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Precision of morphogen gradients in neural tube
development
Roman Vetter 1,2✉ & Dagmar Iber 1,2✉

Morphogen gradients encode positional information during development. How high pat-

terning precision is achieved despite natural variation in both the morphogen gradients and in

the readout process, is still largely elusive. Here, we show that the positional error of gra-

dients in the mouse neural tube has previously been overestimated, and that the reported

accuracy of the central progenitor domain boundaries in the mouse neural tube can be

achieved with a single gradient, rather than requiring the simultaneous readout of opposing

gradients. Consistently and independently, numerical simulations based on measured

molecular noise levels likewise result in lower gradient variabilities than reported. Finally, we

show that the patterning mechanism yields progenitor cell numbers with even greater pre-

cision than boundary positions, as gradient amplitude changes do not affect interior pro-

genitor domain sizes. We conclude that single gradients can yield the observed

developmental precision, which provides prospects for tissue engineering.
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During embryogenesis, tissues specialize, and cells in dif-
ferent subdomains take on different fates. Morphogen
gradients can provide the positional information to define

the boundaries of distinct progenitor domains (Fig. 1A).
According to the French flag model, boundary positions are
defined by threshold concentrations1. Molecular noise in mor-
phogen production, transport, and decay affects the gradient
shape such that the threshold concentration is reached at differ-
ent readout positions in different embryos. How such variable
gradients can encode precise spatial information, and to which
degree they are accurate enough to pattern a developing tissue is
an open question, despite intense studies2–10.

Given the challenges in visualizing morphogen gradients,
detailed studies of gradient precision have only been carried out
in few developmental systems. First and foremost, for the Bicoid
gradient in the early Drosophila embryo5, the Decapentaplegic
(Dpp) gradient in the Drosophila wing disc6, and for the Sonic
hedgehog (SHH) and Bone morphogenetic protein (BMP) gra-
dients in the mouse neural tube (NT)9. In all these systems, the
morphogen gradients take on an exponential form5,11–13

CðxÞ ¼ C0 exp � x
λ

h i
with an amplitude C0 at the morphogen source at x= 0 and a
decay length λ. In the French flag model, domain boundaries are
positioned where the gradient concentration reaches a threshold
concentration Cθ= C(xθ), i.e., at

xθ ¼ λ ln
C0

Cθ

� �
: ð1Þ

The gradient amplitude C0 and length λ differ between embryos
as a result of molecular noise in morphogen production, decay
and diffusion5,7,12,13. Differences in gradient amplitude and decay
length translate into differences in the readout position xθ,i where
the threshold concentration Cθ is reached in each embryo i
(Fig. 1B, top). The overall readout position for the particular
threshold concentration Cθ is the mean position μx=mean{xθ,i}.
The positional error is given by the standard deviation (SD) of the
readout positions in the different embryos,

σx ¼ SD fxθ;ig: ð2Þ
Following this definition, the positional error of two centrally
located NT progenitor domain boundaries, the dorsal NKX6.1
boundary and the ventral PAX3 boundary (Fig. 1A), was found to
be about 1–3 cell diameters9. In parallel, also the gradient
variability was measured, which has enabled the discussion of
patterning precision in the NT. Due to challenges in measuring
morphogen gradients directly12,14, GBS-GFP was used as tran-
scriptional reporter of SHH signaling, and phosphorylated
Smad1/3/5 (pSMAD) as a readout of BMP signaling. Close to the
source, the positional error increased from a single cell diameter
(4.9 μm12) to about three cell diameters over time. In the center of
the NT, however, the positional error was reported to increase
from 1 to 2 cell diameters in early stages to more than 30 cell
diameters later on. Combined readout of the imprecise SHH and
BMP gradients was proposed to yield the higher precision of the
central progenitor boundaries9. However, even a combined
readout fails after 15 somite stages (SS), i.e., after about 30 h of
spinal cord development, and it remained unclear how the precise
patterning of the central progenitor domains is achieved.

In this article, we revisit the problem of morphogen gradient
readout and patterning precision. We show that the positional
error of gradients in the NT has previously been overestimated,
and demonstrate that a single morphogen gradient in the NT is
sufficiently precise to define the NKX6.1 and PAX3 progenitor
domain boundaries with the reported accuracy during the first

day of NT development. We further show that technical limita-
tions do not allow for precise gradient measurements in the
center of the NT at later stages. We develop a theoretical fra-
mework and combine it with numerical computations to estimate
gradient variability also at later stages of NT development. Based
on the measured variabilities in morphogen production, turnover
and diffusion, we infer the variability of morphogen gradients and
thus their positional error as it results from molecular noise. The
resulting positional accuracy is consistent with the observed
precision of the readout boundaries in the mouse NT. The gra-
dients are thus, in principle, sufficiently precise to yield the
observed patterning precision. Furthermore, we show that the size
of gene expression domains is independent of the activity and
variability thereof when defined by the threshold-based readout
of a single morphogen gradient. This results in a very robust
mechanism to produce precise numbers of progenitor cells.

Results
Positional error of gradients was previously overestimated in
the mouse NT. In principle, a wide range of error metrics could
be defined, but in order to address the question whether a gra-
dient is sufficiently precise to define a progenitor domain
boundary, the variability of the gradient and of the progenitor
domain boundary must be measured with the same metric.
Zagorski et al.9 determined the positional error of the NKX6.1
and PAX3 domain boundaries by first determining their position
in individual embryos, and by subsequently determining their
standard deviation, σx (Eq. (2)). Going forward, we refer to Eq. (2)
as the direct error estimation method (DEEM). For the gradient,
on the other hand, a different, well-established5–8,15,16 approx-
imation was used, given by the linear error propagation formula

σx �
∂C
∂x

���� �����1

σC; ð3Þ

to estimate the positional error of gradients C from their slope,
∂C/∂x, and variance, σ2C , instead of using Eq. (2) directly with
gradients. In this indirect way, vertical variability of the gradients
(measured by their standard deviation, σC= SD[C(xθ)]) is
translated into horizontal variability of the readout position
(σx= SD[xθ]) by multiplication with the inverse slope of the mean
gradient (Fig. 1B, C). We now test whether both approaches yield
an equivalent result.

To determine the positional error with Eq. (3), an averaged
inverse slope needs to be determined from the individual
concentration or intensity profiles. Gregor et al.5 used numerical
differentiation of the mean gradient to determine the derivative
(personal communication), an approach that we refer to as
numerical differentiation error propagation method (NumEPM
for short). Bollenbach et al.6 and Zagorski et al. (9, personal
communication) first fitted an exponential function to the mean
gradient (Fig. 1B, bottom). Then, they exploited that for an
exponential function,

∂C
∂x

ðxÞ ¼ �CðxÞ
λ

;

such that ∂C=∂x
�� ���1

follows from the local value of the fitted
exponential function and the fitted decay length λ. We use the
acronym FitEPM to refer to this error propagation method.

If these approximations are appropriate, then both the
NumEPM and the FitEPM should yield the same positional
error as the DEEM. We can test this by applying all three
methods to the same set of 104 exponential gradients with
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Fig. 1 Estimation of positional error of morphogen gradients in the vertebrate neural tube. A Schematic of opposing noisy SHH and BMP gradients with
resulting gene expression domains. The patterning domain is confined between the floor plate (FP) and the roof plate (RP). B Gradients from different
embryos (top, different colors) differ in amplitude and decay length. As a result, the threshold concentration Cθ is reached at different readout positions xθ,i.
The overall readout position, μx, is given by the mean of the readout positions, xθ,i. The positional error, σx, is the standard deviation of the readout positions
xθ,i (Eq. (2)). At the threshold concentration Cθ, the readout (middle) of the gradient typically assumes its half-maximal value. If the precision of both
gradient and readout is measured by the same error metric, there is a 1:1 correspondence between them. Noise in individual gradients can further widen the
transition zone between two adjacent domains. With the FitEPM (bottom, Eq. (14)), individual exponential gradients are averaged (red solid line) and then
lin-fitted with another exponential (red dotted line), to then apply linear error propagation to estimate the positional error. C In the linear error propagation
method, the local tangent (green) to an averaged morphogen concentration gradient (blue) is used to translate the vertical gradient variability, σC, into a
horizontal positional error, σx (black). D Comparison of the previously reported positional error of GBS-GFP (green squares)9 with the results obtained with
104 randomly drawn gradients that match the reported gradient summary statistics. The positional error is calculated either directly, Eq. (2) (DEEM, black
solid line), or with the linear error propagation method, Eq. (3), using the derivative of either the mean gradient (Eq. (13), NumEPM, blue dashed line) or of
an exponential function fitted to the mean gradient (Eq. (14), FitEPM, green solid line). See Methods for details. E When applied to sets of exponential
gradients with mean and standard deviation of C0 and λ identical to those reported for GBS-GFP (green) and pSMAD (red), the FitEPM overestimates the
positional error (Eq. (2), black) by orders of magnitude further away from the source. Source data are provided as a Source Data file.
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different gradient amplitudes C0,i and lengths λi,

CiðxÞ ¼ C0;i exp � x
λi

� �
: ð4Þ

To determine the positional error according to its mathematical
definition (Eq. (2)), one needs to determine the positions, xθ,i
where each gradient reaches the threshold concentration Cθ

(Fig. 1B, top). For the purely exponential gradients, there is only a
single intersection and the readout position is thus unique. The
readout position μx for a given concentration threshold Cθ is then
given by the mean of all xθ,i, while the positional error at this
readout position is given by the standard deviation (Eq. (2)). If
this is repeated with threshold concentrations over the entire
concentration range, the positional error along the domain is
obtained (Fig. 1D, black line). While the NumEPM results in
positional errors (Fig. 1D, blue dashed line) close to the DEEM
(Fig. 1D, black line), the FitEPM yields much larger positional
errors (Fig. 1D, green line), and strongly overestimates the
positional error further away from the source (Fig. 1D, E). The
difference between the NumEPM and the FitEPM arises from a
subtle, but important difference. With the NumEPM, the slope of
the mean gradient is obtained by numerical differentiation,
whereas in the FitEPM, an exponential function is fitted to the
mean gradient to estimate their slope. The arithmetic mean of
(different) exponentials is, however, not exponential itself (Fig. 1B,
bottom). There is no way to write

1
n
∑
n

i¼1
C0;i exp � x

λi

� �
¼! C0 exp � x

λ

h i
unless all decay lengths are equal, λ≡ λi. Further away from the

source, an exponential function fitted to the mean of exponentials
lies below that mean (Fig. 1B, bottom), when fitted without
logarithmizing the data first. The inverse of this underestimated
concentration then enters Eq. (3), which is why the positional
error in9 is much higher than the error directly evaluated with Eq.
(2) further away from the source.

The synthetic, purely exponential gradients (Eq. (4)) were
drawn such that the statistical properties (mean and standard
deviation) of the gradients are identical to those reported for
GBS-GFP and pSMAD9 (see Methods). Even though the
synthetic gradients do not include local noise or deviations from
the exponential shape, the positional error obtained with the
FitEPM with the synthetic data (Fig. 1D, green line) is very
similar to that reported in9 for the real data (Fig. 1D, green
squares). This suggests that it is mainly the computational
method that generates the high apparent positional error rather
than the additional deviations that are included in the measured,
but not in the fitted gradients. We conclude that the accuracy of
Eq. (3) hinges critically on the accuracy of the derivative, and that
the FitEPM exaggerates the gradient positional error.

Single gradients are sufficiently precise to define the central
progenitor boundaries in the mouse neural tube. The measured
GBS-GFP and pSMAD gradients differ from the fitted gradients
that we considered in Fig. 1 not only in that they are noisy, but
also in that they follow an exponential trend only within a certain
proximity to the source, and then switch to a shallow noise bed
(Fig. 2A). The dorsal NKX6.1 and ventral PAX3 boundaries lie
within the exponential part of the gradients only for the first 15
SS (Fig. 2B). After that, the measured GBS-GFP and pSMAD

Fig. 2 Single gradients are precise enough to define the central progenitor domain boundaries in the mouse neural tube. A The GBS-GFP and pSMAD
gradients9 follow an exponential curve only close to the source and then transition to a noise bed, as revealed by fitting a kinked line (black) to the
logarithmic intensity with the kink position as free parameter (green square). B Exponential limit as obtained from the kink position in the GBS-GFP (green)
and pSMAD (red) intensity profiles over time. The dorsal NKX6.1 (blue) and ventral PAX3 (black) domain boundaries (extracted from9) lie within the
exponential part of the gradients only during the first 15 somite stages (dashed line). Later, they fall in the noise-dominated central region (gray). DV
position in (A,B) is measured from the ventral end. C,D,E Comparison of the reported positional error evolution of the dorsal NKX6.1 (C,E, blue) and ventral
PAX3 (D, black) domain boundaries to the positional error of the GBS-GFP (C, green) and pSMAD (D,E, red) gradients along these domain boundaries.
Gradient errors determined either with the FitEPM (Eq. (14), dotted lines) or the DEEM (Eq. (2), solid lines), in units of cell diameters (cd). The shaded
region indicates the range into which the gradient positional errors (green, red) would need to fall for the gradients to be precise enough to directly explain
the measured domain boundary precision. F,G Rescaling the domains to the mean domain length changes the decay length and introduces an artificial
positional error. H,I,J After subtraction of the domain scaling error introduced in9, the gradients' positional errors (green, red) are sufficiently low to be
consistent with the reported dorsal NKX6.1 (blue) and ventral PAX3 (black) boundary errors. Source data are provided as a Source Data file.
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gradients are too flat to convey positional information. This
matches previous observations in9, where the positional accuracy
of the dorsal NKX6.1 and ventral PAX3 could be explained with
the opposing GBS-GFP and pSMAD gradients only during the
first 15 SS, which corresponds to about 30 h of developmental
time. We will now focus on the same first 15 SS.

Along the NKX6.1 and PAX3 boundaries, we find a positional
error of <4 cell diameters for the gradient closer to the source, i.e.,
for GBS-GFP in case of the dorsal NKX6.1 boundary (Fig. 2C,
green solid line) and for pSMAD in case of the ventral PAX3
boundary (Fig. 2D, red solid line). Similar results were reported
also in9 (Fig. 2C, green dotted line, Fig. 2D, red dotted line). The
FitEPM overestimates the positional error only when the readout
position lies far from the source (Fig. 1D, E), as can be seen for
the dorsal NKX6.1 boundary with the pSMAD gradient (Fig. 2E,
red lines).

The reported positional error of the NKX6.1 and PAX3
boundaries is 1–2 cell diameters, which is slightly less than that of
the gradients (Fig. 2C–E). The remaining difference between
gradient and readout can be accounted to the preprocessing of the
gradients in9, which artificially increases the positional error
(Fig. 2F, G). The stage-matched gradients that we received from
the authors of9 are binned in 5 SS, corresponding to 10 h of
developmental time. Unlike the early Drosophila embryo analyzed
in5, the mouse NT grows at about 10 μm per SS9,12,17 such that
the domain length in each bin can be expected to differ by about
50 μm. The authors scaled the gradients in each bin to the average
length. This rescaling of gradients changes the decay length λ and
introduces an artificial positional error (Fig. 2F, G). Assuming
uniform sampling of SS in each bin, the resulting artificial
positional error is given by the standard deviation of a uniform
distribution spanning 50 μm. As the domains were measured
from the dorsal end in9, this is 50 μm=ð2 ffiffiffi

3
p Þ � 14:4 μm, or about

three cell diameters, at the ventral end. Since the NT grows
uniformly along the DV axis17, this implies a difference of
3(1− ξ) cell diameters at position ξ in the domain (with

ξ= x/L= 0 at the ventral end). After subtraction of this artificial
error from the inferred positional error, we obtain values that are
very close to what has been reported for PAX3 and NKX6.1, or
even lower (Fig. 2H–J).

We conclude that the SHH gradient is sufficiently precise to
define the dorsal NKX6.1 boundary, which together with NKX6.2
and DBX1 represses Pax318,19. The BMP gradient appears
sufficiently precise to define either boundary in the center of
the NT.

Technical limits to gradient detection. The analysis was
restricted to the first 15 SS (≈30 h) of NT development because
the central progenitor domain boundaries lie in the noise bed of
the measured GBS-GFP and pSMAD gradients afterwards
(Fig. 2B). It is not known whether the shallow part of the GBS-
GFP and pSMAD gradients (Fig. 2A, B) reflects similar behavior
of the SHH and BMP gradients, and if so, whether it reflects the
actual gradient shape or technical limitations. As quantitative
imaging of exponential morphogen gradients is challenging12,14,
much speaks in favor of technical limitations. While cells have
evolved multi-threshold and adaptive readouts12,20, microscopes
are more limited. With 8-bit images, as recommended in a sub-
sequent protocol paper for NT gradient measurements21, at most
a 256-fold signal range can be detected, corresponding to an
exponential decay over the range of about 5.5 λ, which is
107 μm ≈ 22 cell diameters in the mouse NT (Fig. 3A, shaded
region). Any 8-bit visualization of exponential gradients will
necessarily miss the exponential character beyond that distance.
In practice, the usable range will even be shorter, if technical noise
occupies a few percent of the 8-bit channel. As the same settings
were used in all measurements, the decline of the GBS-GFP and
pSMAD gradient amplitudes over developmental time9 further
restricts the detection range at later times such that also the dorsal
NKX6.1 boundary will lie outside the GBS-GFP detection range.
Indeed, the gradient noise is equal everywhere in the noise bed,
including the region where the detection of an exponential gra-
dient with 8-bit imaging is certainly impossible (Fig. 3B). While
16-bit imaging would be possible, at least the SHH reporter GBS-
GFP reporter poses further limits. With its eight concatemerized
fragments of a FoxA2 enhancer that contains a GLI binding site22,
GBS-GFP necessarily follows the SHH response of FoxA2. FoxA2
requires high SHH concentrations, and its expression is thus
restricted to the ventral-most SHH-secreting floor plate and the
adjacent p3 domain23. While GBS-GFP extends beyond the p3
domain, presumably because the fragments lack additional
negative regulatory elements of the full FoxA2 enhancer, GBS-
GFP will have the same strong dependency on GLIA input as
FoxA2. Other SHH-responsive genes that do not depend on GLIA
input are well known to be expressed at much lower SHH con-
centrations than FoxA2. Accordingly, the transition to the noise
bed could either indicate the limits of 8-bit imaging or the
response limits of GBS-GFP. In both cases, technical limitations
preclude the detection of exponential gradient profiles in the
center of the NT.

But are long-range exponential gradients plausible, and could
cells detect such low concentrations? In the developing vertebrate
NT, positional information is provided by opposing SHH and
BMP gradients24 (Fig. 1A). If each morphogen patterns only one
half of the domain, the morphogen concentration in the center of
the final domain will be about 104-fold lower than at the source.
In the bacterial chemotaxis response, adaptation allows cells to
sense concentration gradients spanning at least five orders of
magnitude, and cooperativity in receptor clusters enables a high
gain such that the occupancy of one or two receptors can be
sensed25. Whether similar effects are at work also in the NT is

Fig. 3 Technical limits to gradient detection. A NT length (purple) and
position of domain limits over developmental time. At later stages, the
dorsal NKX6.1 (blue) and ventral PAX3 (black) domain boundaries lie at the
edge or outside the 5.5λ= 107 μm detection limit of 8-bit microscopy
(shadowed). The pink and cyan lines mark the limit of the BMP-secreting
roof plate (RP) and SHH-secreting floor plate (FP), respectively. The FP and
RP lengths were assumed to be equal. The analyzed first 15 somite stages
(SS, dashed) coincide with the time window over which 8-bit detection
suffices to cover the entire NT. Data are presented as mean values ± SEM
from n= 18, 42, 31, 6, 24, 13, 13 measurements for dorsal NKX6.1,
n= 22, 33, 42, 15, 32, 38, 28 for ventral PAX3, n= 123 for dorsal PAX3 and
FP/RP, reproduced from9,17. B The measured GBS-GFP and pSMAD
gradients9 contain an approximately constant noise bed that dominates the
signal from within the 8-bit detection limit (shadowed) onward. The dorsal
NKX6.1 and ventral PAX3 domain boundaries (arrows) lie far out in the
noise bed at later stages. Source data are provided as a Source Data file.
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unclear, but adaptation in the SHH responsiveness has been
noted12,20, and the PTCH1 receptor organizes as dimer of dimers,
and each dimer binds one SHH26. Accordingly, it is, in principle,
possible that morphogens can be sensed by cells over a 105-fold
concentration range (11.5 λ), which corresponds to about 220 μm
in the mouse NT—enough to cover the entire NT domain with
opposing gradients (Fig. 3A). But even if the gradients can be
sensed over 11.5 λ, how precise would the conveyed positional
information be? We will now take a computational approach to
estimate the gradient variability based on available data.

Estimation of positional error from statistical gradient prop-
erties. Close to the source, the measured gradients can be
approximated well by exponential functions9, and the positional
error of the fitted exponentials is similar to that of the raw gra-
dients (Fig. 1). In the following, we show how the positional error
can be calculated from the summary statistics of the exponential
gradients rather than by evaluating the standard deviation of
individual gradients. This then allows to predict the positional
error of the gradients at a distance from the source based on the
observed variability closer to the source, assuming that the
exponential gradient shape is maintained. With this formalism we
can then infer the maximal gradient variability that would be
consistent with the observed readout precision in the mouse NT.

The reported λ values for SHH in the mouse NT (Fig. 4A) are
consistent with a (truncated) normal distribution (Fig. 4B). We
therefore consider λ as a Gaussian random variable with mean μλ
and standard deviation σλ. While the mean value remains roughly
constant at about 20 μm over developmental time (Fig. 4A), the
deviation from the mean, as measured by the coefficient of
variation CVλ= σλ/μλ, has been reported to drop as the NT grows
(Fig. 4C). At a given point in time (i.e., at a given size of the NT),
the available data (Fig. 4D) suggests that the amplitude C0 is log-
normally distributed (Fig. 4E). While the mean amplitude μ0
increases over developmental time (Fig. 4D), the deviation from
the mean, as measured by the coefficient of variation CV0= σ0/μ0,

reportedly drops as the NT grows (Fig. 4F). The inferred
statistical parameters are summarized in Table 1. Similar data for
the opposing BMP gradient is not available, but once it so
becomes, our formalism is likely to apply analogously to BMP, as
it also diffuses into the NT.

Since morphogen concentrations are measurable only in
arbitrary units (Fig. 4D) and since exponentials remain
exponential independent of the chosen absolute scale, we can
normalize the gradients by an arbitrary reference concentration
without loss of generality. In the absence of precise knowledge
about the readout threshold Cθ, we choose the concentration scale
such that Cθ= 1 in the following, which simplifies the notation.
Our results retain their validity for general Cθ. Hence, we assume
that also the ratio C0/Cθ follows a log-normal distribution:

C0

Cθ

� Logn ðbμ0;bσ20Þ () ln
C0

Cθ

� �
� N ðbμ0;bσ20Þ:

Here, bμ0 and bσ0 are the mean and standard deviation of the
Gaussian random variable ln½C0=Cθ�. We can use the properties
of log-normal distributions27 to express bμ0 and bσ0 in terms of the
mean μ0 and standard deviation σ0 of C0/Cθ:

bμ0 ¼ ln μ0 �
bσ20
2

and bσ20 ¼ ln 1þ σ20
μ20

� �
ð5Þ

where

μ0 ¼ E
C0

Cθ

� �
and σ20 ¼ Var

C0

Cθ

� �
:

To estimate how domain boundaries behave under variability
in the morphogen gradient, we seek to express the expected
boundary position μx ¼ E xθ

� �
and its standard deviation σx ¼

SD xθ
� �

as functions of the four gradient parameters μλ, σλ, μ0, σ0.
The data for the SHH gradient in the mouse NT suggests that the
gradient’s decay length and amplitude are uncorrelated (Pearson’s
R=−0.0061, Kendall’s τ= 0.056, Fig. 4G). This allows us to
exploit the multiplicative properties of two independent random

Fig. 4 Statistical properties of the SHH gradient in the developing mouse neural tube. A,B λ is constant over developmental time, consistent with a
truncated normal distribution. C Binning the data into 40 μm bins reveals that the relative variability in the data drops over time for SHH. D C0 increases as
the neural tube expands. The solid line shows an exponential fit exp½αþ L=β�. E Relative to the growing mean, the variability in the amplitude data is
consistent with a log-normal distribution. F Also the relative amplitude variability of SHH declines over time. Data in (C,F) are presented as mean
values ± bootstrapped SEM (samples per bin: n= 31, 63, 22, 36, 11, 12, 6). G SHH gradient length and amplitude are uncorrelated (Pearson’s correlation
coefficient R≈ 0, Kendall’s τ≈ 0). Data points reproduced from12. Source data are provided as a Source Data file.
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variables X and Y,

E XY½ � ¼ E X½ �E Y½ � ð6Þ
and

Var XY½ � ¼ Var X½ �Var Y½ � þ Var X½ �E Y½ �2 þ Var Y½ �E X½ �2:
ð7Þ

Putting Eqs. (1), (5) and (6) together, the mean boundary position
is given by

μx ¼ μλbμ0 ¼ μλ ln
μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σ20=μ
2
0

p" #
: ð8Þ

If there is no variability in C0/Cθ (i.e., σ0 ¼ bσ0 ¼ 0), then Eq. (8)
reduces to the deterministic case, Eq. (1).

The squared positional error follows from combining Eqs. (1),
(5) and (7):

σ2x ¼ σ2λbσ20 þ σ2λbμ20 þ bσ20μ2λ
¼ μ2λ þ σ2λ
� 	

ln 1þ σ20
μ20

� �
þ σλ ln

μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ20=μ

2
0

p" # !2

:
ð9Þ

Notably, σ0 enters the position and positional error of a domain
boundary only through the coefficient of variation CV0= σ0/μ0.
Equations (8) and (9) provide direct insight into how the

statistical distributions of the gradient length and amplitude
impact on the location and variability of the readout position
(Fig. 5). The larger σ0, the smaller μx (Fig. 5D), i.e., the further the
domain boundary shifts upward the concentration gradient,
toward the morphogen source. Variability in the decay length λ,
on the other hand, leaves the mean boundary position unaffected
(Fig. 5B), as Eq. (8) is independent of σλ. A larger mean gradient
length or amplitude shifts the boundary downhill, away from the
source (Fig. 5A, C). The positional error, on the other hand,
depends on both gradient parameters and their scatter in a
complicated nonlinear fashion that can even be non-monotonic.

We can further substitute Eq. (8) into Eq. (9) to obtain the
positional error as an explicit function of the boundary position:

σ2x ¼ μ2λ 1þ CV2
λ

� 	
ln 1þ CV2

0

� �þ CV2
λμ

2
x: ð10Þ

Equation (10) is by construction identical to the direct way of
computing the positional error via Eq. (2) (DEEM) from infinitely
many gradients.

The positional error as a function of its readout position μx, as
given by Eq. (10), is independent of the mean gradient amplitude
μ0. Precise knowledge of the change of μ0 over time (or as a
function of L) is therefore not required to predict the positional
accuracy in a noisy morphogen gradient. All that is needed is the
variation of the amplitude relative to its mean, CV0. This has
several beneficial consequences. A practical one is that no
absolute measurement of the gradient amplitude is needed from
experiments—relative values are sufficient to quantify positional
accuracy. Another convenience is that the exact functional
relationship used to fit or model the change of μ0 over time or
length, be it exponential as in Fig. 4D, linear as in12, or any other
form, has no effect on the positional accuracy, as long as CV0 is
given. Third, the fact that the absolute scale of the gradient
amplitude is irrelevant implies that positional accuracy is
unaffected by temporal changes in morphogen abundance, as
long as CV0 remains sufficiently low.

Precision of gradient readout boundaries in the NT. With Eq.
(10), the precision of a domain boundary is fully determined by
its relative location in the patterning domain, ξ= μx/L, the
domain length L, the mean decay length μλ, and the coefficients of
variation of the gradient length and amplitude, CVλ and CV0. As
estimates for the latter three are known from measurements
(Fig. 4, Table 1), we can predict the boundary precision in the
growing NT at any point in development, anywhere in the pat-
terning domain. For the reported gradient variabilities, the
positional error in the center of the NT becomes as high as 15 cell
diameters over time (Fig. 6A, B, black contours). The reported
precision of the PAX3 and NKX6.1 domain boundaries (1–3 cell
diameters) is more likely to be correct than that of the gradients
as the steep boundaries and the concomitant change in the
fluorescent signal are much easier to detect. We used numerical
optimization to determine the variability at which the positional
accuracy of the SSH and BMP gradients together, or one of them
alone, would be consistent with the reported positional accuracy
of the NKX6.1 and PAX3 domain boundaries. Minimizing the
difference between predicted (Eq. (10), color gradient & contour

Table 1 Fitted statistical gradient parameters for the mouse neural tube.

Gene/signal Mean length μλ Coeff. of variation CVλ= σλ/μλ Coeff. of variation CV0= σ0/μ0 Source

SHH 19.26 μm � L
547:9 μm


 �2
þ L

1341 μm þ 0:410 � L
644:1 μm þ 0:769 12

GBS-GFP 19.43 μm � L
819:6 μm


 �2
þ L

861:0 μm þ 0:128 L
790:8 μm


 �2
� L

3437 μm þ 0:313
9

pSMAD 22.67 μm � L
820:3 μm


 �2
þ L

800:0 μm þ 0:072 L
573:1 μm


 �2
� L

722:2 μm þ 0:401
9

Fig. 5 Effect of concentration gradient parameters on domain boundary
position and positional error. Equations (8) (blue) and (9) (gray) are
plotted as a function of the mean gradient length (A), its standard deviation
(B), the mean relative amplitude (C), and its standard deviation (D). Each
panel shows the variation of one parameter, with the other three fixed at
measured early SHH values in mouse: μλ= 19.26 μm, σλ= 9 μm, μ0= 15,
σ0= 9 (indicated by dashed lines).
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lines in Fig. 6C, D) and measured positional errors (data points in
Fig. 6E) along the boundary positions (black & blue data in
Fig. 6C, D) yielded optimal values for the gradient variability,
CVλ and CV0. Assuming that the boundaries are always defined
by the more precise gradient, we can reproduce the boundary
precision with CVλ= 0.08 ± 0.04, CV0= 0.23 ± 0.33 for SHH and
CVλ= 0.06 ± 0.04, CV0= 0.26 ± 0.16, 95% C.I. for BMP (Fig. 6C,
E). Remarkably, fitting the reported boundary precision to the
SHH gradient alone yields similar CV values, CVλ= 0.05 ± 0.03,
CV0= 0.30 ± 0.20, 95% C.I. (Fig. 6D, E), challenging the pre-
viously proposed idea that opposing gradients serve to increase
positional accuracy in the NT9.

The inferred CV values for the gradients were used to plot the
contours in Fig. 6C, D, and they lie near the lowest measured
SHH gradient variability (Fig. 4C, F). Visual inspection shows
that the reported variability corresponds to gradient profiles with
some very short and some very long gradients that are difficult to
reconcile with a successful patterning process (Fig. 6F). The
variability inferred by us, while still resulting in variable gradients,
does not result in such outliers (Fig. 6G). This raises the question
whether the reported outliers reflect biological variation or
technical problems in reliably measuring the morphogen
gradients. Or differently put, how accurate are the reported
gradient variabilities?

Technical limitations in measuring morphogen gradient
variability. According to the reported gradient properties
(Table 1), the SHH gradient is only about half as precise as the
GBS-GFP gradient (Fig. 7A), even though GBS-GFP is a direct
SHH reporter22, and the data pre-processing artificially increased
its gradient length variability (Fig. 2). We emphasize that this
difference is observed already at the earliest developmental
timepoint, long before adaptation results in the down-regulation
of the SHH-dependent response20. The difference may reflect
temporal averaging for the GBS-GFP reporter (as would then also

be expected for the other gradient readouts), and/or a higher
technical variation for the SHH antibody staining than for the
GBS-GFP reporter. The antibody staining for SHH in the NT
patterning domain is very weak compared to that in the noto-
chord, making gradient measurements challenging.

In support of technical limitations in determining gradient
variability, the coefficients of variation are strongly negatively
correlated with the intensity of the signal for SHH and GBS-GFP
(Fig. 7B, C), even though the gradient amplitude increases for
SHH and decreases for GBS-GFP and pSMAD over develop-
mental time due to adaptation20,28 (Fig. 7D), while the
coefficients of variation show the opposite trend (Fig. 7E, F).
This suggests that technical limitations at low concentrations
artificially increase the reported variability, precluding an
accurate measurement of the true gradient variability. We
therefore turned to simulations to infer the expected variability
based on the reported variability of morphogen production,
degradation and transport rates.

Gradient variability as a result of molecular noise. In a cellular
tissue, the morphogen production, degradation, and transport
rates vary from cell to cell. This variability ultimately generates
the variability in the steady-state morphogen gradient profiles.
We can estimate this variability by simulating a simple reaction-
diffusion model on a continuous 1D domain where these para-
meter values differ randomly from segment to segment (Fig. 8A).
To describe the steady-state morphogen profiles, we solve the
steady-state reaction-diffusion equation

pHð�xÞ � dCðxÞ ¼ �D
∂2C
∂x2

ðxÞ; x 2 ½�LS; L�

on a one-dimensional domain that was split into two sub-
domains, a morphogen source (−LS ≤ x ≤ 0) and a patterning
region (0 ≤ x ≤ L). The Heaviside step function H ensures that
morphogen is produced at rate p only in the source, whereas it

Fig. 6 Gradient and readout imprecision in the developing neural tube. A,B Contour plots of the positional error σx (Eq. (10)) using reported GBS-GFP and
pSMAD (A) and SHH (B) parameters from Table 1, as a function of the relative position along the DV axis, ξ= μx/L, and the NT length, L. With the
reported gradient variability, the positional error of the opposing SHH and BMP gradients is in the order of several cell diameters. C,D Dorsal NKX6.1 (blue)
and ventral PAX3 (black) domain boundary positions, overlaid on the gradient precision contours obtained by fitting Eq. (10) to the measured positional
errors of the boundaries (E). A and C Show the case where the positional error is the minimum of the two opposing gradients; the dotted line divides the
NT into two parts in which either SHH or BMP provide higher accuracy. B and D Use only the SHH gradient. Black contours in (A–D) trace cell diameter
isolines as labeled. E Reported (symbols) and predicted boundary precision if the domain boundaries are either set by SHH and BMP (solid lines, C) or by
SHH alone (dashed lines, D). Domain boundary data in (C–E) are presented as mean values ± SEM calculated as detailed in Methods from
n= 18, 42, 31, 6, 24, 13, 13 measurements for dorsal NKX6.1 and n= 22, 33, 42, 15, 32, 38, 28 for ventral PAX3, reproduced from9. F,G The exponential SHH
gradients with {λi, C0,i} as reported in9 are widely scattered in early NT development. The SHH gradients that match the measured positional error of the
readouts (C,E) are still variable, but do not contain outliers. The black line represents the mean gradient, shaded areas show standard deviations σC. Source
data are provided as a Source Data file.
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degrades at a linear rate d everywhere. Morphogen transport is
driven by Fickian diffusion with diffusivity D. With zero-flux
boundary conditions

∂C
∂x

ð�LSÞ ¼ 0 ¼ ∂C
∂x

ðLÞ;

the deterministic solution is given by a concentration profile that
follows hyperbolic cosines:

CðxÞ ¼ p
d

Hð�xÞ 1� cosh
x
λ

h i
 �

þ sinh LS=λ

� �
sinh ðLS þ LÞ=λ� � cosh L� x

λ

� �!
:

The decay length λ ¼
ffiffiffiffiffiffiffiffiffi
D=d

p
depends on the morphogen

diffusivity D and the turnover rate d. The cosh is nearly expo-
nential in the patterning domain except for a small deviation in
the far end x ≈ L due to the zero-flux boundary. In the infinite size
limit L→∞, a pure exponential emerges for x ≥ 0:

CðxÞ ¼ C0 exp � x
λ

h i
with C0 ¼

p
2d

1� exp � 2LS
λ

� �� 
:

In our simulations, we divided both subdomains into cells of
length 4.9 μm, the average cell diameter in the mouse NT12

(Fig. 8A), and assigned each cell its own value of the three kinetic
parameters k= p, d,D, drawn independently from log-normal
distributions with prescribed means μk and coefficients of varia-
tion CVk (Fig. 8B). Repeating the simulations many times for
various CVk values yielded independent noisy gradients spanning
many orders of magnitude (Fig. 8C), from which we extracted λ

Fig. 7 Technical limitations in measuring morphogen gradients. A With the reported variability, the SHH (blue) gradients would be about twice as
imprecise as its readout GBS-GFP (green). The first developmental timepoint (0–10 h) of the GBS-GFP data (symbols) was reproduced from9; solid lines
represent Eq. (10) with GBS-GFP and SHH parameters inferred from9,12 (Table 1). B,C Gradient variability is anti-correlated with the amplitude (Pearson
correlation coefficient R≪ 0), hinting at a potential technical limitation in the fluorescence intensity measurements. D The reported amplitudes of the SHH
gradient increases, while the amplitudes of the GBS-GFP and pSMAD gradients decrease as the NT expands. E,F The reported gradient variabilities show
the opposite trend. Solid lines are polynomial least-squares fits as listed in Table 1. Data in (B–F) are presented as mean values ± SEM from
n= 31, 63, 22, 36, 11, 12, 6 (SHH, blue), n= 30, 62, 69, 17, 42, 32, 21 (GBS-GFP, green), n= 24, 40, 46, 19, 55, 33, 19 (pSMAD, red) measurements per bin,
reproduced from9,12. Source data are provided as a Source Data file.
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and C0 by log-fitting hyperbolic cosines (Fig. 8D). We set μp ¼
μd ¼ μD=μ

2
λ such that the deterministic decay length is the

reported one of SHH, μλ= 19.26 μm12. The exact values of the
parameters do not affect the steady-state result as long as the
relationship is maintained; we chose as mean parameter μD=
0.033 μm2/s as measured for Hedgehog (Hh) in the Drosophila
wing disc29 and fixed μp, μd accordingly. The default setup con-
sisted of 5 cells in the source, and 50 cells in the patterning
domain.

This procedure yields the two gradient parameters and their
variability as they result from molecular noise and NT
expansion. We observe a linear increase of CVλ as the cell
variabilities CVd,D are increased individually (keeping all
others at zero), or all of them together, up to CVd,D ≈ 1
(Fig. 8E). The production rate p affects only C0, not λ. This
relationship can be understood theoretically. Since any product
of powers of log-normal random variables is itself log-normal,
so is λ ¼

ffiffiffiffiffiffiffiffiffi
D=d

p
:

d � Logn ðbμd;bσ2dÞ; D � Logn ðbμD;bσ2DÞ ) λ � Logn ðbμλ;bσ2λÞ

with

bμλ ¼ bμD � bμd
2

; bσ2λ ¼ bσ2D þ bσ2d
4

and

bμk ¼ ln
μkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ CV2
k

q
264

375; bσ2k ¼ ln 1þ CV2
k

� �
; k ¼ d;D:

Using the expectation value and variance of log-normal
distributions27,

μλ ¼ exp bμλ þ bσ2λ2
" #

; σ2λ ¼ μ2λ exp bσ2λ� �� 1
� 	

;

we find, for single cells,

CV2
λ ¼ ð1þ CV2

dÞ
1=4ð1þ CV2

DÞ
1=4 � 1 ð11Þ

In patterning domains with many cells, CVλ is lower due to cell
averaging. The data from our simulations with L= 50 cell
diameters precisely follows Eq. (11) up to CVd,D ≈ 1, and in the

Fig. 8 Numerical model predicts gradient variability from molecular noise. A Schematic of the simulated 1D domain. B Kinetic parameters k= p, d, D
(purple, red, orange) were drawn randomly and independently for each cell from log-normal distributions with specified mean μk and coefficient of variation
CVk. C Solving the reaction-diffusion equation repeatedly yields noisy morphogen gradients, from which the decay length λ and amplitude C0 can be
extracted by fitting hyperbolic cosines in the patterning domain (0≤ x≤ L, D). E The resulting variability in λ grows linearly with the variability in the kinetic
parameters as long as CVk≲ 1, and saturates as CVk increases further. F The length of the domain over which noisy gradients are fitted affects the
variability of λ according to the law of large numbers, CVλ � 1=

ffiffiffi
L

p
. G Increasing molecular noise leads to a bias in the resulting fitted λ. H The amplitude

variability also increases linearly with CVk, but does not saturate if all three parameters have a variability exceeding one. I The variability of the fitted
amplitude moderately grows with increasing patterning domain length. J Noisy parameters also induce an overestimation of the amplitude deduced from
fitting, proportional to CV2

k . K Gaussian white noise� N ð0; η2Þ added to the solution in all cells limits the range over which a line can be fitted to lnC. L Lin-
fitting (open circles) always (also at η= 0) leads to increased decay length variability, in particular with white noise stronger than one percent of the
amplitude. Log-fitting (closed circles) is insusceptible to white noise as long as η≲ 10−5μ0, and increases variability according to a power law with stronger
white noise. If η exceeds a few percent of the amplitude, both fitting methods yield increased gradient length variability.M Amplitude variability is constant
with lin-fitting for η≲ 0.1μ0, whereas log-fitting yields larger CV0 values. L= 50 cells in all panels except (F,I). Data in (E–J,L,M) are presented as mean
values ± SEM from n= 103 independent simulations for each data point. Source data are provided as a Source Data file.
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case of d also beyond (Fig. 8E, lines), with a small
proportionality constant shared by all curves. When all
parameters are varied, though, CVλ saturates at about 0.24.
Larger values, such as the published CVλ ≈ 0.4 for SHH
(Fig. 4C), are unattainable even with extreme molecular
variability, suggesting that the reported gradient variability9,12

is more technical than biological.
To examine the effect of the domain length L, we also varied

the number of cells in the patterning domain from 20 to 200. As
expected from the law of large numbers, log-fitting a variable
exponential gradient over a longer domain leads to a more
robustly fitted slope, such that CVλ � 1=

ffiffiffi
L

p
(Fig. 8F). This allows

us to determine the size-dependent proportionality prefactor,
resulting in

CV2
λ ¼

L0
L

ð1þ CV2
dÞ

1=4ð1þ CV2
DÞ

1=4 � 1

 �

for CVD≲ 1, with fit parameter L0= 6.13 ± 0.03 μm (SE). Note
that a declining CVλ with increasing L is observed for the
measured SHH gradient, but not for the GBS-GFP and pSMAD
gradients (Fig. 7E), suggesting that amplitude effects perturbed
the latter.

We further find that the fitted decay length starts to drift at
moderate CVd,D (Fig. 8G). If the morphogen diffusivity D or all
parameters are noisy, λ is underestimated, whereas variability in
the degradation rate d alone leads to overestimation of λ. This
further attests to the difficulty in determining morphogen
gradient parameters reliably from fitting noisy concentration
profiles.

Unlike the decay length variability CVλ, the amplitude
variability CV0 does not saturate as all cell variabilities are
increased, but continues to grow linearly (Fig. 8H). We find CV0

to also grow mildly as the patterning domain lengthens (Fig. 8I).
Finally, also the fitted amplitude is found to drift as molecular
noise increases, proportionally to CV2

p;d;D (Fig. 8J).
With these results, we can infer the physiological range of

morphogen gradient variability by plugging in measured CV
values. Quantitative data for the two morphogens are only
available from measurements in the Drosophila wing disc. For
Dpp, the ortholog of mouse BMP4, CVd= 0.5 has been reported
for the degradation rate, CVp= 0.59 for the production rate, and
CVD= 0.5 for the diffusion coefficient30. For Hh, quantitative
data is available only for the diffusion coefficient, CVD= 0.1829.
Measurements of other morphogens and in other species yield
similar CV values31,32. Single cell data is available only from cell
cultures. The single-cell turnover rate variability of various
proteins and transcription factors in mouse embryonic stem cells
has been reported to be in the range CVd= 0.16–0.4533. For
neural stem cell cultures only bulk measurements are available.
Proteome half-life measurements yielded CVd= 0.21 in mouse
and 0.13–0.27 in human34. From protein half-life measurements
in mouse neurons35, one can infer a similar degradation rate
variability of CVd= 0.35–0.5.

Overall, the physiological range of inter-cell CV values appears
to be 0.1–1, but most studies report CV < 0.6, and all these values
likely include some technical noise. At an intermediate value of
CVp,d,D= 0.3, the biological gradient variability is CVλ= 0.053,
CV0= 0.19 at L= 100 μm (CVλ= 0.027, CV0= 0.20 at
L= 400 μm), which is precise enough to explain the NKX6.1
and PAX3 domain boundary errors by opposing SHH and BMP
gradients, or even by SHH alone (cf. Fig. 6C–E). Even when we
use a conservative CV value of 0.6 for all three kinetic parameters,
the precision of a single morphogen gradient (CVλ= 0.062,
CV0= 0.39) is consistent with the NKX6.1 and PAX3 domain
boundary errors (1–3 cells).

We can further use the simulations to estimate the impact of
technical limitations on the measured gradient variability. The
measured gradients become noisy at about 5% of the maximal
value. We can represent this limitation by adding Gaussian white
noise � N ð0; η2Þ with uniform strength η to our simulated
gradients in all cells, prior to fitting (Fig. 8K). The observed
gradient variability strongly depends on the fitting method
(Fig. 8L, M). Fitting the gradients in linear space (lin-fitting)
always leads to elevated decay length variability, in particular for
white noise exceeding 1%, but even at η= 0. Fitting the
logarithmized gradients (log-fitting) yields significantly lower
CVλ, but is insusceptible to white noise only as long as
η≲ 10−5μ0. At stronger white noise levels, we observe a power-
law increase CVλ ~ ηγ with exponent γ= 0.188 ± 0.002 (SE) and a
cross-over with lin-fitting (Fig. 8L). If η exceeds a few percent of
the amplitude, both methods yield significantly increased CVλ.
Amplitude variability remains stable with lin-fitting for less than
10% white noise, whereas log-fitting yields mostly larger CV0

values (Fig. 8M).
In summary, our analysis suggests that natural noise in

exponential morphogen gradients in the developing NT is
sufficiently low to explain the previously reported progenitor
domain boundary precision. Thus, both SHH and BMP gradients
together—but even a single one of them alone—provide the
spatial precision required to define the boundaries lying in the
center of the NT with an error of only 1–3 cell diameters. But can
morphogen gradients provide even higher patterning accuracy for
robust development?

Precision of progenitor domain size and progenitor number.
In the vertebrate NT, the domain boundaries define the size of the
different progenitor domains, which are formed as a result of
different readout thresholds, as stipulated by the French flag
model1 (Fig. 9). Two domain boundaries located at x1 and x2 are
the result of a morphogen readout at thresholds C1= C(x1) and
C2= C(x2). As noted in3, the length of a domain is given by

Δx ¼ x2 � x1 ¼ λ ln
C0

C2

� �
� λ ln

C0

C1

� �
¼ λ ln

C1

C2

� �
:

Notably, it is independent of the location in the entire patterning
domain, and also independent of the gradient amplitude C0.
Assuming that the domain width perpendicular to the x axis
remains roughly constant along x, this paradigm provides a very
robust mechanism to preserve the gene expression domain

Fig. 9 Robustness of patterning domain sizes to amplitude changes in the
French flag model. The domain length Δx= x2− x1 is independent of the
amplitude C0 of an exponential gradient. Amplitude changes therefore shift
interior domain boundaries equally.
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volume (and thus, the number of progenitor cells) during
development. A change in the gradient amplitude C0 shifts both
domain boundaries by the same distance, such that its size
remains unchanged. The domain length is determined only by λ,
which is stable over developmental time (Fig. 4A), and by the
readout threshold ratio C1/C2. Only the very first and last pro-
genitor domains in the pattern are affected by a transient
amplitude C0, as one of their boundaries is given by the end
points of the entire patterning domain, x= 0 and x= L.

Even in a probabilistic setting with variable gradients, the
expected domain length μΔx is unaffected by a change in
amplitude, if C1, C2 and CV0 are constants:

μΔx ¼ E½Δx� ¼ μλ ln
C1

C2

� �
: ð12Þ

To quantify the variability of Δx in a noisy gradient, we can
calculate the variance

σ2Δx ¼ Var ½Δx� ¼ Var ½x1� þ Var ½x2� � 2Cov ½x1; x2�
¼ σ2x1 þ σ2x2 þ 2μx1μx2 � 2E x1ðx1 þ ΔxÞ� �

:

After some elementary algebra, assuming again independence of λ
and C0 and using Eqs. (8), (9) and (12), all terms involving the
amplitude cancel out, and we find the remarkably simple form

σΔx ¼ CVλμΔx ¼ σλ ln
C1

C2

� �
:

The inaccuracy of the size of a progenitor domain therefore scales
with its size itself, with CVΔx= CVλ as the proportionality
constant. For an exemplary domain size of μΔx= 50 μm and a
coefficient of variation CVλ ≈ 0.05, this results in a domain size
error σΔx as low as half a cell diameter, regardless of how far away
from the source the domain lies. Strikingly, unlike their spatial
boundary positions, the size of the gene expression domains is
completely independent of variability in the gradient amplitude.
The NT patterning mechanism thus yields progenitor cell
numbers with even greater accuracy than boundary locations.
We emphasize that only a single morphogen gradient is required
to achieve this high patterning precision.

Discussion
High patterning precision is pivotal for robust development. We
now show that the precision of morphogen gradients in the NT is
far greater than previously appreciated. A single gradient—rather
than the combined readout of SHH and BMP—is sufficient to
generate the observed accuracy of the progenitor domain
boundary positions also in the center of the mouse NT. We
further show that the size of the morphogen-dependent tissue
subdomains, that are not bordering the patterning domain edges,
is even more precise than the individual boundary positions,
because inaccuracies from amplitude variability cancel out. As a
result, progenitors can be produced in more accurate numbers
than previously anticipated.

These insights provide additional perspectives on gradient-
based patterning and on NT development in particular. Mutual
information, provided by the simultaneous readout of multiple
gradients8,36,37, enhances patterning precision in the early
Drosophila embryo38, and has been proposed to apply also to
the mammalian NT9,39. While such a mechanism remains
possible, given the co-regulation of central and ventral NT genes
by SHH and BMP9,40, our finding that the boundaries of the
progenitor domains in the NT can be accurately defined by a
single gradient over the entire patterning period suggests a
simpler patterning mechanism. This provides further prospects
for tissue engineering.

The previous mathematical analysis artificially increased the
reported gradient variabilities in the NT (Figs. 1 and 2), and we
argue that technical limitations further inflate the reported gra-
dient variabilities (Fig. 7). In light of the challenges in detecting
exponential gradients far from the source (Fig. 3) and in mea-
suring their variability reliably, we have developed computer
simulations to estimate gradient variability based on the reported
variability in morphogen production, degradation, and diffusion
(Fig. 8). We find that the reported high variability of the decay
length λ cannot arise from natural noise in these parameters
alone, as it saturates at lower values than previously measured for
SHH, GBS-GFP and pSMAD, at high noise levels. Our simula-
tions confirm that for the reported molecular noise levels, the
observed precision of the central progenitor boundaries is
achieved even with a single gradient for the entire duration of the
developmental process. Considering that the reported molecular
noise levels are likely also elevated by technical errors, an even
higher precision of the domain boundaries appears plausible.

Measuring the morphogen production, decay and transport
rates is challenging, but still easier than the detection of low
morphogen concentrations. It thus offers a complementary
approach to estimating gradient variability. Current measure-
ments of the morphogen production, decay and transport rates
represent bulk measurements at the tissue level, and not yet in the
mouse NT. Going forward, it will be valuable to obtain data on
the single-cell variability of morphogen production and degra-
dation rates. Currently, such data is available only from cell
culture systems, but yields similar variabilities as bulk data. The
reported CV values are in the range 0.1–1 across all species
analyzed, including mice, flies, zebrafish, and humans. As the
reported variability includes technical errors, these values present
upper bounds. Even for a relatively pessimistic value of 0.6 for
production, degradation and diffusion, we find that the gradient
imprecision is 1–3 cells over several hundreds of micrometers,
providing sufficiently accurate positional information to pattern a
large domain. Local fluctuations can be reduced further through
spatial and temporal averaging5,41,42. Moreover, in zebrafish, NT
progenitor boundaries are sharpened by cell sorting43,44.

Due to regulatory feedback such as the up-regulation of the
SHH receptor PTCH13,22,45, the degradation process may not be
linear, and the mean rates of morphogen production, degradation
and diffusion and their variability may not be constant along the
DV axis. Assuming uniform linear rates, our simulations imply
that the morphogen gradients remain exponential over a wide
patterning distance in the NT (Fig. 8). In case of nonlinear decay,
morphogen gradients will no longer be exponential, but follow a
power law3. It is straightforward to generalize our computational
method to non-uniform rates and nonlinear processes. However,
current measurement methods are not sufficiently precise to
distinguish between exponential and power law gradients as the
difference is observed mainly far away from the source where
concentrations are low. An important question remains how cells
can reliably detect very low morphogen concentrations, and what
role adaptation plays in this process7,12,20,25.

We developed a formalism (Eq. (10)) to estimate the positional
error along the entire patterning axis from the gradient variability
close to the source. Gradient variabilities have been reported also
for other patterning systems, including Dpp and Wg in the
Drosophila imaginal discs13. Our formalism could thus be applied
also in other developmental systems. We emphasize, however,
that the accuracy of our formalism hinges on the accuracy of the
measured gradient variabilities. Given how challenging it is to
visualize morphogen gradients, technical errors are to be expected
from such measurements. Based on the molecular noise simula-
tions, we expect higher gradient precision also in other devel-
opmental systems.
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More than 50 years since the publication of the French flag
model1, it remains a matter of debate how morphogen gradients
are read out39. Recent experiments support a threshold-based
readout of the BMP gradient along the zebrafish dorsal-ventral
axis46. Our finding that single noisy gradients provide a much
more robust positional patterning mechanism than previously
appreciated resolves the long-standing conundrum of how the
observed patterning precision can be achieved with a simple
threshold-based readout of a single gradient. This opens avenues
for modelers and tissue engineers in recapitulating NT patterning
in silico and in bio-engineering approaches. The presented
formalism is not limited to vertebrates or flies, but applies directly
also to all other morphogen-dependent patterning systems in
which morphogen transport is essentially diffusive.

Methods
Error estimation methods. The synthetic gradients (Eq. (4)) were produced by
drawing independent pairs of random parameters λi from a truncated normal and
C0,i from a log-normal distribution such that their statistical properties (means and
standard deviations) were identical to the reported ones.

In the DEEM, the positional error is estimated directly according to Eq. (2) at a
given readout threshold Cθ (Fig. 1D, E). We computed the set Xi of positions where
a gradient Ci crosses Cθ, using linear interpolation between discrete gradient points.
For the synthetic gradients, there is only one such point (Xi= {xθ,i}), whereas noisy
gradients can have several. For such noisy gradients, we use the middle point of the
transition zone

xθ;i ¼
minXi þmaxXi

2

as the readout position for each gradient i. Alternative averaging methods such as
the arithmetic mean or median yield similar results for the data analyzed. The
location and positional error follow as

μx ¼ mean fxθ;ig and σx ¼ SD fxθ;ig;

taken over all embryos i. Repeating this procedure for different Cθ yields a list of
(μx, σx) pairs.

In the NumEPM5 (Fig. 1D), the derivative in Eq. (3) is evaluated numerically as
the slope of the mean gradient 〈C〉(x)=mean{Ci(x)} (personal communication).
For the synthetic (purely exponential) gradients (Eq. (4)), the derivative of the
mean gradient can be directly determined from the gradient parameters as

σx �
∂hCi
∂x

���� �����1

σC ¼ n
∑n

i¼1 CiðxθÞ=λi
σC : ð13Þ

In the FitEPM9 (Fig. 1D, E), a different approach is taken, in that an exponential
function is lin-fitted directly (i.e., without prior log-transformation) to the mean
gradient 〈C〉(x) (personal communication). This yields the parameters

eC0;
eλ ¼ argmin

C0 ;λ
kC0 exp½�x=λ� � hCiðxÞk2:

The slope is then estimated from the derivative of this fitted exponential:

σx �
∂hCi
∂x

���� �����1

σC �
eλeC0 exp � xθ=eλh i σC : ð14Þ

Numerical optimization of gradient variability. We determined the gradient
parameter variabilities CVλ and CV0 in Fig. 6 by fitting Eq. (10) to the progenitor
domain boundary errors with MATLAB’s nonlinear least-squares curve fitting
routine lsqcurvefit.

Inference of error bars for the positional boundary error. In Fig. 6E, we inferred
the uncertainties (error bars) associated with the positional error of the domain
boundaries assuming that the boundary positions are normally distributed. In this
case, the standard error of the standard deviation σx is given by SE ½σx � �
σx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þ

p
where n is the sample size47.

Simulation of gradient variability from molecular noise. The reaction-diffusion
equation was solved with MATLAB’s boundary value problem solver bvp4c with
absolute and relative error tolerances of 10−10. At each interface between two
adjacent cells, continuity of the morphogen concentration C and its flux−D∂C/∂x
was imposed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The individual λi and C0,i for SHH (Figs. 4, 6F, G and 7B–F), the sample means and
standard deviations μλ, σλ, μ0, σ0 for GBS-GFP and pSMAD (Figs. 1D, E and 7B–F), the
positional errors of GBS-GFP, pSMAD, NKX6.1, and PAX3 (Figs. 1D, 2C–E, H–J, 6C–E
and 7A), and the NT and FP/RP lengths (Figs. 2B and 3A) were extracted from the
respective publications9,12,17. These data, together with the generated simulation data
(Fig. 8E–J, L, M), are provided in the Source Data file.

The individual rescaled GBS-GFP and pSMAD gradients (Figs. 2A and 3B) are not
publicly available and were provided by the authors of9. Source data are provided with
this paper.

Code availability
The source code for Figs. 1, 2 and 8 is publicly released under the 3-clause BSD license. It
is available as a git repository at https://git.bsse.ethz.ch/iber/Publications/
2021_vetter_gradient_variability.
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