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Abstract

Mutations are not identified in ~5% of hemophilia A and 10–35% of type 1 VWD patients.

The bleeding tendency also varies among patients carrying the same causative mutation,

potentially indicating variants in additional genes modifying the phenotype that cannot be

identified by routine single-gene analysis. The F8, F9 and VWF genes were analyzed in par-

allel using an AmpliSeq strategy and Ion Torrent sequencing. Targeting all exonic positions

showed an average read depth of >2000X and coverage close to 100% in 24 male patients

with known disease-causing mutations. Discrimination between reference alleles and alter-

native/indel alleles was adequate at a 25% frequency threshold. In F8, F9 and VWF there

was an absolute majority of all reference alleles at allele frequencies >95% and the average

alternative allele and indel frequencies never reached above 10% and 15%, respectively. In

VWF, 4–5 regions showed lower reference allele frequencies; in two regions covered by the

pseudogene close to the 25% cut-off for reference alleles. All known mutations, including

indels, gross deletions and substitutions, were identified. Additional VWF variants were

identified in three hemophilia patients. The presence of additional mutations in 2 out of 16

(12%) randomly selected hemophilia patients indicates a potential mutational contribution

that may affect the disease phenotype and counseling in these patients. Parallel identifica-

tion of disease-causing mutations in all three genes not only confirms the deficiency, but dif-

ferentiates phenotypic overlaps and allows for correct genetic counseling.

Introduction

Inherited bleeding disorders affect an estimated 7.5 million individuals worldwide [1]. The

common inherited bleeding disorders, von Willebrand disease (VWD), hemophilia A (HA)

and hemophilia B (HB), account for 95–97% of such patients [2]. VWD is the most common

inherited autosomal bleeding disorder, affecting both genders. Mutations in the VWF gene
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result in quantitative or qualitative deficiencies of von Willebrand factor (VWF). The esti-

mated prevalence of subjects with significant bleeding symptoms is 1 in 1000 [3]. More than

700 mutations have been associated with VWD (https://grenada.lumc.nl/LOVD2/VWF/home.

php?select_db=VWF). HA and HB are X-linked recessive disorders caused by mutations in

the F8 and F9 genes, resulting in quantitative or qualitative defects in factor VIII (FVIII) and

factor IX (FIX), respectively. The prevalence of the disorders is 1 in 5000 (HA) and 1 in 30,000

(HB) male births [1]. A recurring inversion located at intron 22 in F8 accounts for approxi-

mately 45% of all severe HA cases. Additionally, more than 2000 point mutations and indels

distributed throughout the gene have been associated with the majority of the remaining HA

cases (http://www.factorviii-db.org). More than 1000 point mutations and indels have been

reported in F9 in patients with HB (http://www.factorix.org).

Pathogenic variants are identified in approximately 95% of HA cases and in almost all of

patients with HB. Misdiagnosis due to overlapping phenotypes as well as deep intronic variants

altering mRNA splice sites may account for the remaining mutation-negative cases [1]. In 10–

35% of the type 1 VWD index cases, no pathogenic variant can be identified. In the majority of

these cases, a mild bleeding phenotype is observed making diagnosis a challenge [4]. However,

a more stringent definition of type 1 VWD patients with VWF level�30 IU/dL identified

mutations in ~92% of patients [5]. In addition, intronic variants as well as variants at other

genetic loci may affect the VWF level. For example, in a meta-analysis of several genome-wide

association studies, eight genes that contribute to plasma level variation of VWF were identi-

fied [6]. A common variant in ABO showed the strongest effect, but smaller effects were seen

for common variants in CLEC4M, SCARA5, VWF, STAB2, STX2, TC2N and STXBP5.

Additional difficulties arise from distinguishing genocopy disorders such as type 2B VWD

and PT-VWD where the clinical picture is similar but results from different genetic causes [1].

Another example is type 2N VWD and mild HA which both present with low FVIII activity

[7]. The bleeding tendency also varies among patients carrying the same causative mutation,

potentially indicating additional genes modifying the phenotype which cannot be identified by

routine single-gene analysis [6]. In all three disorders, genetic testing provides confirmation of

deficiency, differentiation of overlapping phenotypes, as well as genetic counseling.

Historically, the first line of approach for diagnosing inherited bleeding disorders has been

based on phenotypic assays assisted by sequencing of the phenotypically indicated gene for

confirmation [1]. Recently a number of next generation sequencing (NGS)-based studies have

been used to re-sequence panels of genes associated with inherited bleeding disorders in a sin-

gle workflow. Bastida et al. [8] designed a gene panel targeting F8, F9 and VWF on an Illumina

MiSeq platform whereas Bastida et al. [9] used a 23-gene panel to target both common and

rare bleeding disorders using the same platform. The ThromboGenomics initiative targeted 63

genes associated with inherited bleeding, thrombotic and platelet disorders [10].

Ion Torrent is an NGS platform based on semiconductor chip technology [11, 12]. Using

the AmpliSeq strategy, targeted re-sequencing is performed through the simultaneous amplifi-

cation of many amplicons in a multiplex PCR. Adapters and barcodes are ligated to the frag-

ments which are subsequently enriched using a few PCR cycles. The library of adapter-

containing fragments is used to populate spheres through emulsion PCR. These PCR steps

result in incorporation of errors in varying proportions of the reads.

To enable simultaneous mutation detection in the three common inherited bleeding disor-

ders, the present study re-sequenced the exonic positions of F8, F9 and VWF using Ion Tor-

rent sequencing based on an AmpliSeq strategy and made a quality assessment of the data

obtained. To further validate the sequencing system a total of 24 subjects previously diagnosed

with HA, HB or VWD were analyzed for their known mutations.

Targeted re-sequencing of F8, F9 and VWF
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Materials and methods

Study populations

The retrospective VWD study population was recruited at the Department for Coagulation

Disorders, Malmö University Hospital (Malmö, Sweden). Clinical and laboratory data were

recorded and bleeding phenotypes were classified [13]. The retrospective HA and HB popula-

tions were recruited at Malmö Hemophilia Centre at their routine visit and characterized with

respect to their mutations [14, 15]. Eight randomly selected patients were selected from each

of the VWD, HA and HB populations described above and included in the present study. The

study was approved by the Regional Ethical Review Board in Lund under Dnr LU 2015/820,

2017/278 and 436–01. Written informed consent was obtained from all participants.

Ion Torrent sequencing

The primer sets were designed using Ion AmpliSeq Designer to include all exonic, 5’UTR and

flanking intronic sequences (http://www.ampliseq.com, pipeline version 2.2.1). The multiplex

primer pools were optimized such that the primers systems with the lowest read depths in a

specific pool were added to the other pool, excluding overlapping systems. The library prepara-

tion was achieved using the Ion AmpliSeq library kit 2.0 according to the manufacturer’s pro-

tocol (Life technologies, Carlsbad, CA, USA). The amplicons were barcoded using Ion Xpress

barcode adapters. Purification of the library was achieved using Agentcourt AMPure XP

reagent beads (Beckman Coulter Inc., Brea, CA, USA). Library amplification was performed

and further purification steps were achieved using Agentcourt AMPure XP reagent beads

before elution of the final library. The library concentrations were determined by capillary

electrophoresis using a Fragment Analyzer (Advanced Analytical Technologies, Ankeny, IA,

USA) and a High Sensitivity NGS Fragment Analysis kit (Advanced Analytical Technologies).

Library normalization was performed to a concentration of ~50 pM before being pooled

together. An amplification reaction was prepared according to the manufacturer’s protocol

and transferred to an Ion PGM Hi-Q View reaction filter before emulsion PCR was performed

on an Ion OneTouch 2 instrument (Life Technologies). Enrichment of the Ion Sphere Particles

(ISPs) was performed on an Ion OneTouch ES instrument (Life Technologies) using Dyna-

beads MyOne Streptavidin C1 beads. The sequencing process was carried out on an Ion PGM

sequencer (Life Technologies) using Ion 316 chip V2 (Life Technologies). This allowed simul-

taneous analysis of eight samples at the coverage presented in this study. The loaded chip was

sequenced using a 400 bp sequencing protocol with 850 flows of single nucleotides.

Bioinformatic analysis

The generated raw data was processed by the Ion Torrent Suite Software v5.0.5. The sequences

were aligned to the Homo sapiens hg19 reference genome and stored as BAM files. The fre-

quency parameter for variant calling was set to 0.25, generating VCF files for each library con-

taining SNPs, small insertions and deletions (indels) and putative mutations. The generated

VCF files were merged and multi-allelic sites split to create a database containing all called var-

iants. Annotation of the database VCF file was achieved through the Variant Effect Predictor,

VEP [16]. Evaluation of detected variants of each library was performed in parallel using

MuCor: Mutation Aggregation and Correlation [17]. Initially, a setup script was run, generat-

ing a JSON configuration file containing library IDs and associated VCF and BAM files as well

as a link to the VCF database. Secondly, the run script was implemented, analyzing the

reported variants using the JSON file. The generated output files contained variant reports,

location and annotation for variants of each library (S1 Table). The non-Finish European

Targeted re-sequencing of F8, F9 and VWF
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(NFE) population of the Exome Aggregation Consortium database, ExAC[18], was used to fil-

ter the initial set of variants to identify possible disease-causing variants. This was achieved by

eliminating all variants with an allele frequency of>1%. A BED file with the exonic positions

of F8, F9 and VWF was obtained from UCSC genome browser [19]. Mpileup files were gener-

ated using the SAMtools mpileup application, BAM files from each library and the BED file

with the exonic positions. Base calls for each DNA strand, reference base, read depth and posi-

tion were extracted from the mpileup format for further analysis (S2 Table, S3 Table and S4

Table).

Data analysis

Evaluation of the gene panel was achieved by using the generated data from the 24 subjects. All

the calculations were performed on an individual level as well as for a system average using

RStudio [20]. Basic descriptive statistics of the panel included read depth (the number of times

each base position was interrogated), read depth variation, coverage (the number of base posi-

tions interrogated out of all attempted), strand bias (the relative number of reads for each

strand), reference allele (true alleles and polymorphisms) frequencies and alternative allele/

indel frequencies. The alternative alleles may originate from errors occurring during PCR

amplification or be the result of existing mosaic variants. The average read depth for each sam-

ple was calculated and used to normalize the read depth of each position. The variation of the

read depth was calculated by normalization of each sample library. The coverage was calcu-

lated by dividing the number of bases fulfilling the criteria with the total number of bases. A

strand bias ratio was calculated by dividing the number of read bases of the forward strand by

the total number of read bases in each position. The obtained percentage represented the for-

ward strand, while the complement represented the reverse strand. The alternative allele fre-

quency was determined by recovering the called bases, which differed from the nucleotide

with the highest number of calls. By dividing the number of alternative alleles by the total

number of alleles, the frequency as well as the standard deviation could be determined for each

position. If the calculated alternative allele frequency was >0.25, a recalculation was made

using the two alleles with the lowest number of calls. The indel frequency for each position was

calculated by using the same strategy. Mutations and indels associated with HA, HB and VWD

were obtained from the variant databases and were evaluated using the calculated alternative

allele/indel frequencies. The allele frequency for F8 and F9 was determined by obtaining the

nucleotide with the highest number of calls for each position and dividing by the total number

for each position. The minor allele frequency for VWF in a heterozygote was determined by

obtaining the nucleotide with the second highest number of calls and dividing by the total

number for each position. Positions with MAF <0.25 were eliminated from the calculation.

Results

Read depth and coverage

F8, F9 and VWF were analyzed in a single workflow using an AmpliSeq panel targeting the

exons and flanking intronic regions of the three genes. Data were obtained from 24 male

patients with known disease-causing variants. The panel targeting all the exonic positions

showed an average read depth of 2122X. Since VWF is located on chromosome 12, twice as

many reads were obtained compared to the X-chromosome genes, F8 and F9. The coverage

over F8, F9 and VWF was close to 100% in all three genes. The missing bases were due to low

yielding primer systems excluding eight nucleotides located in the 5’ UTR region of F8 and the

216 bp of exon 15 in VWF. Given an average read depth of ~2000X, only exon 15 of VWF
showed an average read depth of<100X. Both between-individual and between-amplicon

Targeted re-sequencing of F8, F9 and VWF
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variations were fairly large but unproblematic, due to the high average read depth (S1A Fig).

Only a few positions showed a strand bias of>95% (S1B Fig). The results for F9 were similar

to the results of F8 (results not shown).

Reference and alternative alleles

Discrimination between reference alleles and alternative alleles/indels was adequate at a 25%

frequency level (Fig 1). In F8 an absolute majority of all reference alleles was present at allele

frequencies >95%. Only at ~10 positions did a few individuals show allele frequencies of

<95% (Fig 1A). No position showed a reference allele frequency <50% for any individual. In

F8 the average alternative allele and indel frequencies never reached above 10% and 15%,

respectively (Fig 1B and 1C). Less than 0.1% of the total data set (all combinations of positions

times individuals) showed alternative allele and indel frequencies in the range of 10–25%

when individual patients were evaluated. F9 showed a similar result (results not shown). This

provided confident discrimination between reference and alternative alleles in an absolute

majority of cases.

In VWF, all homozygote positions showed a similar pattern as seen in F8 and F9. The

minor reference allele frequencies are shown as dots in Fig 1A for each individual who was het-

erozygous for a given position. Also in this case, few reference allele frequencies decreased

more than 5%, except for 4–5 regions which showed lower frequencies; in two cases they were

even close to the 25% cut-off for reference alleles. These were sequences within the pseudogene

region where the necessary filtering complicates allele calling. For VWF the average alternative

allele and indel frequencies were well below 10% and 15%, respectively (Fig 1B and 1C). Thus,

overall there were only a very few positions in F8, F9 and VWF that it was difficult to call refer-

ence alleles for. Comparison of the alternative allele and indel frequencies indicated that indel

biases were occurring more frequently and showed a greater variation (Fig 1B and 1C).

To further investigate the positions that are relevant in a mutation screening perspective, all

alternative allele/indel frequencies for the disease-causing positions in the mutation databases

(http://www.factorviii-db.org, http://www.factorix.org and https://grenada.lumc.nl/LOVD2/

VWF/home.php?select_db=VWF) were collected. The absolute counts and frequencies of

alternative allele/indel frequencies are given in Table 1 for all mutated positions.

Overall, the majority of mutations are located at positions with a low alternative allele fre-

quency of<1% and only a few remain at higher frequencies. The patterns of alternative allele

and indel frequencies largely resembled the corresponding patterns for all gene positions visu-

alized in Fig 1B and 1C. Thus, the mutated positions in the mutation databases were not more

challenging than the average position with regard to allele calling and discrimination of alter-

native alleles and indels.

Detection of mutations

The random selection of 24 patients each presenting with either HA, HB or VWD had mostly

substitution mutations, but three small indels and three gross deletions were also represented.

In different patients, a heterozygote deletion of exon 14–52 in VWF (patient VWF_25) and

hemizygote deletions of the entire F9 (HB_129) and exon 1–12 of F8 (HA_420) were all

detected by a decreased or absent read depth of all involved amplicons. The remaining 21

patients all presented with different substitution and indel mutations. All but one of these vari-

ants were identified immediately by annotation through VEP. In one case (HA_208) the

known mutation could be detected only after careful inspection of the data. The disease-caus-

ing variant was located at a homo-polymeric region, consisting of a 9-nucleotide long poly-T

stretch. In this case the relative flow value change for consecutive alleles decreased to an extent

Targeted re-sequencing of F8, F9 and VWF
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where it became a challenge to determine the correct number of incorporated nucleotides.

Table 2 provides a summary of the known and detected mutations together with read depths

and strand biases for all mutations. The strand biases clustered around the expected value of

0.5, with only one value (0.35) deviating more than 10% from the expected value. The read

depths were all fairly high, ranging from 80X to>5000X. Thus, at an average read depth of

~2000X none of the allele calls were problematic.

Fig 1. Reference allele and alternative allele/indel frequencies observed for all positions of F8 and VWF for all subjects. (A) Reference allele

frequencies. Expected frequencies for hemizygote (F8) and heterozygote (VWF) positions given by solid black line. (B) Average alternative allele

frequencies. (C) Average indel frequencies. Noise level limit at 25% given by dashed line.

https://doi.org/10.1371/journal.pone.0216179.g001
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One HA patient and two HB patients had, in addition to their previously known mutations

in F8 and F9, single variants in VWF. Patient HB_138 had in addition to a nonsense mutation

in F9 a VWF missense mutation (c.7940C>T) reported as a type 1 VWD mutation. Clinical

Table 1. Alternative allele/indel frequencies in mutated positions collected from gene-specific databases, http://www.factorviii-db.org, http://www.factorix.org and

https://grenada.lumc.nl/LOVD2/VWF/home.php?select_db=VWF.

Alternative Point mutation Indel

frequencies (%) Absolute Frequency (%) Absolute Frequency (%)

<1 2029 99 533 96

>1 12 0.58 20 3.6

>2 8 0.39 9 1.6

>5 1 0.05 4 0.72

>10 0 0 2 0.36

https://doi.org/10.1371/journal.pone.0216179.t001

Table 2. Detected disease causing substitutions, indels and large deletions in the 24 patients.

Patient ID Gene Detected/known mutation Protein Consequence Phenotypea Qualityb

HA_208 F8 c.3637dupA p.Ile1213AsnfsTer28 Frameshift Mild-Severe (32) 283/0.52

HA_365 F8 c.3640del p.Gln1214ArgfsTer4 Frameshift - 454/0.45

HA_398 F8 c.67A>G p.Arg23Gly Missense Mild (2) 3764/0.57

HA_408 F8 c.5381T>A p.Phe1794Tyr Missense - 2830/0.43

HA_420 F8 Gross deletion - Gross deletion Severe (-) 0/0

HA_432 F8 c.923C>T p.Ser308Leu Missense Severe (28) 3660/0.56

HA_448 F8 c.3134delC p.Pro1045HisfsTer8 Frameshift - 581/0.42

HA_459 F8 c.5393C>T p.Ala1798Val Missense Moderate (1) 2416/0.42

HA_459 VWF c.5453A>G p.Asn1818Ser Missense Type 1 (1) 367/0.49

HB_129 F9 Gross deletion - Gross deletion Severe (60) 0/0

HB_130 F9 c.572G>A p.Arg191His Missense Mild-Severe (85) 3098/0.51

HB_132 F9 c.82T>C p.Cys28Arg Missense Mild-Moderate (5) 420/0.46

HB_135 F9 c.785T>C p.Ile262Thr Missense Mild-Moderate (6) 474/0.58

HB_135 VWF c.8084C>G p.Pro2695Arg Missense Unclassified (1) 787/0.5

HB_136 F9 c.459G>A p.Val153 = Silent Mild (6) 2670/0.45

HB_138 F9 c.1135C>T p.Arg379Ter Nonsense Mild-Severe (65) 887/0.5

HB_138 VWF c.7940C>T p.Thr2647Met Missense Type 1 (2) 3533/0.35

HB_139 F9 c.1289G>T p.Ser430Ile Missense Moderate (1) 415/0.47

HB_140 F9 c.83G>A p.Cys28Tyr Missense Moderate-Severe (9) 1575/0.48

VWF_25 VWF Gross deletion - Gross deletion Type 3 (-) -/-c

VWF_140 VWF c.5014G>A p.Gly1672Arg Missense Type 2A (1) 5202/0.49

VWF_159 VWF c.4120C>T p.Arg1374Cys Missense Type 1, 2A, 2M (7) 347/0.53

VWF_166 VWF c.7603C>T p.Arg2535Ter Nonsense Type 3 (4) 407/0.45

VWF_172 VWF c.4975C>T p.Arg1659Ter Nonsense Type 3 (10) 1595/0.57

VWF_189 VWF c.4517C>T p.Ser1506Leu Missense Type 2A (14) 4821/0.41

VWF_238 VWF c.2278C>T p.Arg760Cys Missense Type 2N (1) 80/0.53

VWF_280 VWF c.7430G>C p.Cys2477Ser Missense Type 1 (1) 270/0.41

Additional variants marked as bold.
a Phenotype is given as degree of severity for HA and HB, whereas VWD is classified by subtype. Number of reported cases given within parentheses.
b Quality parameters given as read depth and strand bias for the mutated positions.
c Deletion encompassed exon 14–52 and all amplicons involved showed approximately 50% of the average read depth and a similar strand bias compared to the

remaining patients.

https://doi.org/10.1371/journal.pone.0216179.t002
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data for this patient showed a severe phenotype (FIX:C, <1%; FIX:Ag, <1%). Patient HB_135

had a missense mutation in F9 and another missense variant (c.8084C>G) in VWF. Clinical

data for this patient showed a moderate phenotype (FIX:C, 4%; FIX:Ag, 4%). Lastly, patient

HA_459 with a missense mutation in F8, also had another missense variant (c.5453A>G) in

VWF previously reported as a type 1 VWD mutation. Clinical data for this patient showed a

mild phenotype (FVIII:C, 30%).

Discussion

Read depth and coverage

Targeted re-sequencing of F8, F9 and VWF was optimized and validated in the present study

using an AmpliSeq-based Ion Torrent sequencing strategy. Two key parameters used in NGS

to evaluate the results are read depth and coverage. The read depth can be adjusted through

selecting chip size and number of samples sequenced in parallel on each chip. Given a primer

design capable of amplifying all targeted regions, the normalization of the different amplicons

is key to an efficient utilization of the available sequencing capacity. To achieve this, the multi-

plex primer pools were optimized so that the primers systems with the lowest read depths in a

specific pool were added to the other pool, excluding overlapping systems. Further optimiza-

tion adjusted the concentrations of individual primer pairs. This resulted in a total coverage

over F8, F9 and VWF of>99%. The major exception was the 216 bp of exon 15 in VWF that

was not well covered. This corresponds to a single amplicon with a decreased amplification

efficiency. As the gene panel contains 123 amplicons the effect of this shortcoming is fairly lim-

ited. The VWD mutation database (https://grenada.lumc.nl/LOVD2/VWF/home.php?select_

db=VWF) contains a total of 1437 reported individuals distributed over 708 different mutated

positions (1193 database entries; access date 21-03-2019). The mutations in exon 15 represent

a small fraction of the total count, with 22 mutations all reported in single cases. However, it is

an obvious shortcoming of the technique for which it will need to be corrected. In contrast, the

Illumina platform was used by Bastida et al. [8] to perform hybridization-based targeted rese-

quencing of F8, F9 and VWF. They determined their coverage over the same target regions to

90.5% with a read depth of 50X, without giving further details of the system characteristics.

The studies use different enrichment strategies of the target regions. AmpliSeq uses PCR

amplification based on pools of primers whereas the Illumina system of Bastida et al. [8] used

hybridization-based enrichment. With the AmpliSeq strategy a higher coverage was achieved

(99%), though at a cost of lower uniformity, necessitating a higher average read depth to reli-

ably call variants across individuals [21].

In multiplex PCR-based systems like the AmpliSeq/Ion Torrent system all amplicons com-

pete with each other during the amplification process. This is an inherent property of multi-

plex PCR and is expected in situations where large numbers of primer pairs are present in the

same reaction. The amplification profiles of different samples are similar. This means that the

differences observed are to a large extent reproducible and therefore systematic in nature and

not the result of spurious variation. Thus, an even read depth for all amplicons is primarily

determined by the normalization of all amplicons by the initial pool optimization. Given basal

amplicon optimization, the most important parameter influencing read depth within and

between different samples is the normalization to equimolar amounts of individual libraries.

The obvious ideal is total equimolarity at all stages of pool optimization and normalization.

Failure to achieve full coverage can in most cases be compensated for by simply increasing the

total number of reads.
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Reference and alternative alleles

The results of the present study showed that discrimination between reference alleles and alter-

native alleles/indels was clearly sufficient in an absolute majority of cases. However, there were

a few positions in single individuals where reference alleles were difficult to distinguish from

alternative alleles. These included a small number of mononucleotide repeats of sizes >6–9

repeat units. Such cases required determination of whether the alternative allele frequency

reflected an error, or if it was a true alternative allele. In this project the threshold for variant

calling was set at 25%. Higher frequencies were further examined to determine if they were a

true variant or not. VEP was the first application used during the mutation identification pro-

cess, where variants were filtered using the ExAC allele frequencies. ExAC allele frequencies

have collected sequence data from different global projects and have created a register contain-

ing both neutral and polygenic variants. The efficiency of the VEP application eliminated a

majority of all variants and left only one or a small number of possible disease-causing muta-

tions for further analysis.

Detection of mutations

All mutations for F8, F9 and VWF were extracted from the locus-specific mutation databases.

Since the three databases contain high numbers of mutations they are likely to contain a

majority of the disease-causing variants in these genes. The majority of these positions showed

an alternative allele frequency of<1% and were therefore not more difficult to analyze than

the average position of the whole coding sequence. Furthermore, none of the frequently reoc-

curring mutations (> 50 reported cases) associated with the common bleeding disorders were

located in positions with alternative allele frequencies>1%. Thus, the commonly mutated

positions of these genes present with less of a challenge with regard to allelic discrimination

than the average position.

As Sanger-based resequencing only sequences the phenotypically indicated gene, it can lead

to incorrect diagnosing as well as therapy. Bastida et al. [8], described the importance of differ-

entiation between the VWD-2N and the mild/moderate HA phenotypes. They also demon-

strated the value of using gene panels as no mutation was found in F8 in eight previously

diagnosed mild HA cases. In these cases, mutations associated with VWD-2N were identified,

resulting in a reclassification. Another recent study by Borras et al. [5] reclassified 110 out of

556 patients after NGS resequencing. In the present study, additional VWF variants were

detected in three different hemophilia patients. Patient HB_138 had in addition to a nonsense

mutation in F9 (c.1135C>T; previously reported 65 times in F9 mutation database) a VWF
missense variant (c.7940C>T) reported as a type 1 VWD mutation in two cases. The pheno-

typic data for this patient showed a severe phenotype (FIX:C, <1%; FIX:Ag, <1%, [22]) like

most of the patients listed in the FIX mutation database for this position (http://www.factorix.

org). Patient HB_135 had a missense mutation (c.785C>T) previously reported in six mild-

moderate HB patients. Phenotypic data for this patient showed a moderate phenotype (FIX:C,

4%; FIX:Ag, 4%, [23]). In this patient another missense variant (c.8084C>G) was detected in

VWF. This variant was reported in a single control individual and classified as probably not

pathogenic [24]. Finally, patient HA_459 with an F8 c.5393C>T missense mutation reported

in a single patient with moderate disease, also had another variant (c.5453A>G) in VWF previ-

ously reported as a type 1 VWD mutation. Phenotypic data for this patient showed a mild phe-

notype (FVIII:C, 30%). The single listing in the FVIII mutation database (http://www.

factorviii-db.org) reports moderate severity (FVIII:C, 3%). Thus, no conclusive impact of

VWF variants could be detected. At present it is unknown if these VWF variants are indeed

contributing to disease, but two of them have been reported as being type 1 VWD mutations.
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It is highly likely that both F9 mutations, c.1135C>T previously reported 65 times and the

c.785C>T mutation previously reported six times, are true mutations. The c.5393C>T mis-

sense mutation in F8 reported in only a single patient is more doubtful. Since the three VWF
variants have all been detected previously in only one or two individuals, their mutation status

is also uncertain. However, all three variants had read depths and strand biases allowing an

interpretation as true alleles and were in addition validated by Sanger sequencing. The findings

encourage further studies to evaluate the presence of additional potentially disease-causing

variants that may contribute to the phenotype in such patients. This may also contribute infor-

mation with regard to the varying bleeding tendency seen among patients carrying the same

causative mutation.

Some of the important aspects when dealing with a bleeding disorder are distinguishing gen-

ocopies, risk of developing alloantibodies, prenatal diagnosing and identification of carriers.

The analyses of these aspects all depend on the same thing: to identify the candidate mutation.

Ion Torrent provides a high throughput method suitable for identification of mutations in a

clinical setting. The AmpliSeq/Ion Torrent strategy enables multiplex gene analysis and multi-

plexing of samples which reduces the amount of labor and provides a rapid turnaround time.
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