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Exosomes from extracellular vesicles can activate or inhibit various signaling pathways by
transporting proteins, lipids, nucleic acids and other substances to recipient cells. In
addition, exosomes are considered to be involved in the development and progression of
tumors from different tissue sources in numerous ways, including remodeling of the tumor
microenvironment, promoting angiogenesis, metastasis, and invasion, and regulating the
immune escape of tumor cells. However, the precise molecular mechanisms by which
exosomes participate in these different processes remains unclear. In this review, we
describe the research progress of tumor cell-derived exosomes in cancer progression.
We also discuss the prospects of the application of exosomes combined with
nanoengineered chemotherapeutic drugs in the treatment of cancer.

Keywords: exosomes, tumor microenvironment, angiogenesis, EMT - epithelial to mesenchymal transformation,
immune regulation, cancer treatment
INTRODUCTION

Extracellular vesicles (EVs) are membrane-bound, nanosized vesicles that are released from
different cell-types and are able to transport nucleic acids, proteins, and other cellular cargo (1).
EVs comprise three main subtypes, including exosomes, apoptotic bodies, and microvesicles, which
are differentiated based upon size, release pathway, biogenesis, and function (1–3). The term
“exosome” was originally used to describe a vesicle of unknown origin released by cultured cells (4).
Later, exosomes were considered to be membrane-bound vesicles released by reticulocytes during
differentiation (5). Exosomes range in diameter from 40 to 150nm (6) and have been found to be
secreted by many different types of cells (7). Microvesicles, previously known as ‘platelet dust’, were
originally described as subcellular material derived from platelets in normal plasma and serum (8).
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They are produced through the outward budding and fission of
the plasma membrane and by releasing some vesicles into the
extracellular space (9). The diameter of microvesicles ranges
from 50nm to 1 mm, with a maximum of 10mm (3). Microvesicles
have been reported to play an important role in cancer
progression by mediating intercellular communication (10).

Intercellular communication is extremely important for
various cells to adapt to changes in the different intracellular
and extracellular environments and can occur at different
processes and stages, such as during embryonic development,
in response to trauma, and in the maintenance of homeostasis in
the organism (11). The mechanism of communication varies
between different cells, ranging from direct and close cell-to-cell
contact to long-range effects. Biological signals are transmitted
through the circulation of bodily fluids, cell membrane particles,
and exosomes, and the latter two are generally considered to be a
specific and widespread mechanism of transport (12).

During the maturation of multivesicular endosomes (MVES),
exosomes are considered to be intraluminal vesicles (ILVs), which
are formed via inward budding of the endosome membrane. They
are intermediates in the endosome system and are secreted when
MVES fuse with the cell surface (13, 14). Exosomes transport
receptors, transcription factors, enzymes, extracellular matrix
proteins, DNA, RNA, and lipids, to different places to perform
different functions. Among the different types of exosomes, tumor
cell-derived exosomes play an essential role in the invasion and
metastasis of cancer cells (15). Tumor cell-derived exosomes can
transmit tumor metastasis signals, determine the direction of
cancer cell metastasis, and promote epithelial-mesenchymal
transformation (EMT) and angiogenesis. Some exosomes also
have immunomodulatory functions and cancer treatment
potential. This article will systematically describe the role of
exosomes from different sources in cancer progression.
ROLE OF TUMOR CELL-DERIVED
EXOSOMES IN REMODELING THE
TUMOR MICROENVIRONMENT

Studies on exosomes and their biological functions have improved
our understanding of the intercellular communication of exosomes
in different cell types. These nanoscale vesicles are effective carriers
of the regulatory information of biological macromolecules, and can
be further induced and regulated by the receptor cells. The main cell
types including fibroblasts, endothelial cells, and immune cells that
interact with cancer cells through exosome signaling in the tumor
microenvironment. The outcome of the interactions mentioned
above relies on the origin of the exosomes and their exosomal cargo
(16, 17). Hypoxia-induced acidosis, starvation, and other stress
states of the body increase the release of exosomes from tumor
cells, leading to changes in the tumor microenvironment, thus
promoting the occurrence and development of tumors (18–20).

Proliferation of tumor cells is an essential process for cancer
progression, and this process is dependent upon growth factors.
Growth factors can also support the tumor microenvironment
(21). By releasing exosomes, cells can transmit information to the
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tumor microenvironment and improve the ability of tumor cells
to proliferate.

In addition, tumor cell-derived exosomes can modify the
migratory status of recipient malignant cells (22). These
exosomes can also regulate the tumor microenvironment by
disrupting cell adhesion and stimulating extracellular receptor
signaling pathways (23, 24). For example, the cancer-derived
adaption of endothelial cells via miR-105 occurs during early
premetastatic niche formation. In the case of breast tumor cells,
exosome-mediated miR-105 is secreted from metastatic breast
cancer cells and, by targeting the tight ligand ZO-1, it breaks
down the barrier function of the endothelial monolayer and
induces tumor cells to metastasize to distant organs (25). The
enhancement of vascular permeability can promote the distant
spread and growth of cancer cells. Additionally, exosome cargo
can leak into secondary organs and alter cellular physiology
toward a prometastatic or tumor-supportive phenotype (25).

Exosomes are considered to be involved in the progression of
various precancerous liver diseases, including viral hepatitis,
alcoholic liver disease, and even the progression of liver
fibrosis, which eventually develops into hepatocellular
carcinoma (HCC) (26). For example, after human beings are
infected with the hepatitis virus, exosomes containing viral
nucleic acids and proteins are released by infected hepatocytes,
allowing the virus to be transfected into healthy hepatocytes and
leading to the spread of infection. Therefore, exosomes mediate
transmission of the hepatitis virus (27).

Exosomes derived from cancer-associated fibroblasts (CAFs)
have been shown to provide certain nutrients to pancreatic and
prostate cancer cells and to drive them to glycolysis. Hongyun
Zhao et al. demonstrated that CAFs-derived exosomes (CDEs)
from patients reprogram cancer cell metabolism by disabling
mitochondrial oxidative metabolism and providing de novo “off
the shelf” metabolites through exosomal cargo (28). Xiaofeng
Wang et al. found that co-culturing macrophages with pancreatic
cancer cells treated with miR-301A-3p or hypoxic exosomes
enhanced the metastatic ability of pancreatic carcinoma cells.
These data suggest that pancreatic cancer cells produce exosomes
rich in miR-301A-3p in an anoxic microenvironment, which
polarizes macrophages and promotes malignant behavior of
pancreatic cancer cells (29). Examination of exosomes derived
from metastasis-initiating cells (MICs) revealed that these
exosomes have the ability to reprogram bystander DC-1 cells
by increasing the migration and invasion of DC-1 cells and
upregulating MIC-specific genes. This observation indicates that
the reprogramming of dormant prostate DC-1 cells may be
mediated by MICs-derived exosomes (30). On the one hand,
tumor microenvironment-derived exosomes can increase the
ability to uptake glucose and enter the TCA cycle and, on the
other hand, they can decrease the process of mitochondrial
oxidative phosphorylation. These findings may help explain
the continued growth of cancer cells in the face of certain
hypoxic conditions or reduced sources of nutrients (28).
Additionally, these reports indicate that tumor cell-derived
exosomes play an important role in the remodeling of the
tumor microenvironment (Figure 1).
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TUMOR-DERIVED EXOSOMES CAN
PROMOTE EPITHELIAL-MESENCHYMAL
TRANSFORMATION (EMT)
Tumor metastasis is regulated by many factors, including epithelial-
mesenchymal transformation, in which the epithelial cells
themselves undergo morphological changes that transform them
into motor-activated mesenchymal cells. In situ tumor cells can also
undergo this change, which gives them the ability to invade and
metastasize (31, 32).

Qu Z et al. found that hepatocyte-derived exosomes can
promote invasion and metastasis of recipient cells, induce
decreased E-cadherin expression and increased vimentin
expression, and contribute to EMT development. Following
treatment of hepatoma receptor cells with MHCC97H and
Frontiers in Oncology | www.frontiersin.org 3
MHCC97L cells-derived exosomes, these hepatoma cells
induce EMT through the TGF-b/Smad signaling pathway (33).
In metastatic bladder cancer, EMT is associated with an increase
in expression of both exosome-derived casein kinase IIa and
annexin A2 (34). Huang L et al. found that drug-resistant
endothelial cells promote nasopharyngeal carcinogenesis, EMT,
and drug resistance through exosomes (35). Exosomes from
CAFs can promote EMT in lung cancer cells, and the
expression level of SNA1 from exosomes is closely related to
EMT in lung cancer cells. CAFs-derived exosomes can promote
metastasis and drug resistance of colorectal cancer cells by
enhancing cell stemness and EMT (36, 37).Exosome-derived
miR-499a-5p promotes cell proliferation, EMT, and migration
in lung adenocarcinoma via the m-TOR signaling pathway (38).
CD103-positive tumor stem cell-derived exosomes can promote
FIGURE 1 | The roles of exosomes in cancer. Tumor cell-derived exosomes play a vital role in the remodeling of the tumor microenvironment, and can promote
EMT and increase the motility and invasiveness of tumor cells, leading to tumor migration and metastasis. When tumor cells reach new metastasis sites in vivo,
tumor cell-derived exosomes can promote the formation of new blood vessels. To enable tumor metastasis, exosomes also can promote tumor metastasis by
involving in immune regulation. Finally, exosomes can be used as a carrier for drug delivery in cancer treatment.
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EMT in clear cell renal cell carcinoma where, following miR-19b-
3p transfection of tumor cells, tumor stem cells lead to EMT by
inducing expression of PTEN. In addition, CD103-positive clear
cell renal cell carcinoma in serum samples was associated with
Frontiers in Oncology | www.frontiersin.org 4
the development of lung metastases (39). In summary, tumor
cell-derived exosomes can promote EMT and increase the
motility and invasiveness of tumor cells, leading to the distant
metastasis of tumors (Figure 1 and Table 1).
TABLE 1 | Roles of exosomes in cancer progression.

Source of
exosomes

Molecular Type Step of
tumorigenesis

Action type References

Metastatic breast
cancer cells

miR-105 miRNA Tumor
microenvironmental
remodeling

A regulator of migration through targeting the tight junction protein ZO-1 (25)

Cancer-
associated
fibroblast derived
exosomes

nutrients amino acids,
lipids, and
TCA-cycle
intermediates

Tumor
microenvironmental
remodeling

Inhibit mitochondrial oxidative phosphorylation (28)

Bladder cancer
cells

Casein kinase II
a and annexin
A2

Protein EMT Promote EMT (34)

Lung
adenocarcinoma
cell

miR-499a-5p miRNA EMT The proliferation, EMT and migration of lung adenocarcinoma cells are
promoted through the M-TOR signaling pathway

(38)

Tumor stem cell miR-19b-3p miRNA EMT Tumor stem cells cause EMT by expressing the gene PTEN (39)
Chronic
subdurative
hematoma

miR-144-5p miRNA Angiogenesis Promotes highly permeable angiogenesis and inhibits hematoma absorption (40)

Gastric cancer
cells

miR-155 miRNA Angiogenesis Box-o3 targeting endothelial cells can promote angiogenesis in gastric
cancer tissues

(41)

Bone marrow
mesenchymal
stem cells

unknown unknown Angiogenesis Promote the survival of flaps and reduce the occurrence of necrosis (42)

Nasopharyngeal
carcinoma cells

miR-17-5p miRNA Angiogenesis Targeting BAMBI by regulating the AKT/VEGF-A signaling pathway promotes
angiogenesis and proliferation and migration of nasopharyngeal carcinoma
cells

(43)

Ovarian cancer
cells

miR-205 miRNA Angiogenesis It promotes the metastasis of tumor cells by causing vascularization (44)

Pancreatic
cancer cell

miR-27a miRNA Angiogenesis The angiogenesis of human microvascular endothelial cells was promoted by
BTG2

(45)

Breast cancer
cell

S100 Protein Angiogenesis Activation of Src kinase signaling pathway promotes pulmonary vascular
leakage

(46)

M2-type
macrophages

miR-21-5p&miR-
155-5p

miRNA Invasion and
migration

It can combine with BRG1 encoding sequence, down-regulate the
expression of BRG1, and promote the invasion and migration of colorectal
cancer

(47)

Colorectal
cancer cell

Calcium-
dependent
activator protein
for secretion 1
(CAPS1)

Protein Migration Normal epithelial FHC cell migration was promoted (48)

HCC827 cells MET mRNA Invasion and
migration

Mediates the invasion and migration of non-small cell lung cancer (49)

Liver cancer cells CLEC3B DNA Metastasis and
angiogenesis

HCC metastasis, EMT, and angiogenesis are mediated through AMPK and
VEGF signaling pathways

(50)

Glioblastoma L1CAM Protein Invasion Stimulate movement, invasion, and proliferation of glioblastoma (51)
Cancer-
associated
fibroblasts

miR-382-5p miRNA Invasion and
migration

Promote the invasion and migration of oral squamous cell carcinoma (52)

Lymphatic
endothelial cells

miR-503-3p、
miR-4269&miR-
30e-3p

miRNA Metastasis Regulate the tumor microenvironment and tumor communication between
key molecules and promote the metastasis of breast cancer

(53)

Breast cancer
cells

CD47 Protein Immune regulation
and tumor
metastasis

It may mediate the immune escape of macrophages and T cells, create a
tumor metastasis microenvironment for the metastasis, migration and
invasion of tumors, and enable tumor cells to escape the recognition, killing
and phagocytosis by T cells and NK nuclear macrophages

(54)

Liver cancer cells CD81 Protein Immune escape
and tumor
metastasis

Promotes liver cancer cells metastasis in HCC caused by viral hepatitis C (55)
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TUMOR CELL-DERIVED EXOSOMES AND
ANGIOGENESIS

Abundant vascular tissue is often found in tumor tissue.
Inhibiting tumor angiogenesis is an important part of the
cancer treatment process. Tumor cells can secrete a large
amount of angiogenic growth factor, leading to the formation
of irregular vascular networks in tumor tissues (56). Bone
marrow mesenchymal stem cell-derived exosomes can
stimulate bone regeneration by regulating ossification and
angiogenesis (57, 58). Exosomes from chronic subdural
hematomas promote highly permeable angiogenesis and inhibit
hematoma absorption through miR144-5P (40). In the tumor
microenvironment, tumor cell-derived exosomes serve as a
vehicle for intercellular communication. For instance, Zhou Z
et al. found that exosome-loaded miR-155 targeting Box O3 of
endothelial cells can promote angiogenesis in gastric cancer (41).
In addition to tumor cells, exosomes derived from adipose stem
cells can also promote angiogenesis after flap transplantation,
thus improving the survival rate of flaps (59). Additionally,
exosomes from bone marrow mesenchymal stem cells can
improve the expression of VEGF and CD34 by local injection,
thus promoting the survival of flaps and reducing the occurrence
of necrosis (42).

Exosome-derived miR-17-5p can promote angiogenesis in
nasopharyngeal carcinoma by targeting BAMBI, and can
promote proliferation and migration of nasopharyngeal
carcinoma cells by regulating the AKT/VEGF-A signaling
pathway (43). He L et al. found increased expression levels of
miR-205 in ovarian cancer tissues, adjacent tissues, and serum of
patients, and confirmed that miR-205 in exosomes derived from
ovarian cancer cells could promote the metastasis of tumor cells
by inducing vascularization (44). Pancreatic cancer cell-derived
exosomes containing miR-27a promotes the vascularization of
human microvascular endothelial cells through BTG2, thus
promoting the occurrence and development of pancreatic
cancer (45). By upregulating a subgroup of S100 proteins and
activating the Src kinase signaling pathway, human breast cancer
cell-derived exosomes are able to promote pulmonary vascular
leakage (46).

In summary, exosomes secreted by different tumor cells play a
role in promoting angiogenesis. When tumor cells reach new
metastasis sites, exosomes derived from tumor cells can promote
the formation of new blood vessels and promote the growth of
tumor cells at metastasis sites (Figure 1).
RELATIONSHIP BETWEEN TUMOR CELL-
DERIVED EXOSOMES AND CANCER CELL
MIGRATION, INVASION AND METASTASIS

Cell migration refers to the ability of a cell to move when it
receives a migration signal, or when it senses a change in the
concentration of some substances, such as enzymes or RNA (60,
61). Cancer cell migration, as it is known, is an important step in
tumor metastasis.
Frontiers in Oncology | www.frontiersin.org 5
Lan J et al. found that exosomes secreted by M2-type
neutrophils regulate the invasion and migration behavior of
colorectal cancer cells, which are rich in overexpressed miR-
21-5p and miR-155-5p that bind to the coding sequence of BRG1
and lead to a decrease in BRG1 expression, thus playing an
important role in the development of colorectal cancer
(47).Tumor cell-derived exosomes containing CEMIP proteins
promote cancer cell colonization in brain metastases. By
upregulating the pro-inflammatory cytokines encoded by Tnf,
Ptgs2 and Ccl/Cxcl, the uptake of CEMIP-positive exosomes by
brain endothelial cells and microglia can induce differentiation
and inflammation of perivascular endothelial cells, thereby
promoting vascular remodeling and tumor metastasis.
Moreover, elevated levels of CEMIP in tumor tissues and
exosomes from patients with brain metastasis can predict the
progression of brain metastasis and patient survival (62). Wu B
et al. found that exosomes isolated from colorectal cancer cells
with overexpression of calcium-dependent activator protein
secretion factor 1 (CAPS1) promoted the migration of normal
epithelial FHC cells, and the expression of bone morphogenesis
protein 4 decreased in exosomes, which could be helpful for the
treatment of patients with metastatic colorectal cancer (48). Yu Y
et al. found that HCC827 cells resistant to Icotinib could produce
exosomes containing the MET oncogene and could mediate the
invasion and migration of non-small cell lung cancer.
Downregulation of MET in exosomes could significantly
reduce the invasion and migration of HCC827 cells (49). In
addition, another study found that downregulation of exosome-
derived CLEC3B can promote liver cancer metastasis, EMT, and
angiogenesis through the AMPK and VEGF signaling pathways,
and suggested that CLEC3B in exosomes may be a new
prognostic factor and a potential therapeutic target for liver
cancer (50).

Exosomal L1CAM (immunoglobulin superfamily protein),
can stimulate glioblastoma movement, invasion, and
proliferation, resulting in a poorer prognosis for patients with
glioma (51). Exosomal miR-382-5p derived from CAFs is
overexpressed compared with adjacent normal tissues, and can
promote the invasion and migration of oral squamous cell
carcinoma (52). Studies have shown that large amounts of
integrins and matrix metalloproteinases (MMPs) enhance
basement membrane degradation (63). There is evidence that
tumor cell-derived exosomes can migrate to new metastatic
niches (also called pre-metastatic niches) by targeting specific
receptor cells. Liposomes and membrane proteins are involved in
organic metastasis of tumor-derived exosomes. For example,
tumor cell-derived exosomes can carry a6b4 and a6b1
integrins targeting the lungs, while avb5 integrin targets the
liver. In addition, after reaching new tissues and organs,
exosomes play a role in the establishment and development of
the pre-metastatic ecological niche (64). Based on miRNA
expression profiling and functional analysis of lymphatic
endothelial cells (LECs), Kim et al. identified miR-503-3p,
miR-4269, and miR-30e-3p as downstream targets of ELK3 in
LECs. The expression of ELK3 in LECs promotes breast cancer
progression and metastasis, suggesting that ELK3 is a key factor
March 2021 | Volume 11 | Article 639159
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in regulating the tumor microenvironment and tumor-to-tumor
communication and promoting cancer metastasis (53).

In conclusion, the above studies suggest that tumor cell-
derived exosomes regulate the metastasis and migration of
tumor cells through different types of proteins and miRNAs
(Table 1).
RELATIONSHIP BETWEEN TUMOR CELL-
DERIVED EXOSOMES AND IMMUNE
REGULATION

The activity of exosomes affects five major functions of immune
regulatory mechanisms: immune activation, antigen expression,
immune surveillance, immunosuppression, and communication
between immune cells. In addition to immune cells, tumor cells
can also secrete immunoreactive exosomes, thus influencing
pathophysiological processes (65–67). Furthermore, there is
increasing evidence that exosomes may contribute to cancer
development by regulating different immune cells (68, 69)
(Figure 1).

Seo N et al. found that dendritic cells (DCs) could promote
CTL generation, while Treg-cell-derived exosomes could inhibit
CTL generation, and that exosomes from immune cells and
tumor cells could regulate cancer progression (70). Tumor cell-
derived exosomes enhance the secretion of prostaglandin E2,
TGF-b, and IL-6 in myeloid cells, resulting in a strong
immunosuppressive environment in tumor lesions (71, 72).
CD47, a glycoprotein on the surface of the cell membrane, is a
member of the immunoglobulin (Ig) family and one of the cell
membrane receptors that can be exploited in immunotherapy.
CD47, as an inhibitory receptor on the surface of tumor cells, can
interact with the signaling protein SIPR-a on the surface of the
cell membrane, which may mediate immune escape from
macrophages and T cells. In addition, CD47 is highly
expressed in tumor cell-derived exosomes, can create a tumor
microenvironment, lay the foundation for tumor metastasis,
migration and invasion, and enable tumor cells to escape T
cells and NK nuclear macrophages, thus promoting the
occurrence and development of tumors (54). CD81, an
immunomodulator, can promote tumor progression and
promote the metastasis of HCC caused by hepatitis C virus
(HCV). Ashraf Malik M et al. found that the CD81+ exosomes
carried HCV particles and established an environment for
persistent HCV infection to promote the progression of liver
cancer through immune escape (55).

In addition to exosomes regulating tumor immune escape,
proteins and nucleic acids contained in exosomes can also be
used as substances detected by immune checkpoint blockade
technology. Due to previous technical limitations, exosome
extraction has often been difficult. However, with the
development of microfluidic technology, RNA sequencing
technologies, and the rapid development of proteomics, the use
of exosomes as a diagnostic and prognostic biomarker for
immune checkpoint blockade technology has become
possible (73).
Frontiers in Oncology | www.frontiersin.org 6
TUMOR CELL-DERIVED EXOSOMES AND
TUMOR THERAPY

As a treatment option, exosomes are characterized by the lack of
toxic side effects and rejection, and can therefore be used as a
vehicle for drug delivery in cancer therapy. Exosomal delivery of
adriamycin and paclitaxel that has been used in targeted cancer
therapy with less toxic side effects and immunogenicity (74, 75).
In addition, exosome-derived miRNA may be significant in the
metabolism, diagnosis, and treatment of cancer. The metabolism
of tumor cells from many different tissues requires the
involvement of mitochondria, and exosomes can trigger
metabolic reprogramming and inhibit tumor growth by
restoring tumor cell respiration. Therefore, exosome-derived
miRNAs, by mediating the metabolism of tumor cells, may
have some values in the prognosis and treatment of cancer (76).

Tumor stem cells are believed to be the seed cells of the
primary cancer and the source of drug resistance to radiotherapy
and chemotherapy. The accurate delivery of drugs to tumor stem
cells is the current focus and challenge facing cancer therapy.
Nanotechnology combined with exosomal drug delivery has the
potential to address this challenge and potentially improve the
efficacy and specificity of targeted cancer stem cell therapy (77).
The exosome expression profile of patients with multiple
myeloma is different from that of healthy patients, and may
have potential therapeutic effects in patients with multiple
myeloma. In addition, tumor cell-derived exosomes and their
byproducts can be edited and modified to produce anti-tumor
vaccines (78). Nie W et al. synthesized exosome nano-bio-
conjugates through biosynthesis and, after systemic
administration, specifically identified aCD47 and CD47 on the
surface of tumor cells, demonstrating that nano-bio-conjugates
could actively target tumor cells (79).

Exosomes may also provide solutions to long-standing drug
delivery challenges. While aspirin was found to have anti-tumor
effects, the challenge of delivering it to the tumor has limited its
application (80). In order to solve the problem of poor water-
solubility of aspirin, low exosome inclusion rate, and to further
develop new anticancer drugs from aspirin, TranPHL et al.
developed and established a nanocrystalline exosome transport
and delivery platform. In vitro and in vivo studies for the
treatment of breast cancer and colorectal cancer have shown
that these exosomes enhance cell uptake through clathrin-
dependent and independent endocytic pathways, significantly
improve the cytotoxicity of aspirin to breast cancer and
colorectal cancer cells, and enhance tumor cell apoptosis and
autophagy. In addition, aspirin encapsulated by nanocrystalline
exosomes has an unprecedented ability to remove tumor stem
cells (81) (Figure 1 and Table 2).
CONCLUSION AND PERSPECTIVES

Exosomes are extracellular vesicles that contain nucleic acids,
proteins, lipids and other substances. Compared with tumor
markers that exist in tissues and body fluids, exosomes are not
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only highly stable but are also rich in content, which lays a solid
foundation for the future clinical application of exosomes (26).
The extraction, isolation, and identification of tumor cell-derived
exosomes may contribute to the following aspects. Firstly,
exosomes may be used to elucidate the underlying mechanisms
of tumor progression and provide a potential therapeutic target
for cancer patients. Secondly, exosomes can be used to treat
cancers by encapsulating some antitumor drugs. Thirdly, tumor
immunotherapy has attracted more and more attention, and the
immunoregulatory properties of exosomes include regulation of
antigen presentation, immune supervision, and immune
activation. An in-depth study on the molecular mechanisms of
interaction between exosomes and immune cells may reveal a
new approach for tumor immunotherapy (82).

Exosomes are versatile and serve a critical function in
intercellular communication. In this article, we elaborated on
exosome-mediated tumor metastasis, tumor angiogenesis, EMT,
exosome immunomodulatory functions, and the role of
combining nanoengineering technologies to fight cancer.
Future studies may focus on the potential heterogeneity of
tumor cell-derived exosomes, which will help to understand
the clonal expansion of tumor cells and the characteristics of
clonal expansion after cancer treatment (6). By using sequencing
technologies, proteomics, and the detection of RNA and DNA in
serum exosomes will hopefully be used for early diagnosis and
prognostic evaluation of cancer.

As an intermediate of intercellular communication, exosomes
play a vital role in the pathogenesis, diagnosis, and treatment of
tumors. However, there are still a number of problems that need
to be addressed before its clinical application. First, how do we
identify exosomes? To address this problem, a relevant study has
reported that Alix, CD9, TSG101, and CD63 are protein markers
of exosomes (83). However, not all tissues and cells express these
so-called exosome markers, as a result of the specificity of tissues
and cells. Therefore, further investigation into how exosomes are
identified is an important objective of future research. In
addition, we need to pay attention to the differences between
exosomes and microvesicles. Microvesicles are larger in diameter
than exosomes. The origin of exosomes is the endosome, while
Frontiers in Oncology | www.frontiersin.org 7
the origin of microvesicles is the plasma membrane. In addition,
the two are also morphologically different (3). This reminds us
that we must pay attention to distinguish and identify exosomes
in future studies. Second, how do we extract exosomes? Pin Li
et al. summarized how to use the physical, chemical and
biochemical properties of exosomes to extract exosomes,
including ultrafiltration-based isolation techniques, size-based
isolation techniques, immunoaffinity capture-based techniques,
among others (84). In his summary, the author suggests that
ultrafiltration is a method of exosome extraction that has great
potential, especially in the treatment and analysis of exosomes
isolated from human blood and plasma (84).

The ultimate service of basic medicine is the patient.
According to the clinical needs, how to extract exosomes
quickly and effectively and apply them to the diagnosis and
treatment of cancer patients should be a priority to the field and a
major objective of future research. In addition, a number of
unknown molecular mechanisms, such as how exosomes
mediate cancer progression and tumor suppression, and
immature artificial exosome synthesis techniques have brought
new challenges to exosomes in the diagnosis, treatment, and
prognostic guidance of cancer.
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