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Aerobic enhanced glycolysis characterizes the Warburg phenotype. In cancer cells, 
suppression of mitochondrial metabolism contributes to maintain a low ATP/ADP ratio 
that favors glycolysis. We propose that the voltage-dependent anion channel (VDAC) 
located in the mitochondrial outer membrane is a metabolic link between glycolysis 
and oxidative phosphorylation in the Warburg phenotype. Most metabolites including 
respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. Oxidation 
of respiratory substrates in the Krebs cycle generates NADH that enters the electron 
transport chain (ETC) to generate a proton motive force utilized to generate ATP and to 
maintain mitochondrial membrane potential (ΔΨ). The ETC is also the major source of 
mitochondrial reactive oxygen species (ROS) formation. Dimeric α-β tubulin decreases 
conductance of VDAC inserted in lipid bilayers, and high free tubulin in cancer cells by 
closing VDAC, limits the ingress of respiratory substrates and ATP decreasing mito-
chondrial ΔΨ. VDAC opening regulated by free tubulin operates as a “master key” that 
“seal–unseal” mitochondria to modulate mitochondrial metabolism, ROS formation, and 
the intracellular flow of energy. Erastin, a small molecule that binds to VDAC and kills 
cancer cells, and erastin-like compounds antagonize the inhibitory effect of tubulin on 
VDAC. Blockage of the VDAC–tubulin switch increases mitochondrial metabolism leading 
to decreased glycolysis and oxidative stress that promotes mitochondrial dysfunction, 
bioenergetic failure, and cell death. In summary, VDAC opening-dependent cell death 
follows a “metabolic double-hit model” characterized by oxidative stress and reversion 
of the pro-proliferative Warburg phenotype.

Keywords: cancer metabolism, erastin, glycolysis, mitochondria, oxidative stress, tubulin, voltage-dependent 
anion channel, warburg effect

iNTRODUCTiON

warburg Metabolism: A Phenotype of Proliferating Cells
The Warburg phenomenon, named in honor of Otto Warburg’s work on lactic acid production in 
tumors, is a metabolic phenotype characterized by enhanced glycolysis and suppression of mito-
chondrial metabolism even in the presence of physiological levels of oxygen (1, 2). Warburg also 
postulated that respiration in the grana (mitochondria) of cancer cells was irreversible but not com-
pletely damaged and that permanent defective respiration originates cancer. According to Warburg, 
cells with damaged respiration compensate the lower energy production in the grana with increased 
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FigURe 1 | voltage-dependent anion channel (vDAC) regulation of 
warburg metabolism. Respiratory substrates, ADP, and Pi cross MOMs via 
VDAC and then MIMs via individual transporters. Respiratory substrates enter 
the Krebs cycle generating mostly NADH, which enters the respiratory chain 
(Complexes I–IV). Proton translocation from the matrix into the 
intermembrane space generates ΔΨ as oxygen is reduced to water. The F1F0 
ATP synthase (Complex V) utilizes protons from the intermembrane space to 
drive the synthesis of ATP from ADP and Pi. Synthesis of nucleotides, lipids, 
and amino acids in the cytosol are supported by G-6-P, Glyc-3-P, and 3-PG 
originated in the catabolism of glucose and citrate, oxaloacetate, and 
α-ketoglutarate from the Krebs cycle. In cancer cells, high free tubulin blocks 
VDAC conductance. VDAC closure globally suppresses mitochondrial 
metabolism decreasing cytosolic ATP/ADP ratios. Low ATP/ADP ratios favor 
glycolysis. PKA phosphorylates VDAC increasing the sensitivity to tubulin 
inhibition and possibly stabilizes VDAC in a closed conformation by forming a 
complex with AKAP121. HK-II binds to VDAC and promotes VDAC closing. 
AKAP121, A-kinase anchor protein 121; α-KG, α-ketoglutarate; Glyc-3-P, 
glyceraldehyde 3-phosphate; G-6-P, glucose-6-phosphate; HK-II, hexokinase 
II; MIM, mitochondrial inner membrane; MOM, mitochondrial outer 
membrane; OA, oxaloacetate; PKA, protein kinase A; 3-PG, 
3-phosphoglycerate.
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aerobic fermentation (conversion of glucose to lactic acid). 
Only those dividing cells that increase fermentation enough to 
compensate for defective respiration would become cancerous 
(2). Impaired respiration as a driver of the glycolytic phenotype 
was immediately challenged by data from Weinhouse and others 
demonstrating both high glycolysis and oxidative metabolism in 
cancer tissues (3). Since the initial work of Warburg, enhanced 
glycolysis has been shown in nearly all tumors and cancer cell 
lines studied. Further investigations showed that mitochondria 
in cancer cells are functional as determined by measurements 
of mitochondrial membrane potential (ΔΨ), ATP, and NADH 
production among other parameters (4–10).

Although overall ATP production in tumors is contributed 
both by glycolysis and oxidative phosphorylation (OXPHOS), 
mitochondrial contribution to total ATP is always lower in can-
cer cells compared to differentiated cells. Differentiated cells pro-
duce about 95% of the total ATP by OXPHOS and the remaining 
5% through aerobic glycolysis. In cancer and other proliferating 
cells, glycolysis accounts for 20–90% of total ATP production 
with the remainder contributed by mitochondrial oxidation of 
pyruvate, fatty acids, and glutamine (6, 11). A highly glycolytic 
phenotype has been associated with a high rate of cell prolifera-
tion (11–14). The “glucose avidity” of tumors is the foundation 
for the positron emission tomography of the glucose analog 
18fluorodeoxyglucose to diagnose primary tumors, recurrences, 
and metastases (15). Noticeably, the bioenergetics of tumor cells 
is different among tumor types but even in cells from the same 
type of tumor. Subsets of cells with either high glycolysis or 
high levels of OXPHOS have been identified in gliomas (16, 17) 
and large B cell lymphomas (18) opening a new perspective to 
understand the consequences of different bioenergetic profiles in 
cancer metabolism.

A possible physiologic and evolutionary advantage of the 
Warburg phenomenon could be the provision of enough energy 
for frequent cell division. However, glycolysis generates only 
2 moles of ATP per mole of glucose, whereas full oxidation of 
1  mole of glucose to CO2 and H2O in mitochondria generates 
29–32 moles of ATP, as estimated by different methods (19). The 
low efficiency of ATP generation through glycolysis has been 
considered to be offset by the increase in the rate of glycolysis 
making the overall production of ATP in proliferating cells 
higher than in those that do not proliferate (20). Interestingly, 
the amount of ATP necessary for biosynthesis is lower than the 
energy requirements for basal cellular processes that maintain 
cell homeostasis making unlikely that ATP be rate limiting for 
cell proliferation (21).

The current consensus is that enhanced glycolysis in cancer 
cells is a source of carbon backbones for the synthesis of new 
macromolecules. Cell division requires a duplication of the 
biomass (lipids, proteins, and nucleic acids) before mitosis. Such 
an increase in biosynthesis could not be accomplished if glucose, 
glutamine, and fatty acids were fully oxidized in mitochondria. 
In the Warburg phenotype, incomplete breakdown of glucose to 
yield lactate provides precursors needed for biomass formation 
(22–26). Glucose-6-P, glyceraldehyde-3-P, and 3-phosphoglycer-
ate derived from glucose are utilized in the synthesis of nucleo-
tides, lipids, and amino acids, respectively. Elevated glycolytic flux 

also promotes generation of NADPH in the pentose phosphate 
pathway to be used in reductive biosynthesis and oxidation of 
NADH to NAD+ in the pyruvate to lactate step. In addition to 
glucose, cancer cells utilize glutamine and other fuels to gener-
ate biosynthetic precursors in the Krebs cycle including citrate 
used for lipid biosynthesis and oxaloacetate and α-ketoglutarate 
used for synthesis of some non-essential amino acids (Figure 1) 
(27). Thus, mitochondria not only generate energy but also play 
a biosynthetic role in the pro-proliferative Warburg phenotype. 
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Recently, one-carbon metabolism, the set of reactions that trans-
fer one carbon units from serine and glycine to donors, has been 
reported as critical components for de novo synthesis of purines 
and thymidylate during rapid tumor growth (28). Overall, the 
Warburg metabolism is a pro-proliferative phenotype that favors 
biosynthesis.

Mitochondrial Metabolism, ATP/ADP 
Ratio, and glycolysis
In differentiated cells, most of the respiratory substrates including 
pyruvate, fatty acyl-CoA, and amino acids are completely oxidized 
to CO2 and H2O by OXPHOS with a high yield of ATP. Newly syn-
thesized ATP is transported to the cytosol through the adenine 
nucleotide translocator (ANT). A highly active mitochondria in 
a predominantly oxidative metabolism sustains cytosolic ATP/
ADP ratios that can be 50–100 times higher compared to the 
mitochondrial matrix (29). High cytosolic ATP/ADP ratios sup-
press glycolysis through the inhibition of phosphofructokinase-1 
(PFK-1) among other possible mechanisms. PFK-1, subjected to 
allosteric regulation, is strongly inhibited by ATP and activated by 
ADP and AMP (13, 30). By contrast, in cancer cells, a partial or 
complete suppression of mitochondrial metabolism determines 
a low ATP/ADP ratio that contributes to maintain enhanced 
glycolysis.

Proteins associated with the mitochondrial outer membrane 
(MOM) regulate both mitochondrial metabolism and glycolysis. 
Hexokinase II (HK-II), overexpressed in tumor cells and required 
for tumor initiation and tumor growth in mouse models, binds 
to VDAC1. HK-II stabilizes VDAC1 in a closed state, prevents 
apoptosis triggered by mitochondrial permeability transition 
(MPT), and favors glycolysis (31–35). Protein kinase A (PKA), 
known to form complexes in the MOM, phosphorylates voltage-
dependent anion channel (VDAC) increasing the sensitivity to 
tubulin inhibition (36). PKA is also involved in the regulation of 
mitochondrial metabolism through the assembly of complexes 
with AKAP121, a protein of the family of A-kinase anchor pro-
teins regulated by hypoxia and other cellular stresses (37, 38).

We recently proposed that inhibition of VDAC conductance by 
free tubulin and lack of activity of the ANT contribute to the sup-
pression of mitochondrial metabolism and a low cytosolic ATP/
ADP ratio in cancer cells (39–41). VDAC closing by free tubulin 
in cancer cells decreases the entrance of respiratory substrates to 
the mitochondrial matrix decreasing mitochondrial metabolism 
and lack of activity of ANT limits the ATP/ADP turnover (39, 41).

vDAC RegULATiON OF MiTOCHONDRiAL 
MeTABOLiSM AND wARBURg 
PHeNOTYPe

vDAC and Cellular Bioenergetics
The Warburg metabolism is sustained by chemical reactions 
occurring in interdependent cytosolic and mitochondrial com-
partments separated by the MOM (Figure 1). The MOM is not 
merely a physical separation but a functional barrier containing 
VDAC, a master key to globally modulate mitochondrial bioen-
ergetics and the intracellular flow of energy (39, 40, 42). Crossing 

of polar metabolites through VDAC is determined mostly by the 
charge and size of the molecule (43, 44). By contrast, transport 
of polar metabolites between the matrix and the mitochondrial 
intermembrane space occurs through several specific transporters 
that catalyze the translocation of solutes across the mitochondrial 
inner membrane (MIM). Once inside the matrix, respiratory 
substrates enter the Krebs cycle generating mostly NADH that 
is further oxidized in the electron transport chain (ETC) to 
produce protons that are pumped to the intermembrane space 
at complexes I, III, and IV, creating a negative potential in the 
mitochondrial matrix and a proton motive force utilized by the 
ATP synthase (complex V) to generate ATP from ADP and Pi 
(Figure 1).

It has been proposed that VDAC closing could seal mitochon-
dria and block mitochondrial metabolism becoming a “governor” 
of mitochondrial metabolism (31). Experimental evidence using 
single and double knockdown of VDAC1/2/3 showed that 
VDAC regulates mitochondrial metabolism in cancer cells as 
determined by mitochondrial ΔΨ, ATP production, and NADH 
generation (40). A consequence of dynamic mitochondrial “seal-
ing–unsealing” is a lower or higher mitochondrial metabolism, a 
lower or higher cytosolic ATP/ADP ratio, and an enhancement 
or inhibition of glycolysis. Thus, VDAC regulation can function 
as a metabolic switch to promote or block OXPHOS and an 
adjustable rheostat with a range of operational levels that depend 
on the magnitude and duration of VDAC opening. An intriguing-
related question is if genetic or pharmacological regulation of 
VDAC could be used not only to modulate oxidative metabolism 
but also to indirectly revert the Warburg phenotype.

vDAC Structure and Regulation of 
Mitochondrial Metabolism
A protein with pore-forming activity first described in extracts 
of mitochondria from Paramecium tetraurelia (45) was initially 
called mitochondrial porin and later renamed VDAC (46). The 
voltage dependence of VDAC from different tissues and organ-
isms (47) inserted in lipid bilayers was demonstrated by the clo-
sure induced by electrical potentials applied to membranes (48, 
49). The relevance of unveiling the existence of a voltage-sensitive 
pore-forming protein in mitochondria was offset by the lack of 
clear evidence of a similar electrical potential across the MOM in 
intact cells. The role of VDAC voltage gating under physiologi-
cal conditions is still controversial. It has been proposed that an 
estimated Donnan potential of −40 mV formed by impermeant 
charged species, mostly proteins, asymmetrically distributed 
across the membrane would be sufficient to promote VDAC 
closing in intact cells (50). Against this assumption, the presence 
of charged macromolecules at both sides of the MOM and a high 
cellular ionic strength makes not very likely the formation of a 
Donnan potential large enough to trigger VDAC gating in intact 
cells.

Voltage-dependent anion channel, present in all eukaryotic 
cells, is the most abundant protein in the MOM comprising 
three isoforms encoded by separate genes, VDAC1, VDAC2, and 
VDAC3. VDAC1 and VDAC2 are the main isoforms in most 
mammalian cells. The exception is VDAC3, especially abundant 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigURe 2 | effect of free tubulin on mitochondrial membrane 
potential. (A) HepG2 human hepatocarcinoma cells were loaded with the 
ΔΨ-indicating fluorophore tetramethylrhodamine methyl ester (TMRM). 
Nocodazole (Ncz; 10 µM), a microtubule destabilizer decreased ΔΨ, as 
shown by decreased fluorescence of TMRM (visualized in pseudocolor). 
Paclitaxel (Ptx; 10 µM), a microtubule stabilizer promoted mitochondrial 
hyperpolarization as evidenced by increased TMRM fluorescence. Free 
tubulin increased and decreased after Ncz and Ptx respectively as indicated 
by Western blotting of free and polymerized tubulin *p < 0.05. (B) Erastin 
(10 µM) increased ΔΨ in HepG2 cells. Mitochondria remained hyperpolarized 
after subsequent addition of Ncz (10 µM). Arrows identify 4 µm fiducial 
fluorescent beads. Adapted from Maldonado et al. (9, 40). Poly, polymerized.
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in testis (51, 52). VDAC in humans and mouse is a ~30  kDa 
protein enclosing an aqueous channel of ~3 nm internal diameter 
in the fully open state that allows the passage of molecules up 
to ~5 kDa (44, 53, 54). In the closed state, only small ions like 
Na+, K+, or Cl− but not most anionic metabolites including res-
piratory substrates, ATP, ADP, and Pi permeate through VDAC. 
Structural studies using NMR and X-ray crystallography have 
shown VDAC1 as formed by 19 β-strands with the addition of 
an N-terminal sequence containing the only α-helical segments 
found in the protein (55, 56). A structural model proposes that 
the N-terminal residues of VDAC1 lying inside the pore parallel 
to the wall can move to the center of the channel blocking the pas-
sage of metabolites. Recently, the structure of VDAC2 in zebrafish 
has been solved showing a similar β barrel structure with 19 
β-strands (57). Both VDAC1 and VDAC2 from eukaryotes have 
highly conserved biophysical properties including gating and 
selectivity (58). VDAC is the only known channel in the MOM 
that allows the passage of physiologically relevant respiratory 
substrates, ADP, and Pi into mitochondria. Thus, the probability 
of VDAC to remain in an open or close conformation is expected 
to have a substantial impact on mitochondrial metabolism and 
cellular bioenergetics.

For decades, research on mitochondrial bioenergetics has 
been mostly focused on the members of the mitochondrial carrier 
family SLC25 (solute carrier family 25) located in the MIM (59, 
60). Proteins of the SLC25 family transport chemically diverse 
solutes including pyruvate, Pi, ADP, ATP, acylcarnitine, citrate, 
oxoglutarate, and glutamate across the MIM utilizing electrical, 
chemical, or electrochemical potential gradients. The activity of 
mitochondrial carriers is finely regulated to allow a sufficient flux 
of metabolites to adapt to different physiological demands (61). 
The availability of solutes to the carriers in the MIM depends 
on what metabolites are produced in the mitochondrial matrix 
mainly by the Krebs cycle and OXPHOS and what metabolites 
access the intermembrane space through VDAC in the MOM. 
Thus, regulation of VDAC opening is a unique element to control 
mitochondrial metabolism.

The initial consensus about VDAC being constitutively open 
as an “all-time open door” to the flux of metabolites between 
the mitochondrial matrix and the cytosol have been challenged 
by extensive research demonstrating modulation of VDAC 
conductance both in  vitro and in intact cells. VDAC gating is 
regulated by several molecules including glutamate (62), NADH 
(63), hexokinase (64–66), and Bcl2 family members (67). VDAC 
phosphorylation by PKA, glycogen synthase 3β (GSK3β), and 
protein kinase C epsilon (PKCε) blocks or inhibits association 
of VDAC with other proteins, such as Bax and tBid (66, 68–73). 
As described above, PKA phosphorylates VDAC and decreases 
VDAC conductance by increasing the sensitivity to tubulin inhi-
bition (36, 74), whereas GSK3β-mediated VDAC2 phosphoryla-
tion promotes channel opening (73). Some of these regulatory 
mechanisms were demonstrated in  vitro but not in intact cells 
or tissues raising questions about the biological relevance of the 
findings.

Our group has reported two mechanisms of VDAC regulation 
in live cells, the closure of VDAC by free tubulin in cancer cells (9, 
40) and after acute treatment of hepatocytes with ethanol (31, 75).

vDAC and Free Tubulin in Cancer Cells
VDAC–Tubulin and Mitochondrial ΔΨ
In tumor cells, respiration and mitochondrial hydrolysis of 
glycolytic ATP sustain mitochondrial ΔΨ indicating a flux of 
metabolites including ATP between mitochondria and cytosol 
(9). We previously showed that maintenance of mitochondrial 
ΔΨ in cancer cells correlates inversely with the amount of cyto-
solic free tubulin. The microtubule destabilizers nocodazole and 
colchicine increased free tubulin and decreased mitochondrial 
ΔΨ. Conversely, the microtubule stabilizer paclitaxel promoted 
tubulin polymerization decreasing free tubulin and increasing 
mitochondrial ΔΨ [Figure  2; (9)]. These findings showed that 
free tubulin dynamically regulates mitochondrial metabolism as 
determined by measurements of mitochondrial ΔΨ. By contrast, 
in the non-proliferating rat hepatocyte, mitochondrial ΔΨ was 
relatively insensitive to changes in free tubulin levels possibly 
because tubulin polymerization is higher in hepatocytes com-
pared to cancer cell lines. Our studies indicate that free tubulin is 
an endogenous regulator of mitochondrial ΔΨ in tumor cells but 
not in differentiated cells (9). The modulation of mitochondrial 
ΔΨ by tubulin led to the hypothesis that free tubulin closes 
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VDAC and that VDAC closure contributes to the suppression 
of mitochondrial metabolism in the Warburg phenotype. This 
hypothesis was supported by previous work showing that het-
erodimeric αβ-tubulin closes VDAC inserted into lipid bilayers 
and also decreases respiration in isolated brain mitochondria, 
permeabilized synaptosomes, and cardiac myocytes (76, 77).

VDAC–Tubulin and the Cell Cycle
The free tubulin pool varies throughout the cell cycle especially 
decreasing during mitosis to allow the spindle formation. A 
potential implication of the changing levels of tubulin through-
out the cell cycle is that the VDAC–tubulin-dependent suppres-
sion of mitochondrial metabolism be maximal when the cell 
is not dividing and free tubulin is relatively high and minimal 
during mitosis when free tubulin is low. VDAC–tubulin-
dependent suppression of mitochondrial metabolism caused 
by high free tubulin would favor the pro-biosynthetic Warburg 
phenotype to support the generation of new macromolecules 
during the G1, S, and G2 phases of the cell cycle. In HeLa 
cells with a typical cell cycle of 20  h, the duration of G1, S, 
and G2 phases are 7, 9, and 2–3 h, respectively, whereas mitosis 
is completed in less than an hour. In unsynchronized HeLa, 
NIH3T3, and NCI-H292 cells, the G1 and S phase durations 
are the longest, whereas G2 and M accounts for only 15% of the 
cycle time (78). During mitosis, the free tubulin pool eventu-
ally polymerizes to form the spindle, releasing the inhibition 
on VDAC to increase mitochondrial metabolism and decrease 
glycolysis precisely when the energy demand is maximal. After 
mitosis, high free tubulin would close VDAC again and cells 
would return to a high glycolytic pro-proliferative phenotype 
until the next mitosis (42).

VDAC Isoforms and Tubulin
Voltage-dependent anion channel sensitivity to tubulin inhibition 
is isoform dependent. All cancer cells express the three VDAC 
isoforms in different proportions being VDAC1 and VDAC2 the 
major isoforms accounting for 90% of the total and VDAC3 the 
least abundant, usually around 10% (40, 79, 80). Knockdown of 
VDAC1, VDAC2, and VDAC3 in HepG2 cells decreased mito-
chondrial ΔΨ indicating that all VDAC isoforms contribute to ΔΨ 
formation. Noticeably, knockdown of VDAC3 caused the greatest 
drop in mitochondrial ΔΨ and also decreased the NAD(P)H/
NAD(P)+ ratio, ATP, ADP, and total adenine nucleotides (40). 
Single and double knockdown of VDAC1, VDAC2, and VDAC3 
in the different possible combinations blunted the suppression 
of mitochondrial ΔΨ induced by free tubulin and suggested that 
VDAC1 and VDAC2 are the isoforms closed by tubulin in wild-
type cells (40). Electrophysiology studies demonstrated voltage 
gating and response to dimeric αβ-tubulin almost identical in 
VDAC isolated from wild-type HepG2 cells compared to VDAC 
isolated from liver and heart mitochondria. VDAC1 and VDAC2 
isolated from double knockdown VDAC2/3 and VDAC1/3 
HepG2 cells, respectively, inserted in lipid bilayers were almost 
equally sensitive to tubulin inhibition. By contrast, VDAC3 was 
insensitive even at tubulin concentrations fivefold higher than 
those used to inhibit VDAC1 and VDAC2 (40). The knockdown 
studies supported the conclusion that VDAC3, at least in HepG2 

cells, is constitutively open and VDAC1 and VDAC2 are totally 
or partially blocked by free tubulin.

TUMOR MeTABOLiC FLeXiBiLiTY: 
BiOeNeRgeTiCS iN DYNAMiC 
eQUiLiBRiUM

The metabolic control analysis proposes to analyze individual 
chemical reactions and even activities of rate-limiting step 
enzymes in the context of interconnected and interdependent 
groups of reactions to evaluate the impact of a change in one 
component of the system on the global function (81, 82). The 
top-down metabolic control analysis or modular analysis group 
chemical reactions in blocks to identify regulators of metabolism 
based on the supply or consumption of a certain intermediate 
(83). This approach showed that respiration in intact rat hepato-
cytes was mostly controlled by ATP synthesis, and the rest of the 
control was distributed between the proton leak and the reactions 
that sustain ΔΨ (84). Metabolic control analysis may eventually 
be a tool to better understand the bioenergetics and metabolic 
consequences of the switching between glycolysis and OXPHOS 
in tumor cells.

The predominance of a glycolytic or oxidative metabolism 
in cancer cells is not determined only by the genetic program 
but subjected to temporary and long-term epigenetic changes. 
Changes in the relative contribution of glycolysis and OXPHOS 
to the cellular ATP generation in tumor cells is triggered by differ-
ent stimuli including the level of oxygenation, amount and type of 
nutrients available, proximity to neoformed or mature blood ves-
sels, release of soluble factors including lactate from neighboring 
cancerous or non-cancerous cells, and the stage of the cell cycle.

In MCF-7 and HeLa cells, prolonged hypoxia increased 
glycolysis but only in MCF-7 the OXPHOS flux decreased even 
though both cell lines predominantly depended on OXPHOS for 
ATP supply (85). The variability in the response to hypoxia may 
depend on cell type, time of exposure to low levels of oxygen, and 
environmental conditions. In solid tumors with a heterogeneous 
perfusion, OXPHOS can still produce ATP considering that 
hypoxic tumor cells are exposed to <2% of oxygen and the ETC 
can function optimally at oxygen levels as low as 0.5%. Under 
those conditions, even if pyruvate utilization is compromised, 
mitochondria from tumor cells can utilize glutamine as an 
energy source so actually both glycolysis and OXPHOS can 
sustain tumor growth (86). Inadequate blood flow as it occurs 
during imperfect angiogenesis not only causes hypoxia but 
also insufficient glucose supply. Long-term culture in glucose-
deprived medium led to increased OXPHOS and decreased 
glycolysis in two breast cancer cell lines confirming the influence 
of the microenvironment on the bioenergetics profile (87). The 
switch from aerobic glycolysis to OXPHOS was also observed in 
mantle cell lymphoma cells cultured in glucose-free media (88). 
If glucose or glutamine are limited, still tumor cells can utilize 
a wide variety of substrates to support the energetic needs (89) 
including asparagine (90), leucine (91), arginine (92), methio-
nine (93), valine (94), cysteine (95), lactate (96, 97), acetate (98, 
99), and even vesicle-driven pathways to uptake proteins and 
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FigURe 3 | Metabolic double hit after vDAC opening. In the Warburg 
metabolism, free tubulin closes VDAC resulting in low mitochondrial reactive 
oxygen species (ROS) generation and ATP formation leading to a low ATP/
ADP ratio and enhanced glycolysis. VDAC-tubulin antagonists by opening 
VDAC promote a switch to an oxidative metabolism characterized by 
increased ROS formation (Hit 1: oxidative stress). Increased mitochondrial 
metabolism after VDAC-tubulin antagonists also increases ATP formation and 
promotes a high ATP/ADP ratio that inhibits glycolysis (Hit 2: anti-Warburg 
effect). MPT, mitochondrial permeability transition.
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lipids from the environment (100). Inhibition of complex I by 
piericidin A or complex III by antimycin in myoblasts led to a 
compensatory increase in uptake and glucose consumption. In 
these cells, cellular ATP production with or without OXPHOS 
inhibition was similar indicating that suppression of OXPHOS 
was quickly and fully compensated by the increase in glycolytic 
ATP generation (101).

vDAC–TUBULiN ANTAgONiSM, 
OXiDATive STReSS, AND ReveRSAL OF 
wARBURg PHeNOTYPe

The vDAC–Tubulin interaction: 
A Pharmacological Target
In the last decades, attempts to inhibite glycolysis to decrease 
tumor growth have been a major focus of research on tumor 
metabolism (102, 103). Only more recently, mitochondrial 
metabolism emerged as another option for the development 
of new cancer treatments (104, 105). The lower prevalence of 
certain types of cancer in patients taking the antidiabetic drug 
metformin raised the interest on mitochondria as a potential 
target to suppress tumor growth (106, 107). Although the mecha-
nism of action of metformin is not entirely clear, it has been 
shown to decrease OXPHOS by inhibiting complex I of ETC, to 
activate AMPK, to inhibit the mammalian target of rapamycin, 
and to interfere on folate metabolism (108). Other approaches 
to inhibit mitochondrial metabolism have included the use of 
glutaminase inhibitors (109), etomoxir to inhibit the carnitine 
O-palmitoyltransferase 1 and prevent subsequent mitochondrial 
fatty acid oxidation (110), the compound VLX600 to inhibit 
OXPHOS and reduce colon cancer tumor growth (111) and the 
antibiotic tigecycline to inhibit mitochondrial protein translation 
and decrease tumor growth in several experimental models of 
leukemia (112). Whereas most of treatments aim to decrease 
mitochondrial metabolism, the pyruvate analog dichloracetate, 
that causes cell death in several cancer cell lines and in some 
in vivo models, increases mitochondrial metabolism by activating 
pyruvate dehydrogenase and the subsequent delivery of pyruvate 
to mitochondria (113).

Our initial findings, showing that VDAC regulates mito-
chondrial metabolism and free tubulin closes VDAC, suggested 
that antagonizing the VDAC–tubulin interaction could be a 
novel pharmacological approach to increase OXPHOS and to 
revert Warburg metabolism. We showed that the small molecule 
erastin antagonizes the inhibitory effect of free tubulin on VDAC 
(40). Erastin, found in a synthetic lethal chemical screening in 
human cells engineered to harbor small T oncoprotein and the 
oncogenic allele of HRAS, the v-Ha-ras Harvey rat sarcoma viral 
oncogene homolog RASv12, selectively induced non-apoptotic 
cell death (114). A lung carcinoma cell line harboring the v-Ki-
ras2 Kirstej rat sarcoma viral oncogene homolog and other cell 
line containing an activating V600E mutation in v-raf-murine 
sarcoma viral oncogene homolog B1 (BRAF) were moderately 
sensitive to erastin. Erastin-induced cell death was not prevented 
by pan-caspase inhibitors, but it was blocked by antioxidants 
including α-tocopherol and butylated hydroxytoluene (114). It 

has been proposed that erastin binds to VDAC2 and VDAC3 
leading to mitochondrial dysfunction, release of oxidative 
species, and cell death in cells with activated RAS-RAF-MEK 
signaling (115).

In wild-type HepG2 cells, erastin hyperpolarizes mitochon-
dria and completely abrogates and reverses mitochondrial 
depolarization induced by microtubule destabilizers indicating 
that erastin both prevents and reverses free tubulin-dependent 
inhibition of ΔΨ formation [Figure 2; (40)]. Further studies of 
VDAC from wild-type HepG2 inserted into planar lipid bilay-
ers showed that erastin added after tubulin completely blocked 
the decrease in VDAC conductance induced by tubulin. Erastin 
restored the voltage dependence to a response almost identical 
to that observed in the absence of tubulin. In addition, erastin 
added alone in the absence of tubulin did not modify the current–
voltage profile of VDAC indicating that the effect of erastin was 
specific for tubulin-dependent inhibition of conductance (40).  
A new group of lead compounds identified in a high throughput 
cell-based screening, similar to erastin hyperpolarized mitochon-
dria in the presence of high levels of free tubulin after treatment 
with nocodazole.
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vDAC Opening, Formation of Reactive 
Oxygen Species (ROS), and Mitochondrial 
Dysfunction
Voltage-dependent anion channel controls the flux of respiratory 
substrates entering the Krebs cycle. Electron pairs from NADH 
flow down the ETC to the final acceptor O2. Single electrons also 
leak from complexes I, II, and III to form the superoxide anion 
( )O2•

−  (116). Complex I (site IQ), complex II (site IIF), and com-
plex III (site IIIQo) have the highest capacity of ROS production 
among the seven major mitochondrial sites that produce ROS in 
mammals (117–119). Although there are other mitochondrial and 
non-mitochondrial sources of ROS formation, the mitochondrial 
ETC is quantitatively the most important (120).

Voltage-dependent anion channel opening leads to increased 
activity of the ETC chain and increased generation of the free 
radical O2•

− that is rapidly converted to H2O2 by superoxide 
dismutases located in the mitochondrial matrix (manganese-
containing enzyme MnSOD or SOD2) and the cytosol (copper-
and-zinc-containing enzyme CuZnSOD or SOD1) (121). 
Subsequently, H2O2 accepting one electron from free Fe2+ by the 
Fenton reaction produces the highly reactive hydroxyl radical 
(OH•−). O2•

−  formed at complexes I and II diffuse to the matrix, 
whereas O2•

−  generated at complex III diffuse both to the matrix 
and to the intermembrane space from where it is released to the 
cytosol through VDAC (122–124). Both O2•

− and especially the 
highly reactive OH•− are damaging for cells. By contrast, H2O2, a 
non-radical molecule and the least reactive of ROS, diffuse across 
membranes and act as a secondary messenger modulating pro-
proliferative and pro-survival pathways without disrupting redox 
homeostasis (125, 126).

Cancer cells have higher basal levels of ROS compared to 
differentiated cells as evidenced in cell lines by increased H2O2 
formation and in animal models and human tissues by increased 
oxidative-dependent DNA modifications and 4-hydroxy-2-non-
enal modified proteins (127–130). However, higher levels of ROS 
are balanced off by the higher content of scavenging enzymes 
and antioxidants including SODs, catalase that catalyzes the 
conversion of H2O2 to H2O and O2, and the glutathione system 
that reduces disulfide bonds of cytoplasmic protein to cysteines 
(131–134). It has been proposed, although not established experi-
mentally, that different ROS levels can be cytostatic, promote 
tumorigenesis, or be cytotoxic (132, 133, 135). Oxidative stress 
has been reported to induce mitochondrial dysfunction, cancer 
cell cycle arrest, senescence, apoptosis, or necrosis (131).

H2O2 and to a less extent O2•
− react with intramitochondrial 

components but are also released from mitochondria to affect 
cytosolic proteins and other organelles. By contrast, the reac-
tions with the highly reactive OH•− are dependent on the rate 
of diffusion and almost completely restricted to mitochondria. 
OH•− and O2•

− inactivate mitochondrial proteins including 
NADH dehydrogenase, NADH oxidase, and ATP synthase (136). 
When the antioxidant capacity is exceeded, ROS accumulation 
in the mitochondrial matrix also damages lipids and transporters 
in the MIM and mitochondrial DNA. Peroxidation of the poly-
unsaturated fatty acyl chains of cardiolipin, a phospholipid found 
exclusively in the MIM, is an early event in the intrinsic apoptotic 

pathway (137). Cytosolic ROS activate signaling pathways that 
cause mitochondrial dysfunction including the members of the 
MAPK family of serine/threonine kinases especially the c-Jun 
N-terminal kinases (JNK), the extracellular signal-regulated 
kinase (ERK 1/2), and p38 (138, 139). JNK activation caused 
by oxidative stress promotes mitochondrial dysfunction by a 
poorly understood mechanism although the onset of MPT has 
been proposed to be triggered by activated JNK translocated to 
mitochondria (140, 141).

Because ROS are by-products of multiple chemical reactions 
not generated by specific pathways, ROS concentration depends 
on the regulation of ROS-forming reactions. Drug-induced VDAC 
opening in tumor cells is expected to increase mitochondrial 
ROS formation and promote oxidative stress. The accumulation 
of ROS above a threshold should eventually break the dynamic 
equilibrium between ROS generation and antioxidant systems 
leading to cytotoxic effects.

The Metabolic Double Hit: Oxidative 
Stress and Anti-warburg effect
Tumor heterogeneity, increasingly recognized as an important 
feature in cancer biology, is a complicating factor for success-
ful chemotherapy because genetic and metabolic differences in 
cancer cells even inside the same tumor affect the response to 
cancer treatments (142–145). Although tumor cells have different 
metabolic signatures, most of them display some level of enhanced 
glycolysis indicating a differential contribution of VDAC closure 
to the suppression of mitochondrial metabolism. Increased 
OXPHOS and subsequent ROS generation by drug-induced 
VDAC opening should affect most of the cancer cells consider-
ing that enhanced glycolysis and suppression of mitochondrial 
metabolism is a characteristic of tumors (11–14).

Blockage of the inhibitory effect of tubulin on VDAC is 
expected to trigger two separate but concurrent effects: the 
increase in ROS formation leading to oxidative stress (first hit) 
and the reverse of the Warburg metabolism caused by the increase 
in OXPHOS and ATP synthesis with the subsequent decrease in 
glycolysis (second hit) (Figure 3). Both effects will likely be quan-
titatively more important in highly glycolytic tumors. A potential 
implication for high vs low glycolytic cells is that oxidative stress 
may promote more cell killing in highly glycolytic tumors with 
a lower mitochondrial metabolism and relatively low basal ROS 
production. By contrast, the reversal of the Warburg effect could 
be more relevant to those highly glycolytic cells that survive the 
initial hit caused by oxidative stress and continue proliferating or 
to the low glycolytic cells with a presumably higher basal level of 
ROS in which the anti-Warburg effect and not a further increase 
in ROS would be key to stop cell proliferation.

We propose that oxidative stress after VDAC–tubulin antago-
nists activates stress kinases especially JNK eventually leading 
to mitochondrial dysfunction, possibly the onset of MPT, and 
bioenergetic failure. MPT is a non-selective permeabilization 
of the MIM that causes a loss of ΔΨ and ATP synthesis, mito-
chondrial swelling, rupture of the MOM, and cytochrome c 
release resulting in cell death (146, 147). MPT has been proposed 
to be mediated by the irreversible opening of the permeability 
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transition pore complex (PTPC), a multiprotein pore assembled 
with core components of both the MOM and the MIM. VDAC, 
ANT, cyclophilin D, and the subunit c of the F1F0 ATP synthase 
among other mitochondrial proteins have been included as 
PTPC-forming proteins. Despite of research efforts devoted to 
unequivocally identify the components of the PTPC, the molecu-
lar identity of the pore remains a matter of debate (148). VDAC, 
initially considered a main component of the pore, has been 
shown to be dispensable for the onset of MPT. Oxidative stress, a 
well-known inducer of MPT (146, 149, 150), promotes MPT even 
in cells knockout for all VDAC isoforms (151).

In our current model of cell death after VDAC–tubulin 
antagonists, oxidative stress causes mitochondrial dysfunction 
and bioenergetic failure and increased OXPHOS by increasing 
ATP causes a compensatory decrease of glycolysis independent 
of any potential role of VDAC in PTPC complex formation. A 
therapeutic advantage of VDAC–tubulin antagonists would be 
the selectivity to kill only cancer cells because in non-proliferating 
cells VDAC is constitutively open and not regulated by free tubu-
lin (9, 42). In summary, the cytotoxic effects of VDAC–tubulin 
antagonists would follow a “two-hit” model of metabolic inter-
vention characterized by a promotion of oxidative stress and an 
anti-Warburg effect (Figure 3).

CONCLUDiNg ReMARKS

The VDAC–tubulin interaction in cancer cells operates as a 
metabolic switch susceptible of pharmacological inhibition. 

Antagonism of the inhibitory effect of free tubulin on VDAC 
opens a new avenue in metabolism-oriented chemotherapy. 
Unlike other cancer treatments that inhibit specific pathways 
with restricted effects, VDAC opening exerts a global influence 
on mitochondrial metabolism which indirectly modulates 
glycolysis. Disruption of the switch causes a “two-hit” effect, 
the oxidative stress leading to mitochondrial dysfunction and 
a compensatory anti-Warburg decrease in glycolysis that turn 
cells into a non-proliferative phenotype. VDAC-dependent 
oxidative stress is expected to promote cell killing in highly 
glycolytic cells and to cause non-lethal cell damage in the less 
glycolytic tumor types. Reversal of the Warburg effect comple-
ments the effects of oxidative stress and decreases or stops cell 
proliferation in cells that survive oxidative stress or in those with 
relatively low glycolysis. In summary, we unveil a new pharma-
cological target with the capability of exploiting the metabolic 
flexibility of tumors to turn a pro-proliferative phenotype into 
a cytotoxic and non-proliferative mitochondrial-dependent 
metabolism.
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