and dynamic Bayesian
network models are

xi (t )=
m∑

j=1,j �=1

βijxj (t ) and (4)

xi (t+τ )=
m∑

j=i,j �=1

βij (t+τ )xj (t+τ )+
m∑

j=1

β ′
ij (t )xj (t ), (5)

respectively, where τ is the time between each measurement. The
parameters of the latter may be practically unidentifiable due to
the strong autocorrelation of xj(t) unless the βij(t)s and β ′

ij(t)s
have highly informative priors. With no more parameters than
model (4), model (3) is much more realistic biologically since it
has the change in transcript concentration, rather than the absolute
transcript concentration, in direct proportion to the concentration
of the transcripts of the regulating genes, those for which βij �=0.
The less realistic of these two assumptions is in effect implicitly
made whenever standard Bayesian networks (e.g. Sachs et al.,
2005) or other association networks (e.g. Bickel, 2005; Schäfer
and Strimmer, 2005) are interpreted causally. Further, like other
causal models based on differential equations (Jensen, 2001), kinetic
models (2) and (3) allow feedback loops, regardless of whether their
parameters are inferred with Bayes’s theorem, whereas Bayesian
networks (4) are notorious for their inability to handle feedback
loops.

The complete Bayesian solution to model (3) would be the joint
posterior distribution of βij for all values of i and j computed on
the basis of the observations, one or more error models, and a joint
prior distribution encoding all relevant biological knowledge and
its uncertainties. While that ideal cannot be attained, it supplies

guidance for achieving approximate solutions and, as necessary,
indicates a direction in which they may be improved.

3 STATISTICAL METHODS

3.1 First-order difference equations
3.1.1 Regression framework To apply model (3) to gene
expression data, the concentrations xj(t) are replaced by their
observed values yj(t) after averaging over any technical replicates.
These measurements are considered approximately proportional to
the transcript copy numbers of their genes. For example, with
a microarray platform, yj(t) could be a hybridization intensity
(or a monotonic transformation of such an intensity) deemed roughly
proportional to the mRNA concentration level; yj(t) may be more
accurately estimated given platform-specific information (Frigessi
et al., 2005). With a tag-based method of measuring expression,
yj(t) is the abundance of tags corresponding to the j-th gene
(Gainetdinov et al., 2007; Hu and Polyak, 2006). Also replacing
the time derivative with the first-forward difference yields, at times
t ∈{τ,2τ,...,tmax −τ,tmax}=T,

�yi (t )≡yi (t+τ )−yi (t )=
m∑

j=1

βijyj (t )+βi +εi (t ),

where βij has absorbed the constant sampling time τ , the intercept
βi represents the unexplained linear trend over time, and εi(t)
represents the error due to biological variability. If there is biological
replication, the replicates are denoted by k ∈{1, …, n} and the
observed values by yjk(t). In a repeated measures design, there would
be a total of n individual organisms or cell cultures, and each value of
k would refer to the same individual over all points in time, leading
to the autoregressive model

yik (t+τ )−yik (t )=
m∑

j=1

βijyjk (t )+βi +εi (t ).

However, in most studies of gene expression on time scales of
biochemical reactions, measuring the same individual over time
is impractical, either because each individual organism must be
sacrificed to take the tissue sample or because such sampling will
perturb an individual’s future gene expression dynamics, thereby
introducing a systematic bias that increases over time. Thus, the
common situation is that a value of k at one time does not
correspond to the same value of k at a later time, and, unless some
data are missing, there will be a total of (tmax/τ )n individuals.
Acomputationally efficient tactic for applying the forward difference
approximation to data of this structure reduces them by averaging
over replicates at each point in time. This yields ȳi(t), the mean
expression intensity of the i-th gene over the n replicates at time t.
A simplistic data reduction method would then stipulate model

ȳi (t+τ )− ȳi (t )=
m∑

j=1

βij ȳj (t )+βi +εi (t ),

which forfeits most of the degrees of freedom and thus fails
to adequately take advantage of the biological replication. Data
reduction may be performed without such substantial information
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loss by instead assuming the regression model

�yik (t )≡ ȳi (t+τ )−yik (t )=
m∑

j=1

βij ȳj (t )+βi +εik (t ). (6)

Here, εik(t) is a residual assumed drawn from a zero-mean normal
distribution of standard deviation (SD) σi and density f . The
unknown quantities, βij , βi and εik(t), are random variables in the
Bayesian framework, whereas the design matrix y is fixed by the
observations ȳi(t) for all t; it has (tmax/τ −1)n= (|T|−1)n rows
corresponding to the forward differences �yik(t), also fixed, and
m + 1 columns corresponding to a unit intercept column and the
m regression coefficients. The following methodology is developed
with biological replication (n ≥ 2) in mind for the sake of generality,
but it applies equally to studies without replication since n = 1
implies

ȳj (t )=yi1 (t )=yi (t );εi1 (t )=εi (t );�yi1 (t )=�yi (t ).

Even though no individual is measured over time, this approach
can be informative if there are some common aspects of gene
expression dynamics that are reflected across a sufficient number
of the individuals measured and if t denotes the elapsed time after
some common perturbation.

3.1.2 Case of complete measurements In the case of no missing
regressors, expression measurements are available over time for all
m potentially regulating genes. Unless all m regressor genes may
be considered regulators for gene i, each regression coefficient βij
equals 0 with some non-zero prior probability. Thus, facilitating the
selection of non-zero coefficients, Equation (6) may conveniently
be rewritten as

�yik (t )=
m∑

j=1

αijβij ȳj (t )+βi +εik (t );αij = I (βij �=0 ), (7)

where I(·) is the indicator function mapping to 1 if its argument
is true or to 0 if it is false. In terms of model selection or
Bayesian model averaging for the i-th response gene, the 2m

possible values of the m-tuple (αi1, αi2, …, αim) span the sub-model
space. Restricting this sub-model space such that

∑m
j=1αij ≤M

for some M ≤ (|T|−1)n−2 makes inference manageable. This
facilitates leveraging the conceptual separation between sub-model
selection/averaging and inference about the parameters conditional
on each of the sub-models in the restricted space, e.g. (βi7,βi,σi) for
sub-model αij = I(j = 7) or (βi1, ...,βiM ,βi,σi) for sub-model αij =
I(j∈{1,...,M}). Conveniently, the number of regression parameters
per sub-model is no more than the number of observations per
sub-model even if m>> (|T |−1)n. Were the goal to find a set
of predictive sub-models, we could proceed by stochastic search
through the restricted sub-model space (see Casella and Moreno,
2006) or perhaps by conventional stepwise selection. However,
Bayesian quantification of network uncertainty instead requires the
computation of P(αij = 1|y).

In the simplest situation, one regulating gene dominates all others
and expression measurements are available for all m potentially
regulating genes. The prior distribution of αij then satisfies
∀j,j′ �=jP(αij = 1,αij′ = 1)=0, i.e.

∑m
j=1αij = 1with probability 1, so

that only m sub-models have non-zero probability. Unless there is
evidence outside the expression experiment favoring some genes

above others as the regulator of gene i, each possible sub-model has
equal prior probability: ∀j∈{1,...,m}P(αij =1)=1/m. This uniformity
of the prior does not represent all states of previous information;
for example, given the results of a transcription factor prediction
algorithm, the prior probability for each potentially regulating
gene would increase monotonically with the algorithm’s reported
evidence that it codes for a transcription factor. To simplify notation,
we express the posterior probability that the j-th gene is the regulator
of the i-th gene in terms of Bayes factors BFij with respect to any
arbitrarily chosen sub-model of positive probability:

P (αij =1|y )=χiBFij =
1+

m∑
j′=1,j′ �=1

BFij′

BFij

−1

for proportionality constant χi. In terms of BICij , the Bayesian
information criterion (Schwarz, 1978), the BF can be approximated
up to constant factor ci as

BFij ≈BFSchwarz
ij =ci exp

(−BICij

2

)
=ci sup

βij,βi,σi

f
(
y|αij =1

)
,

in this case proportional to the profile likelihood ratio used in the
likelihood ratio test statistic since the number of free parameters
is the same in each sub-model. Since f is the normal probability
density function, the BF is approximated in terms of the ratio of the
sums of squared residuals, resulting in

P
(
αij =1|y)≈

1+
m∑

j′=1,j′ �=j

(σ̂ij/σ̂ij′ )
(|T|−1)n

−1

, (8)

where the maximum likelihood estimator of the observation SD,
conditional on the dominance of the j-th gene, equals the estimated
root mean square error (RMSE):

σ̂ij =
√(|T|−1

)−1n−1
∑

k∈{1,...,n},t∈{τ,...,tmax−τ }
ε̂2

ijk (t ).

This use of the BIC enables genome-scale analyses by
obviating the computationally prohibitive simulations required
by many other Bayesian methods, and does so without unduly
compromizing the reliability of the resulting inferences. In fact,
limn→∞BFSchwarz

ij /BFij =1 if BFSchwarz
ij is the BIC approximation

of the BF and BFij is the BF that corresponds to a nested null
model defined by a single value of the parameter of interest, in
this case βij , that has a normal prior with information equal to
that of one observation (Kass and Wasserman, 1995). Further,
the approximation BFij ≈BFSchwarz

ij does not require unrealistic
amounts of data: a simple normal model with known SD has found
the BIC approach to the BF excellent even for samples each of as
few as five observations (Kass and Wasserman, 1995). Less formally,
there is typically no reason to approximate the BF to greater accuracy
than a factor of two (Jeffreys, 1948), and the BIC has been found
to work about as well for model averaging as computation based
on the specification of the joint prior distribution of the parameters
(Hastie et al., 2001). Clyde and George (2004) compare the BIC
approximation with other methods of computing BF.

For purposes of inferring biological networks, the main advantage
of genome-wide platforms such as those of microarrays and tag-
based methods may be that enough of the genome is represented
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that P(αij = 1|y) and analogous quantities can often attain high
values even without previous information on the gene network. Such
posterior probabilities provide informative upper bounds of how
much confidence one may reasonably place in causal relationships
between genes on the basis of observed data when honestly
accounting for network uncertainty. In contrast, conventional
technologies such as RT-PCR may suffer from the missing regulator
problem of the next subsection. Although microarray platforms do
not enable direct comparison of intensities between genes, that
limitation does not affect our approach since gene-to-gene variations
in intensity are included in the βij s.

3.1.3 Generalization to missing regulators To generalize the
above methodology, consider the set of genes that could be the
regulator of any gene of interest i. Suppose m′, the number of
those genes with expression measurements over time, is less than
m, the number of potentially regulating genes, which might be
the genome size or the number of putative transcription factors.
(If the uncertainty in m is substantial, it may be assigned a prior
distribution to propagate that uncertainty to the posterior probability
of each model.) Although the SD estimates of the missing m −m′
genes cannot be known, none of them would be greater than σ̂i0,
the SD estimates based on the intercept term of Equation (7) with
∀j∈{m′+1,...,m}αij =0. Then the data for the first m′ genes provide
an approximate upper bound on the posterior probability of each of
their models:

∀
j∈{1,...,m′}

P
(
αij =1|y) (9)

�

1+
m′∑

j′=1,j′ �=j

(
σ̂ij/σ̂ij′

)(|T|−1
)
n +(m−m′)(σ̂ij/σ̂i0

)(|T|−1
)
n

−1

To the extent that m′ <<m, this bound differs from the
approximation made by optimistically assuming that none of the
non-measured genes is the dominant gene that regulates gene i, i.e.
∀j∈{m′+1,...,m}P(αij =1|y)=0:

∀
j∈{1,...,m′}

Pnaive
(
αij =1|y)≈

1+
m′∑

j′=1,j′ �=j

(
σ̂ij/σ̂ij′

)(|T|−1
)
n

−1

.

(10)
Assumptions of this kind, usually implicit, plague attempts to
reconstruct transcriptional networks from expression measured on
small fractions of the set of potentially regulating genes. If there
are expression measurements for ∼m genes, the effect of using (10)
instead of (9) may be quantified by randomly selecting, without
replacement, subsets each of m′ genes for the computations.

3.2 Second-order difference equations
If doubling the mRNA copy number of a regulator doubles a rate of
translation rather than doubling the amount of a protein in the cell,
the methods of Section 3.1 require modification. Using the second-
order derivative Equation (2) instead of the first-order derivative
Equation (3) puts the second-forward difference equation

�2yik (t )≡ ȳ (t+2τ )−2ȳi (t+τ )+yik (t )

=
m∑

j=1

β̃ij ȳj (t )+β̃i + ε̃ik (t ) (11)

in place of the first-forward difference, Equation (6). The data
analysis would then proceed similarly to the first-order derivative
analysis described above if the researchers are certain that the
assumptions behind Equation (2) are more realistic than those behind
Equation (3). Then the equivalent of Equation (8) would be

P
(
α̃ij =1|y)≈

1+
m∑

j′=1,j′ �=1

( ˆ̃σij/ ˆ̃σij′
)(|T|−2

)
n

−1

. (12)

for α̃ij = I(β̃ij �=0). If they lack such certainty, their uncertainty can
be reflected in the amount of prior probability assigned to each
model, as developed below.

3.3 Uncertainty in the difference equation order
To reflect complete uncertainty about whether doubling the mRNA
copy number of a regulator doubles a rate of translation rather than
doubling the amount of a protein in the cell, we assigned 50%
of the prior probability to the model of Equation (2) and 50%
to that of Equation (3). Then the model selection problem in the
complete measurement case may be framed in terms of this analog
of Equation (7): m∑

j=1

αij

�yik (t )+
 m∑

j=1

α̃ij

�2yik (t )

=
m∑

j=1

αijβij ȳj (t )+
m∑

j=1

α̃ijβ̃ij ȳj (t )+βι+εik (t ) (13)

given that one regulating gene dominates all the others for a
given gene assumed to be regulated and that the domination is
described either by Equation (2) or by Equation (3), but not by
both, so that only a single influence coefficient will be non-zero
for each value of i. As before, each regulating gene has equal
prior probability in the absence of information favoring any over
others. These considerations constrain the model indicator prior by
∀i∈{1,...,m}P(

∑m
j=1αij +

∑m
j=1 α̃ij =1)=1 and

∀
(i,j )∈{1,...,m}2

P (αij =1 )=P (α̃ij =1 )= (2m )−1.

Averaging over two models for each (i, j) pair, the posterior
probability that gene j is the regulator of gene i is P(αij =1∪
α̃ij =1|y)=P(αij =1|y)+P(α̃ij =1|y). Then, following the same
approximations that led to Equation (8),

πij ≡P
(
αij =1∪α̃ij = 1|y)≈(σ̂− (|T|−2 )n

ij
+̂̃σ− (|T|−2 )n

ij

)
Ci,

(14)
where Ci is the proportionality constant such that

∑m
j′=1πij′ =1. The

exponents were adjusted since there are only
(|T|−2

)
n terms in the

computation of the RMSE ˆ̃σ ij for the second-forward difference
model since each time t in the sum is one of |T|−2 elements of
{τ,...,tmax −2τ }.

The posterior probability that the first-order difference model (6)
is correct for the presumed regulated gene i can also be computed
by averaging, now over all the possible regulating genes instead of
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Table 1. The AUC estimates for the four datasets

Dataset First-order
AUC

Second-order
AUC

Average
AUC

Kao et al. (2004) 0.47 0.60 0.69
Bansal et al. (2006) NA 0.39 0.45
Spellman et al. (1998) 0.40 1.00 0.61
de Lichtenberg et al. (2005) 0.20 0.76 0.20

The AUC estimates under the second-order model are consistently greater than those
under the first-order model, suggesting that the former predicts putative transcription
factors better than the latter.

over the two model orders:

P

∑
j′

αij′ =1

∣∣∣∣∣y
≈Ci

m∑
j′

σ̂− (|T|−2 )n
ij′ . (15)

Since by construction those model orders are mutually exclusive and
jointly exhaustive, the posterior probability that the second-order
difference model (11) is correct is

P

(∑
α̃ij′ =1

∣∣∣∣∣y
)

=1−P

∑
j′

αij′ =1

∣∣∣∣∣y
. (16)

4 VALIDATION USING PUBLIC DATA
We applied our models to two yeast datasets (de Lichtenberg et al.,
2005; Spellman et al., 1998) and two bacteria dataset (Bansal et al.,
2006; Kao et al., 2004). Each dataset is from a different strain.

For each regulated gene of interest, we found the gene with the
highest posterior probability of being its dominant regulating gene.
We then checked the annotation of those probability-maximizing
genes in EchoBASE, GeneDB and in the Saccharomyces Genome
Database and noted which among them were putative transcription
factors. To quantify performance, we estimated the Area Under
the receiver operating characteristic Curve (AUC) (Green and
Swets, 1966) between the probability-maximizing genes that encode
putative transcription factors and the probability-maximizing genes
that do not. The AUC measures how accurately the models predicted
putative transcription factors. An AUC of 0 indicates that low
probabilities perfectly predict putative transcription factors (least
desirable), an AUC of 0.5 indicates that there is no predictive power
(also undesirable) and anAUC of 1 indicates that higher probabilities
perfectly predict putative transcription factors (ideal). (The AUC has
also been applied to the problem of determining which genes are
differentially expressed between groups (Bickel, 2004; Pepe et al.,
2003)).

Table 1 summarizes the results for the four datasets. Figure 1,
Figure 2 and Figure 3 show the probabilities of the genes that
maximized the probability under the first-order, second-order and
averaged models. The Supplementary Material supplies additional
details about our analyses of these data.

5 DISCUSSION
We highlight three unique aspects of our choosing prior distributions
to represent available information for causal network inference.
First, under substantial uncertainty about which differential equation

Fig. 1. Posterior probabilities based on the first-order model [Equation
(8)] for each of the four datasets. Black triangles represent genes
encoding putative transcription factors and gray triangles represent the
other probability-maximizing genes. The Supplementary Material reports
the numeric values.

Fig. 2. Posterior probabilities based on the second-order model [Equation
(12)] for each of the four datasets. Black triangles represent genes
encoding putative transcription factors and gray triangles represent the
other probability-maximizing genes. The Supplementary Material reports
the numeric values.

best models the transcriptional influences on the transcription of
a given gene of interest, we assign each differential equation a
prior probability followed by averaging the posterior probabilities of
influences over all differential equations considered. This strategy,
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Fig. 3. Posterior probabilities based on the average model [Equation (14)] for
each of the four datasets. Black triangles represent genes encoding putative
transcription factors and gray triangles represent the other probability-
maximizing genes. The Supplementary Material reports the numeric values.

unlike the analysis of the data on the basis of a single kinetic model,
propagates the uncertainty in the kinetic model to the uncertainty
in the causal relationships between genes inferred in the analysis
[Equation (14)]. Second, the proposed method of assigning a prior
distribution is general enough to cover both the absence and presence
of information about which genes encode transcription factors. This
is accomplished by using previous information to assign a prior
probability to each gene that could be the one that dominates
the expression of the gene of interest. For example, lacking such
information, every gene in the genome of the species studied has
a prior probability equal to 1/m, the reciprocal of the genome size,
thereby guarding against the practice of automatically inferring a
causal network even when expression has been measured only over
a small fraction of the genome. On the other hand, a selection of
genes to measure guided by previous transcription factor information
can be expected to yield better results. Our approach reflects this
by assigning a prior probability for each gene selected on the
order of 1/m, where m in this case is the number of transcription
factors. Third, the distinction between m, the number of genes that
might dominate the expression of the gene of interest, and m′, the
number of genes with measured expression levels, generalizes the
methodology without introducing a bias toward overconfidence in
network connections. In other words, unless the number of genes
measured is comparable to the number of genes that have not been
ruled out as the gene dominating the gene of interest, adequate
specification of the prior distribution makes it unlikely that any
measured gene will have 50% or more posterior probability of
influencing the expression of the gene of interest [Equation (9)].
This applies separately to each of the regulated genes of interest, the
number of which is limited only by the availability of expression
measurements and of computational resources.

This methodology may seem overly stringent when compared
with algorithms that would hypothesize networks of hundreds
of genes even from data of questionable adequacy. While we
have indeed guarded against putting undue confidence in causal
interpretations of estimated association networks, we have not
embraced the conservatism in traditional hypothesis testing that
seeks to avoid all false discoveries. Based in part on the results
of the Supplementary Material, we take the moderate position that
some aspects of causal gene networks may be inferred with at
least some degree of confidence using current technology. This is
accomplished by coherently inferring parameters of kinetic models
as protection against overstating or understating how much can be
learned from gene expression time courses. Systems biology as
a field is discredited by the publication of more and more large
transcriptional networks without quantifying the extent to which
such networks are justified by experimental data and what is already
known about the systems.

Even with such precautionary measures, more thorough modeling
of the uncertainty may yield lower posterior probabilities of gene–
gene influences than those of Equation (14):

(1) The linearity between the transcript abundance and the
microarray intensity becomes a less adequate approximation
at high-mRNA copy numbers, as the fluorescence becomes
saturated (K. V. Velden, personal communication). The
possible sensitive dependence of conclusions on this and other
linearities of the models can in principle be mitigated by
the introduction of non-linearity parameters and their prior
distributions, preferably informed by empirical studies of the
relationship between the copy number and the intensity (e.g.
Frigessi et al., 2005). Alternatively, tag-based platforms may
be employed for more direct measurement of mRNA copy
numbers (Gainetdinov et al., 2007; Hu and Polyak, 2006).
However, a change in platform will prove insufficient to the
extent that transcription factors do not regulate their targets
linearly.

(2) As noted in the caption of Figure S4 of the Supplementary
Material, leaving prior time scale information out of the model
approximation may in some cases result in misleadingly high
posterior probabilities.

(3) While the models were inspired largely by dynamics expected
of transcript levels within an individual cell, the microarray
measures total gene expression over a population of several
cells. The deviation of single-cell dynamics from the linearity
of the kinetic models would have to be summed over all cells
of the population to determine the adequacy of those models
at the population level. Modeling the relationship between
individual-cell expression and microarray measurements
would require the introduction of parameters such as the
number of cells per population, which, when marginalized
over to compute to posterior probabilities of interest, may
add considerable uncertainty to the conclusions.

To the extent that the last of these considerations affects the
probability of regulation, network reconstruction breakthroughs may
occur in the short term more by advances in within-cell measurement
technology than by those in statistical modeling and computation.
Further, no gene expression platform can detect post-transcriptional
modifications known to be important in regulation. These kinds
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of limitations apply more generally: since models can always be
improved, statistics tends to only provide lower bounds on the
uncertainty of inferences about complex systems (cf. Cox, 2001).

Nonetheless, the second-order model performed well in validation
(Table 1). One AUC estimate is 100%, reflecting the case in
which the only putative transcription factor has a higher posterior
probability of being the dominant regulator of a gene of interest than
any of the other 42 genes.
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