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Abstract

Short-term synaptic depression, caused by depletion of releasable neurotransmitter, modu-

lates the strength of neuronal connections in a history-dependent manner. Quantifying the

statistics of synaptic transmission requires stochastic models that link probabilistic neuro-

transmitter release with presynaptic spike-train statistics. Common approaches are to

model the presynaptic spike train as either regular or a memory-less Poisson process: few

analytical results are available that describe depressing synapses when the afferent spike

train has more complex, temporally correlated statistics such as bursts. Here we present a

series of analytical results—from vesicle release-site occupancy statistics, via neurotrans-

mitter release, to the post-synaptic voltage mean and variance—for depressing synapses

driven by correlated presynaptic spike trains. The class of presynaptic drive considered is

that fully characterised by the inter-spike-interval distribution and encompasses a broad

range of models used for neuronal circuit and network analyses, such as integrate-and-fire

models with a complete post-spike reset and receiving sufficiently short-time correlated

drive. We further demonstrate that the derived post-synaptic voltage mean and variance

allow for a simple and accurate approximation of the firing rate of the post-synaptic neuron,

using the exponential integrate-and-fire model as an example. These results extend the

level of biological detail included in models of synaptic transmission and will allow for the

incorporation of more complex and physiologically relevant firing patterns into future studies

of neuronal networks.

Author summary

Synapses between neurons transmit signals with strengths that vary with the history of

their activity, over scales from milliseconds to decades. Short-term changes in synaptic

strength modulate and sculpt ongoing neuronal activity, whereas long-term changes

underpin memory formation. Here we focus on changes of strength over timescales

of less than a second caused by transitory depletion of the neurotransmitters that carry
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signals across the synapse. Neurotransmitters are stored in small vesicles that release

their contents, with a certain probability, when the presynaptic neuron is active. Once a

vesicle has been used it is replenished after a variable delay. There is therefore a complex

interaction between the pattern of incoming signals to the synapse and the probablistic

release and restock of packaged neurotransmitter. Here we extend existing models to

examine how correlated synaptic activity is transmitted through synapses and affects

the voltage fluctuations and firing rate of the target neuron. Our results provide a frame-

work that will allow for the inclusion of biophysically realistic synaptic behaviour in

studies of neuronal circuits.

Introduction

Variability in synaptic function arises from stochasticity in processes ranging in scale from the

transitory opening and closing of ion channels to probabilistic neurotransmitter release and

vesicle restock [1–4]. The transmission of signals between neurons is therefore inherently sto-

chastic and, moreover, will interact in a history-dependent manner with the patterns in the

incoming presynaptic drive [5–9]. A common approach to treating this stochasticity analyti-

cally assumes that neuronal firing is uncorrelated, with a Poisson process typically used to

model spike times [10–12]. However, non-Poissonian activity is regularly observed in vivo
[13–16] and models suggest that, even in the absence of short-term synaptic dynamics, it can

have a substantial effect on the propagation of activity [17–21]. It can be expected that the

impact of non-Poissonian presynaptic activity will be further complicated when combined

with vesicle-depletion depression, in which synaptic transmission becomes weaker and less

reliable as stores of available neurotransmitter are depleted and yet to be restocked [22–24].

Transmission through plastic synapses has been shown to decorrelate input spike trains [5,

25, 26], typically increasing the computational power [27, 28] and efficiency [29] of a neuronal

network. While average rate effects under the influence of depression have been extensively

studied [30–32], a compact set of analytical results for correlated spike trains and stochastic

quantal vesicle release from multiple sites has remained elusive (for a full discussion of existing

results, see the Discussion). Recently, it has been shown [33] that correlated firing patterns

more regular than Poissonian can increase the rate of vesicle release, thereby enhancing the

fidelity and efficiency of signal transmission, whilst more irregular spike trains can lead to a

decrease in neurotransmitter release [25, 27].

To further analyse how the interaction of correlated presynaptic drive and short-term

depression affect quantal synaptic transmission, here we derive a number of analytic results

for renewal processes, for which the incoming spike train is fully characterised by the inter-

spike-interval (ISI) distribution. This type of presynaptic drive includes that generated by the

leaky, quadratic and exponential integrate-and-fire models driven by white-noise [34–36],

which are models commonly used to fit experimental data [37–39]. It can be noted that these

models will also generate ISIs that are well approximated by renewal processes when the corre-

lations of their incoming synaptic drive are much shorter in time than the typical outgoing

ISIs.

We derive equations for the occupancy and the temporal structure of release events when

presynaptic cells have spiking patterns fully characterised by their inter-spike-interval distribu-

tion. We then show how these can be used to calculate the post-synaptic voltage mean and var-

iance when the presynaptic neurons make multiple independent contacts. These results are

illustrated using gamma-distributed ISIs and presynaptic integrate-and-fire neurons. We show

Temporally correlated spike trains with short-term synaptic depression
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that the results allow for a good estimation of post-synaptic firing rates thereby opening the

way for the analysis of the role synapses with stochastic short-term depression play in feed-

forward and recurrent neuronal networks in which presynaptic spike-trains are typically non-

Poissonian.

Materials and methods

Synaptic release sites

A quantal model of synaptic dynamics is used where the binary variable x represents the occu-

pancy (x = 1) of a release site by a neurotransmitter-filled vesicle, with x = 0 otherwise. On the

arrival of a presynaptic action potential, neurotransmitter is released with probability p if a vesi-

cle is present at the site. For brevity, the probability that a present vesicle is not released, 1 − p, is

written as q. Sites that are empty are then restocked at memoryless rate λ (Poisson process). Note

that because x is a binary variable taking values of 0 and 1, x2� x and so Var(x) = hxi(1 − hxi)
where the notation hXi is used as the expectation of any quantity X over all stochastic processes

(spike times, release and restock events). Values of parameters used to generate figures, unless

otherwise stated, are given in Table 1.

ISI distribution

The presynaptic spike train is modelled as a renewal process characterised by the ISI distribu-

tion f(t) where the firing rate r is the reciprocal of the mean ISI. Though there are no correla-

tions between successive ISIs, the spike train itself will in general be non-Poissonian and can

range between bursting and regular extremes: bursting neurons have positively autocorrelated

spike trains at short times whereas more periodically firing neurons generate trains that are

negatively autocorrelated over short time frames. Many results in this paper will involve expec-

tations over the ISI distribution of exponential functions

he� zti ¼

Z 1

0

f ðtÞe� ztdt ¼ LðzÞ ð1Þ

Table 1. Parameters and their values used for figures. Parameters are grouped together as: those pertaining to occu-

pancy and release statistics; those required for calculation of the post-synaptic response; and those used to generated

ISI statistics. Certain neuronal parameters, such as τ and μ, are used for both pre and post-synaptic integrate-fire

models.

Parameter Interpretation Value

p probability of release on arrival of a spike, given vesicle is present 0.6

λ rate empty release sites are restocked 2Hz

r rate of presynaptic spiking varies

τ membrane time constant 20ms

μ voltage resting potential in absence of input varies

a amplitude of EPSP induced by fusion and release of single vesicle 0.3mV

N number of presynaptic neurons varies

n vesicle release sites per presynaptic neuron varies

α shape parameter for gamma-generated ISIs varies

σ voltage standard deviation for presynaptic integrate-and-fire neurons varies

vre voltage reset after an action potential varies

vth voltage threshold at which a spike is registered 10mV (LIF) 15mV (EIF)

δT spike onset range for EIF model 1.5mV

vT spike onset threshold for EIF model 10mV

https://doi.org/10.1371/journal.pcbi.1006232.t001

Temporally correlated spike trains with short-term synaptic depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006232 June 22, 2018 3 / 25

https://doi.org/10.1371/journal.pcbi.1006232.t001
https://doi.org/10.1371/journal.pcbi.1006232


where z can be complex (with restrictions on its real part related to the specific functional

form the ISI distribution). This can also be interpreted as the Laplace transform of the ISI dis-

tribution, which we will denote as LðzÞ. For Laplace transforms of other quantities, say X(t),
we will use the notation LXðtÞ. Note that the Fourier transform f̂ ðoÞ of the ISI distribution

can also be interpreted as an expectation

f̂ ðoÞ ¼
Z 1

� 1

f ðtÞe� iotdt ¼ he� ioti ¼ LðioÞ ð2Þ

and is directly related to its Laplace transform, remembering that f(t) = 0 for t< 0. This will

allow many existing results from the literature on integrate-and-fire ISI distributions in the fre-

quency domain to be used in the subsequent analyses.

Gamma-distributed ISI distributions

Gamma distributed ISIs provide a useful illustration of the results presented here as a single

shape parameter α continuously varies the train between bursting for α< 1 and more regular

α> 1. The ISI distribution f(t) is given by

f ðtÞ ¼
ðarÞa

GðaÞ
ta� 1e� art ð3Þ

for positive t and zero otherwise, where GðaÞ ¼
R1

0
ta� 1e� tdt is the gamma function. When α =

1 the ISI distribution becomes exponential and the presynaptic spike train is a Poisson process.

The expectation of an exponential function (Eq 1) over this class of ISI distribution is

he� zti ¼
ar

z þ ar

� �a

ð4Þ

where z can be a complex constant as long as the real part of z + αr is greater than zero.

Data availability

Together with this paper we provide JULIA code in the Jupyter Notebook environment for

generating each of the figures shown in the paper. All five scripts are published under the

GNU General Public Licence, Version 3 (http://www.gnu.org/copyleft/gpl.html).

Results

After writing down some general statements for arbitrary spike times, we focus on deriving

exact results for the case when correlated presynaptic spiking is a renewal process and fully

described by the ISI distribution. We present formulae for the steady-state vesicle-release site

occupancy averaged over time as well as its mean value just before the arrival of a presynaptic

action potential. We then derive an integral equation for the occupancy at some later time

given a release event at an earlier time: this will allow us to calculate the autocovariance of

release events which in turn leads to an analytical form for the postsynaptic voltage variance.

We then generalise this result to a scenario in which each presynaptic cell makes multiple inde-

pendent contacts. Because of the shared presynaptic drive across these contacts, an additional

level of correlation is generated in the input to the post-synaptic cell. We characterise these

correlations through the cross-covariance of release events and extend the formula for the

post-synaptic voltage to multiple contacts. These results are illustrated using gamma-distrib-

uted ISIs for the presynaptic trains. It is then further shown how all results can be derived

exactly for presynaptic LIF models or numerically for other classes of integrate-and-fire

Temporally correlated spike trains with short-term synaptic depression
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model, such as the EIF model that are themselves all driven by Gaussian white-noise drive.

Finally, we consider a straightforward extension to consider biophysically realistic post-synap-

tic potentials.

Average and pre-spike mean release-site occupancy

The statistics of a binary occupancy variable x(t), where x = 1 if the site is occupied and is zero

otherwise, are first considered. We first write down an obvious steady-state result which links

two averages of this quantity: hxi, the occupancy averaged over time, and hxi1, the mean occu-

pancy just before the arrival of a presynaptic spike. It should be noted that these two quantities

are only the same for (memory-less) Poisson processes. Given that the total restock rate must

equal the total release rate in the steady state, the following balance equation holds

lð1 � hxiÞ ¼ prhxi1 ð5Þ

where λ is the restock rate given no vesicle is present, p is the probability of release given a vesi-

cle is present and r is the firing rate of the presynaptic neuron. As will be seen later, it is the

quantity hxi1 that is required for analysing the effect on the post-synaptic cell.

To derive hxi1 it is convenient to first consider a less complete expectation of x, denoted by

x, which implies the expectation of x for a fixed pattern of spike times {t1, t2, . . .tm} but aver-

aged over all possible patterns of restock and release events. Consider the expected occupancy

xm immediately before the mth spike at time tm as a function of the expected occupancy xm� 1

immediately before the (m − 1)th spike: this obeys the recursion equation

xm ¼ xm� 1qe� lðtm � tm� 1Þ þ ð1 � e� lðtm � tm� 1ÞÞ ð6Þ

where q = 1 − p. This can be solved, with the initial condition x1 ¼ 1, to give

xm ¼ 1 �
p
q

Xm� 1

k¼1

qke� lðtm � tm� kÞ: ð7Þ

Taking expectations over all realisations of presynaptic spike times, as m!1, gives the

expected occupancy before the arrival of a presynaptic action potential in the steady-state

hxi1 ¼ 1 �
p
q

X1

k¼1

qkhe� lTki ð8Þ

where Tk is the sum of the last k ISIs. This result is quite general and holds for arbitrarily corre-

lated spike trains; however, we now consider the specific case of spike-times generated by a

renewal process. In this case the ISIs will be independent so that the expectation over the expo-

nential term factorises he� lTki ¼ he� lti
k

and the sum can be evaluated for hxi1 to give

hxi
1
¼

1 � he� lti

1 � qhe� lti
and hxi ¼ 1 � p

rð1 � he� ltiÞ

lð1 � qhe� ltiÞ
: ð9Þ

The corresponding form for hxi was found from Eq (5). The expectation he−λti is straightfor-

ward to evaluate for many classes of renewal process and is directly related to the ISI Laplace

or Fourier transform (Eqs 1 and 2) LðlÞ ¼ he� lti.

Release-site occupancy for gamma-distributed ISIs. To illustrate the theoretical results

in this paper we consider ISIs that have a distribution given by a gamma function with shape

factor α and mean rate r (Eq 3). This is a convenient choice because a value α< 1 generates a

spike train that is bursty, α = 1 is Poissonian firing and α> 1 is regular firing, thereby allowing

for a range of behaviours to be examined as a single parameter is varied (at fixed presynaptic

Temporally correlated spike trains with short-term synaptic depression
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rate). Illustrations of the behaviour for three different values of α, from bursting to regular, are

provided in Fig 1A with the corresponding ISI distribution (Eq 3) and its cumulation given in

Fig 1B and 1C. For this class of ISI distribution we have

he� lti ¼
ar

ar þ l

� �a

ð10Þ

from Eq (4). This result can be used to calculate the forms of the average occupancy and mean

pre-spike occupancy given in equation pair (9) and plotted as a function of α in Fig 1D. As α
increases, the pre-spike mean hxi1 increases and the overall mean hxi decreases. The two

means take the same value when α = 1 and the input spike train is an uncorrelated Poisson

process. It is interesting to consider the two extreme limits of the quantity in Eq (10)

he� lti ! 1 � a log ðl=arÞ when a! 0 and he� lti ! e� l
r when a!1 ð11Þ

for highly bursty and highly regular presynaptic firing, respectively. In the limit α! 0 of very

bursty presynaptic firing the mean occupancies tend to

hxi1 !
a

p
log l=arð Þ and hxi ! 1 �

r
l

a log l=arð Þ: ð12Þ

Hence, in the bursty limit the dominant behaviour of hxi1 is as � a

p log ðaÞ, which is dependent

on p and α only, and the probability of neurotransmitter release phxi1 is a function of α only.

Fig 1. Vesicle occupancy and neurotransmitter release rate are a function of the ISI distribution. (A) Presynaptic spike train, vesicle occupancy and

neurotransmitter release time-course for gamma-distributed ISIs with α as marked (in panel B) for the same release probabilty p = 0.6, presynaptic rate r = 5Hz and

postsynaptic rate λ = 2Hz. (B) Corresponding ISI distributions for the three α values. (C) The cumulative distribution. (D) The mean hxi (grey) and the pre-spike hxi1
(black) release-site occupancies (Eqs 9 and 10). Note that hxi1 increases with increasing regularity, larger α. (E) Variance of the two occupancies exhibiting non-

monotonic behaviour. (F) The mean neurotransmitter release rate hχi is directly proportional to hxi1 and so shares its qualitative dependence on α. The code used to

generate this figure is provided in the Supporting Material.

https://doi.org/10.1371/journal.pcbi.1006232.g001
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Both these quantities and the variance of the prespike occupancy vanish in the extreme bursty

limit α! 0, a trend that can be seen in Fig 1D, 1E and 1F.

As the presynaptic firing becomes increasingly regular, for large α, the quantity he−λti

begins to lose its α dependency. For the particular case of regular firing when λ/r� 1, mean-

ing that the restock rate is low relative to the presynaptic firing rate and the vesicles are in a

depleted state the limit is hxi1! (1/p)(λ/r) and so in this case the probability of neurotrans-

mitter release phxi1! λ/r is independent of both p and α and that the total mean rate of

vesicle release rphxi1 is a function of λ only. This observation, that when r� λ, the release

rate loses its dependency on the presynaptic rate has been previously highlighted [32] for

Poissonian processes (when α = 1). However, it is interesting to note that for bursty firing

the release rate does not lose its dependency on the presynaptic rate so readily in this limit,

as argued above.

Vesicle release average and autocovariance

We now consider the statistics of the release of neurotransmitter and, in particular, the autoco-

variance of the release. This quantity will be required to calculate the variance of the postsyn-

aptic voltage. We define the release events at a single site as a series of Dirac-delta events

wðtÞ ¼
X

ftkg

dðt � tkÞ ð13Þ

where here {tk} are the times of the neurotransmitter release events. These occur with probabil-

ity p only when a presynaptic spike arrives and a vesicle is present, so that the steady-state

mean of this quantity is hχi = prhxi1, as already observed in the previous section.

We now consider the steady-state autocovariance that, because of its time-translation

invariance, can be written hχ(t)χ(0)i − hχi2. For t> 0 we note that hχ(t)χ(0)i = hχ(t|0)ihχi
where hχ(t|0)i is understood to be the probability density of a vesicle being released at time t
given that one was released previously at time 0. The autocovariance can therefore be written

AutoCovðwÞ ¼ hwiðdðtÞ þ hwðtj0Þi � hwiÞ ð14Þ

for t� 0 (the function is even in time, thus specifying the t< 0 component) with the Dirac

delta function coming from the zero-time contribution.

The quantity hχ(t|0)i itself is the rate of release, given a release at t = 0 and can be written as

pG(t) where G(t) is the probability density of presynaptic spike arriving while a vesicle is pres-

ent at time t given that initially (at t = 0) a presynaptic spike arrived and immediately after

there was no vesicle present. We also introduce a related quantity H(t) which has the same

conditionality but is the density of a presynaptic spike arriving while there is no vesicle present

at a time t. Note that F(t) = G(t) + H(t) where F(t) is the probability density of an action poten-

tial arriving at t given there was one at t = 0 (the conditionality is the same because the arrival

of a spike at t does not depend on whether a release site was stocked or not just before an ear-

lier spike). This last quantity can be directly related to the ISI distribution f(t) via a convolu-

tion

FðtÞ ¼ f ðtÞ þ
Z t

0

dsFðsÞf ðt � sÞ ð15Þ

that can be solved in terms of integral transforms. It is straightforward to derive similar formu-

lae for G(t) and H(t) via the introduction of the quantities

gðtÞ ¼ f ðtÞð1 � e� ltÞ and hðtÞ ¼ f ðtÞe� lt ð16Þ

Temporally correlated spike trains with short-term synaptic depression
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where g(t) and h(t) are the probability densities that the release site (initially empty at t = 0 fol-

lowing a presynaptic spike) are either restocked or not, respectively, by the time the next spike

arrives; note also that f(t) = g(t) + h(t). To derive a self-consistent integral equation for G(t) we

need to decompose it into the various histories that start with a vesicle absent at t = 0 following

a presynaptic spike and end with a vesicle present at t when a spike arrives. There are four dis-

tinct contributions that need to be accounted for. The first is straightforward as it arises from

the first spike arriving at t giving a contribution of g(t). The other contributions imply that the

penultimate spike arrives at an intermediate time s that needs to be integrated over (as in Eq

15). The second contribution has a vesicle present before the intermediate time s and no

release and so contributes G(s)qf(t − s). The third contribution has a vesicle present before the

intermediate time s and there is a release and so contributes G(s)pg(t − s). The final contribu-

tion has no vesicle present before the intermediate time s and then there is a restock, contribut-

ing H(s)g(t − s). Combining these four contributions and simplifying, using H = F − G and

h = f − g, results in the following integral equation

GðtÞ ¼ gðtÞ þ
Z t

0

dsFðsÞgðt � sÞ þ q
Z t

0

dsGðsÞhðt � sÞ: ð17Þ

The equations for F(t) and G(t) can either be solved numerically using iterative procedures or,

alternatively, solved using integral transforms (see the next section). Noting that in the limit

t!1 the conditional quantity G(t) converges to rhxi1 allows the autocovariance

AutoCovðwðtÞÞ ¼ prhxi
1
ðdðtÞ þ pðGðjtjÞ � rhxi

1
ÞÞ ð18Þ

of the neurotransmitter release time series χ(t) to be written in terms of G(t) and the occu-

pancy hxi1.

Vesicle-release train in the Laplace domain and its power spectrum. As will be seen

later, the Laplace transform of the densities F(t) and G(t) are required for the calculation of the

post-synaptic voltage variance. The Laplace transforms of g(t) and h(t) can be written in terms

of the ISI-distribution Laplace transform

LgðzÞ ¼ LðzÞ � Lðz þ lÞ and LhðzÞ ¼ Lðz þ lÞ: ð19Þ

With these results and the convolution theorem, it is straightforward to solve the integral Eqs

(15) and (17) in the Laplace domain.

LFðzÞ ¼
LðzÞ

1 � LðzÞ
and LGðzÞ ¼

1

ð1 � LðzÞÞ
LðzÞ � Lðz þ lÞ

ð1 � qLðz þ lÞÞ
: ð20Þ

These results will be of use for the later calculation of the voltage variance. It is also useful to

state the solution in the Fourier domain, as this is required for the power spectra of the spike

train and the release process. Because both F(t) and G(t) tend to a constant as t!1 and so

the Fourier transform will diverge at zero frequency, we separate the solutions into non-zero

and zero frequency components to give the Fourier transforms as F̂ðoÞ ¼ LFðioÞ þ rpdðoÞ

and ĜðoÞ ¼ LGðioÞ þ rhxi1pdðoÞ. These results can be used [40] to extend the autocorrela-

tion of reference [29] to account for the biophysically important case of unreliable vesicle

release. The power spectrum [40] of the presynaptic action potentials Ŝ% as well as that for the

release events Ŝw follows as

Ŝ %ðoÞ ¼ rð1þ 2<LFðioÞÞ and ŜwðoÞ ¼ hwið1þ 2p<LGðioÞÞÞ ð21Þ

where hχi = prhxi1.

Temporally correlated spike trains with short-term synaptic depression
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Auto-covariance and power spectrum for gamma-distributed ISIs. For the particular

case of gamma-distributed ISIs, the integral equation (Eq 15) for F(t) can be found by itera-

tively substituting for F(s) under the integral to provide a series of multiple integrals over

products of f(s). On substituting for the gamma-distribution form for f(t), and using standard

results for the normalisation of Dirichlet distributions, the following series solution is found

FðtÞ ¼
e� art

t

X1

m¼1

ðartÞma

GðmaÞ
ð22Þ

which converges relatively rapidly. We were unable to find a similarly compact series solution

for G(t), given in Eq (17); however, it is straightforward to develop a numerical scheme that

solves the integral equation by iterating forward in time on a grid of time points. Fig 2A plots

the presynaptic spike-triggered average rate F(t) together with the corresponding release-trig-

gered average rate pG(t) for three choices of α ranging from bursty to regular (the same as

those used in Fig 1). The late-time asymptote for F(t) is the presynaptic rate whereas for pG(t)
it is the average release rate hχi. The corresponding finite component of the autocovariance for

these processes is plotted in Fig 2B for positive time (they are even in time). Note that though

Fig 2. Temporal and spectral statistics of the presynaptic spike-train and neurotransmitter release required for post-

synaptic voltage mean and variance. (A) The spike-train (Ai) and neurotransmitter release (Aii) event-triggered rate for three

cases ranging from bursty to regular with α as marked (see Eq 22 and surrounding text). (B) The equivalent autocovariances of the

spike train (Bi) and synaptic release events (Bii). For bursty presynaptic trains (small α = 0.4) the autocovariance is positive;

however all cases have negative autocovariances for the release events themselves (Eq 18) because of the filtering by the depressing

synapses. (C) The corresponding power spectra (Eq 21) of the spike train (Ci) and synaptic release events (Cii). (D) The

postsynaptic voltage mean, standard deviation (std) and coefficient of variation std/mean (Eqs 24 and 29). Though the mean and

std both increase with increasing presynaptic regularity, mirroring the behaviour of hxi1 (Fig 1D), the voltage CV itself decreases

with increasing regularity. For panels A-C parameters and color are same as Fig 1, and in panel D parameter α is varied with other

parameters provided in Table 1. The code used to generate this figure is provided in the Supporting Material.

https://doi.org/10.1371/journal.pcbi.1006232.g002
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the presynaptic rate is positively correlated for bursty spike trains, its autocovariance becomes

negative at short times (like for the Poissonian and regular trains) once it has passed through

synapses exhibiting short-term depression.

The postsynaptic response

In the previous section the pre-spike occupancy of a release site was calculated and the release-

train autocovariance derived. We now use these results to derive the voltage mean and vari-

ance of the postsynaptic neuron. The subthreshold mean and variance of the postsynaptic neu-

ron are the key quantities necessary to estimate the output firing rate of a neuron [18, 36, 41–

45] and hence its resultant effect on the network.

It is assumed that the presynaptic neurons are uncorrelated and each fires at a rate r with

the same ISI distribution. For simplicity we assume that each neurotransmitter-release event

causes the postsynaptic membrane to increase by a fixed voltage a (this restriction is for sim-

plicity and can be relaxed). In this section we consider presynaptic cells that make contacts

with only one vesicle release site, leaving multiple release sites to a later section. The postsynap-

tic voltage therefore follows the equation

t
dv
dt
¼ m � v þ at

XN

i¼1

wiðtÞ ð23Þ

where τ is the membrane time constant, μ the resting potential in absence of synaptic drive

and there are N presynaptic neurons, with the ith having a release train χi(t).
The steady-state mean post-synaptic voltage is found using the result hχi = prhxi1 so that

hvi ¼ mþ atNprhxi1: ð24Þ

This is an increasing function of the prespike occupancy hxi1 and therefore also increases

with the regularity of the presynaptic spike train (see Fig 1D for the dependence of hxi1 on the

burstiness of the presynaptic spike train).

To find the post-synaptic voltage variance we first solve differential Eq (23) formally as an

integral over the release trains

vðtÞ ¼ hvi þ a
Z t

� 1

dt0e� ðt� t0Þ=t
X

i

ðwiðt
0Þ � hwiÞ ð25Þ

where we included the component of the mean stemming from the synaptic input in the sum-

mation. The voltage variance can therefore be written as a double integral over the autocovar-

iance of χ(t) as follows

VarðvÞ ¼ Na2hwi

Z 1

0

ds
Z 1

0

ds0e� s=te� s0=tðdðs � s0Þ þ pðGðjs � s0jÞ � rhxi
1
ÞÞ ð26Þ

where the fact that the χi(t) from different presynaptic neurons are uncorrelated has been

used. The Dirac-delta component is straightforward to evaluate and the other components are

symmetric around s − s0 so that

VarðvÞ ¼
tNa2

2
hwi þ 2Na2hwip

Z 1

0

ds0e� s0=t

Z 1

s0
dse� s=t Gðjs � s0jÞ � rhxi

1
ð Þ ð27Þ

which, on a change of the inner integration variable z = s − s0, allows for the outer integral over
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s0 to be performed resulting in

VarðvÞ ¼
tNa2

2
hwi 1þ 2p

Z 1

0

dze� z=t GðzÞ � rhxi1ð Þ

� �

: ð28Þ

Part of the integral in the above equation is simply the Laplace transform of G(t), which was

already provided in the second of equation pair (20). On substitution, this gives a compact

form for the postsynaptic voltage variance in terms of LðzÞ ¼ he� zti the Laplace transform of

the ISI distribution

VarðvÞ ¼
tNa2

2
hwi 1þ 2p

Lð1=tÞ � Lð1=tþ lÞ

ð1 � Lð1=tÞÞð1 � qLð1=tþ lÞÞ
� trhxi

1

� �� �

: ð29Þ

This is a central result of this paper and is general for neurons that receive synapses with single

release sites from presynaptic neurons that fire as a renewal process. We now go on to examine

the postsynaptic voltage behaviour for gamma-distributed presynaptic ISIs, and consider the

case for presynaptic integrate-and-fire models in a later subsection.

Post-synaptic voltage statistics for gamma-distributed ISIs. The expectations appearing in

the voltage mean and variance equation are of the form of Eq (4) for the case of gamma-distrib-

uted ISIs. The mean post-synaptic voltage is a linear function of hxi1 and therefore also of hχi
(Fig 1D and 1F), which in turn take their α dependence from Eq (10). The voltage mean therefore

increases monotonically with increasing regularity of the presynaptic train, as can be seen in Fig

2D. For the calculation of the variance (Eq 29) two additional expectations are required

Lð1=tÞ ¼ he� t=ti ¼
atr

1þ atr

� �a

and

Lð1=tþ lÞ ¼ he� ð1=tþRrÞTi ¼
atr

1þ tlþ atr

� �a

:

ð30Þ

Using these results the voltage standard-deviation (std) is plotted in Fig 2D along with the coeffi-

cient of variation (CV) of the post-synaptic voltage (std/mean). While the variance increase with

increasing regularity of the presynaptic train passing through depressing synapses, it can be

noted that the voltage CV itself decreases (last panel of Fig 2D).

Multiple release sites sharing the same presynaptic neuron

A single presynaptic neuron will typically make contacts with a postsynaptic cell that result in

multiple vesicle release sites, with estimates of this parameter varying from 1 to as much as 100

[46] for neocortical layer-5 pyramidal cells. Here we consider a case where each of the N pre-

synaptic cells makes connections with n indepedent release sites, a scenario illustrated in Fig

3A for a case N = 1 and n = 3. We assume that all processes (such as restock and release) are

statistically independent at each of these sites, but those sharing the same presynaptic neuron

receive the same spike train. The postsynaptic-voltage dynamics now take the form

t
dv
dt
¼ m � v þ at

XN

i¼1

Xn

j¼1

wijðtÞ ð31Þ

where here χij is the release time course of the jth contact on the ith neuron. Only the χij that

share the same presynaptic neuron will be correlated. The steady-state mean voltage is straight-

forward to derive using the result hχi = prhxi1 so that

hvi ¼ mþ atNnprhxi
1
: ð32Þ
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However, to calculate the variance correlations between release sites need to be accounted for,

which requires the solution of an additional integral equation.

Expectation of joint vesicle occupancy for release sites. The jth contact of presynaptic

cell i will have a release train χij(t) that is correlated with that of other contacts from the same

presynaptic cell due to receiving the same spike train. To take this into account, the first quan-

tity to consider is the joint prespike occupancy hxzi1 for two release sites (labelled x(t) and

z(t)) sharing the same presynaptic cell. Given that restock and release events are uncorrelated,

and that only the spike times are, it is possible to simply multiply the result Eq (6) by the equiv-

alent for zm and take expectations

hxzim ¼ hxzim� 1
q2he� 2lti þ 2hxim� 1

qhe� ltð1 � e� ltÞi þ hð1 � e� ltÞ
2
i ð33Þ

where it should be noted that first-order expectations hxim = hzim are identical for the two

release sites as they are statistically indistinguishable. In the steady-state limit m!1 the dif-

ference Eq (33) results in

hxzi1 ¼
2qhxi1hð1 � e� ltÞe� lti þ hð1 � e� ltÞ

2
i

1 � q2he� 2lti
ð34Þ

Fig 3. Correlated occupancy, release and post-synaptic voltage statistics when there are multiple contacts per presynaptic cell. (A) Illustration of a case with one

presynaptic cell N = 1 making three contacts n = 3. Shown in descending order: presynaptic spike train (α = 0.4, r = 5Hz), occupancy of the three release sites (restock

λ = 2Hz), the corresponding release-event time courses (p = 0.6), and the voltage time course (see Table 1 for parameters). (B) The occupancy correlation hxzi1 for a

pair of sites receiving the same presynaptic spike train and the covariance hxzi1 � hxi
2

1
(see Eqs 34 and 35). (C) The cross-covariance of release events from a pair of

sites sharing the same presynaptic cell (Eq 39). (D) Post-synaptic voltage standard deviation (top: from Eq 42) and CV (bottom) as a function of α for four

combinations of N, n as marked. With each of these choices, where Nn = 1000, the mean voltage (Eq 32) is the same as in Fig 2D. The code used to generate this figure

is provided in the Supporting Material.

https://doi.org/10.1371/journal.pcbi.1006232.g003
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which gives the covariance as

hxzi1 � hxi
2

1
¼ p2

he� 2lti � he� lti
2

ð1 � q2he� 2ltiÞð1 � qhe� ltiÞ
2

ð35Þ

where the expectations are Laplace transforms of the ISI distribution he� mlti ¼ LðmlÞ. It will

be necessary in the next section to find the steady-state probability that site z is still stocked

given a vesicle was just released from site x and also the probability that site z is unstocked

with the same conditionality. These probabilities are

qhxzi
1
=hxi

1
and 1 � qhxzi

1
=hxi

1 ð36Þ

respectively.

Cross-covariance function for release sites. To compute the cross-covariance for two

release sites sharing the same presynaptic cell requires the introduction of a quantity G0(t),
which is the probability density that a spike arrives while a vesicle is present at time t given

that the site was occupied immediately after a spike at time 0. Note that this differs from G(t)
defined earlier only by the initial condition on the occupancy of a vesicle release site. In anal-

ogy, a quantity H0(t) can also be introduced which has the conditionality as G0(t) but is the

probability density that a spike arrives while a vesicle is absent. Note that F(t) = G0(t) + H0(t).
To derive an integral equation for G0(t), involving the previously defined quantities f(t), g(t)
and h(t), we consider the four distinct histories that contribute to it. The first involves no inter-

mediate spike between 0 and t, with the first spike arriving at t, and is therefore simply f(t).
The other three contributions involve at least one intermediate spike, the penultimate one

arriving at s and being integrated over. The first of these three contributions involves the penu-

ltimate spike arriving at a time s when a vesicle is present and there being no release, to give

G0(s)qf(t − s). The second involves the penultimate spike arriving at a time s when a vesicle is

present, there being a release and then the empty site being restocked, thereby contributing

G0(s)pg(t − s). The final contribution involves there being no vesicle present at the penultimate

spike time s but then being restocked, to give H0(s)g(t − s). Combining these four terms and

then simplifying results in the following integral equation

G0ðtÞ ¼ f ðtÞ þ
Z t

0

dsFðsÞgðt � sÞ þ q
Z t

0

dsG0ðsÞhðt � sÞ: ð37Þ

It will be seen later that this quantity typically only appears with G(t) subtracted from it. Eq

(17) includes one of the integrals seen in G0(t) and hence the difference of these quantites

obeys

G0ðtÞ � GðtÞ ¼ hðtÞ þ q
Z t

0

dsðG0ðsÞ � GðsÞÞhðt � sÞ ð38Þ

which is an integral equation with a similar structure to Eq (15) for the spike-triggered presyn-

aptic rate F(t) and is simpler to treat analytically and numerically. The cross-covariance in vesi-

cle release is a sum of G0(t) and G(t) weighted by the probabilities that the second site is

stocked or unstocked immediately after the first releases (these are given in Eq 36) so that the

cross-covariance can ultimately be written in the form

CrossCovðwx; wzÞ ¼ p2rhxzi1 dðtÞ þ
hxi

1

hxzi1
ðGðjtjÞ � rhxi1Þ þ qðG0 ðjtjÞ � GðjtjÞÞ

� �

ð39Þ

where release trains χx and χz are from two distinct release sites that share the same presynap-

tic cell. To derive the post-synaptic voltage variance the Laplace transform of the difference
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G0(t) − G(t) is required. From Eq (38) this is

LG0 ðzÞ � LGðzÞ ¼
Lðz þ lÞ

1 � qLðz þ lÞ
so LG0 ðzÞ ¼

LðzÞð1 � Lðz þ lÞ

ð1 � LðzÞÞð1 � qLðz þ lÞÞ
: ð40Þ

For completeness, the Fourier transform is Ĝ0ðoÞ ¼ LG0 ðioÞ þ rhxi
1

pdðoÞ.

Postsynaptic voltage variance for multiple release sites. The voltage Eq (31) has a solu-

tion analgous to Eq (25) but with a double sum over the N presynaptic neurons and their n
contacts. On squaring this and taking expectations there are two groups of non-zero terms

amongst the (Nn)2 components of the double sum: Nn terms of the auto-covariance (Eq 18)

and Nn(n − 1) terms of the cross-covariance (Eq 39). The double integral over the cross-covari-

ance can be performed in the same way as for the auto-covariance, and when combined results

in the following form for the post-synaptic voltage variance

VarðvÞ ¼ Nn
ta2

2
prhxi

1
1þ 2p LGð1=tÞ � trhxi

1
ð Þð Þþ

Nnðn � 1Þ
ta2

2
p2rhxx0i

1
1þ

2hxi
1

hxx0i
1

LGð1=tÞ � trhxi
1

ð Þ þ 2q LG0 ð1=tÞ � LGð1=tÞð Þ

� �

:
ð41Þ

The first line arises from the autocorrelation of χ and the second line from the cross-correla-

tion between χ and χ0. This form can be simplified and the equations for LGðzÞ and LG0 ðzÞ
used to get

VarðvÞ ¼
ta2Nn

2
hwi 1þ 2pn

Lð1=tÞ � Lð1=tþ lÞ

ð1 � Lð1=tÞÞð1 � qLð1=tþ lÞÞ
� trhxi1

� �� �

þ
ta2Nn

2
hwiðn � 1Þp

hxx0i1
hxi1

1þ
2qLð1=tþ lÞ

1 � qLð1=tþ lÞ

� �

:

ð42Þ

This formula represents the extension of the analytical forms for the voltage variance to

include biophysical details such as: stochastic transmission, quantal effects, short-term depres-

sion, multiple contacts, all with non-Poissonian input.

Post-synaptic voltage for gamma-distributed ISIs with multiple contacts. Extending

the calculation of the variance of the post-synaptic voltage for gamma-distributed ISIs to the

case of multiple contacts is straightforward as it still requires only knowledge of the Laplace

transform of the ISI distribution. The temporal form of the cross-covariance, however,

requires G0(t) which is given by an integral equation that is awkard to solve numerically. How-

ever, the equation for the difference (Eq 38) is easier to analyse and it is the difference that is

required for the cross-covariance of the release events between sites sharing a presynaptic neu-

ron. This quantity can be solved in the form of a series in much the same was as was done for

F(t) in Eq (22), giving in this case

G0ðtÞ � GðtÞ ¼
e� ðarþlÞt

qt

X1

m¼1

qmðartÞma

GðmaÞ
ð43Þ

which also converges rapidly. Fig 3B shows the correlation (Eq 34) and covariance (Eq 35)

between two release sites x and z that share the same presynaptic neuron: note the contrasting

behaviour as α scans from bursty to regular at constant presynaptic rate. Fig 3C shows the

cross-covariance (Eq 39) for the same three α values used in Fig 2Bii. In Fig 3D the standard-

deviation of the voltage and its CV are plotted for three pairs of N and n, such that their
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product is Nn = 1000. For this choice the voltage mean is the same as in Fig 2D. Note that the

standard deviations have a qualitatively different dependence on the regularity of the presyn-

aptic train for different ratios of contact number and presynaptic neuron number: for many

contacts the std is highest for bursting presynaptic cells because the effects of the large voltage

deviations from multiple release events exceed the effect of mean lower release rate for smaller

values of α.

ISIs generated by presynaptic integrate-and-fire neurons

In previous sections analytical forms for the pre-spike occupation hxi1, autocovariance of

the release-train χ and the resulting voltage moments were derived with results illustrated

using gamma-distributed ISIs (Eq 3). Integrate-and-fire models, such as the Leaky, Qua-

dratic or Exponential IF models driven by white noise that, following a spike, retain no mem-

ory of their previous state will generate spike trains with uncorrelated ISIs. In this case the

ISI distribution is identical to the first-passage-time density of the steady-state dynamics.

Because of this, all the general results derived thus far are applicable when the presynaptic

population is comprised of integrate-and-fire neurons. For the LIF the Fourier transform of

the first-passage-time density is available analytically, whereas for non-linear IF models like

the QIF or EIF it can be straightforwardly obtained numerically. We now consider examples

of these two cases.

Presynaptic leaky integrate-and-fire neurons. We first consider a presynaptic popula-

tion comprised of LIF neurons that are each driven by an input that has a constant and (inde-

pendent) fluctuating component. The voltage evolution obeys the equation

t _v ¼ m � v þ s
ffiffiffiffiffi
2t
p

xðtÞ ð44Þ

where τ is the membrane time constant, μ is the voltage mean and σ its standard deviation in

the absence of a threshold, and ξ(t) is zero-mean hξ(t)i = 0, delta-correlated Gaussian white

noise such that hξ(t)ξ(t0)i = δ(t − t0). With a threshold at vth and reset at vre the neuron will fire

at an average rate r, which can be written as a single integral [41]

1

rt
¼

Z 1

0

dy
y

e� y2=2ðeyyth � eyyreÞ ð45Þ

where yth = (vth − μ)/σ with an analogous definition for yre. The Fourier-transform f̂ ðoÞ of the

first-passage-time density, or ISI distribution has been derived in terms of cylinder functions

[47] and can also be written as a ratio of integrals [42] of similar form to Eq (45)

f̂ ðoÞ ¼

R1
0

dy yiot
d
dy

eyyre � y2=2

h i

R1
0

dy yiot
d
dy

eyyth� y2=2

h i : ð46Þ

Using the relation (Eq 2) between the expectation of an exponential, and the Fourier and

Laplace transform of the ISI distribution, the key quantity required for all the main analytical

results derived in this paper is

LðzÞ ¼ he� zti ¼

R1
0

dy ytz� 1e� y2=2eyyre

R1
0

dy ytz� 1e� y2=2eyyth
ð47Þ

for ISIs generated by LIF neurons (note that a partial integration step has been performed

between Eqs 46 and 47). For example, the mean release-site occupation (Eq 9) just before the
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arrival of a presynaptic spike takes the form

hxi1 ¼
R1

0
dy ytl� 1e�

y2

2 ðeyyth � eyyreÞ
R1

0
dy ytl� 1e�

y2

2 ðeyyth � qeyyreÞ
: ð48Þ

for presynaptic LIF neurons. Though not explicitly addressed in this paper, the corresponding

formulae for LIF neurons driven by Poissonian shot-noise [42] take a similar form, with hxi1
again expressible as a ratio of integrals.

Fig 4 examines the release-site occupancy and post-synaptic voltage statistics when the pre-

synaptic spike trains are generated by LIF models. At a fixed rate, a reset near threshold with

strong noise will lead to bursting behaviour [43] whereas a low reset with weak noise noise will

lead to regular spiking (varying the steady component μ allows the rate to be kept the same). In

Fig 4A the presynaptic rates versus μ for three pairs of vth − vre and σ (values given in the fig-

ure) ranging from bursting (blue), intermediate (green) and regular (red) are plotted. Fig 4B

shows example presynaptic-voltage time courses for these three cases when the presynaptic

rate is 10Hz (symbols on Fig 4A). We can simultaneously vary vre and σ linearly, from their

values on the blue curve to those on the red curve (with μ compensating so that the rate is con-

stant) to cover the range from bursty to regular firing. The resulting occupancy (Eq 9) and

post-synaptic voltage mean, std and CV (Eqs 24 and 29) are plotted in Fig 4C and demonstrate

qualitatively similar behaviour to that seen for gamma-distributed ISIs.

Fig 4. Occupancy and post-synaptic voltage statistics from a presynaptic pool of LIF neurons. (A) Presynaptic rate (Eq 45) as a function of drive μ
for three pairs of (vth − vre, σ) as marked leading to bursty (blue), intermediate (green) and regular (red) firing statistics. Lines of constant rate are at 5,

10 and 20Hz are marked (dotted lines). (B) Example presynaptic voltage time courses (Eq 44) with spikes marked (black) for the parameters marked

with symbols in panel A (μ is varied so they are all at rate 5Hz). (C) The parameters vre and σ were co-varied linearly (with μ compensating so that

rates were constant at 5, 10 and 20Hz: see dotted lines in panel A, with same color coding used) and the occupancy (Eq 9), post-synaptic voltage mean

(Eq 24), standard deviation (from Eq 29) and CV plotted (against vth − vre). The behaviour seen is qualitatively the same as for the gamma-generated

ISIs. In this figure N = 1000, n = 1 and vth = 10mV, with other parameters given in Table 1. The code used to generate this figure is provided in the

Supporting Material.

https://doi.org/10.1371/journal.pcbi.1006232.g004

Temporally correlated spike trains with short-term synaptic depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006232 June 22, 2018 16 / 25

https://doi.org/10.1371/journal.pcbi.1006232.g004
https://doi.org/10.1371/journal.pcbi.1006232


ISI distributions from exponential integrate-and-fire neurons. A number of extensions

of the LIF neuron model have been proposed to better capture the non-linearities at the onset

of the spike. These include the Quadratic Integrate-Fire model [35] and, more recently, the

Exponential Integrate-and-Fire (EIF) model [36] which has been shown to be in good agree-

ment with experimental data [39]. The EIF model takes the form

t _v ¼ m � v þ dTeðv� vTÞ=dT þ s
ffiffiffiffiffi
2t
p

xðtÞ ð49Þ

where the parameter δT sets the voltage range over which the spike initiates, vT sets the spike-

onset threshold and the other parameters have been previously defined earlier in the context

of the LIF model. For the threshold the limit vth!1 is typically taken but, practically, as long

as vth is significantly above vT the behaviour is insensitive to its exact value. The reset has the

same function as for the LIF model. Because of the non-linearity of the model many of the neu-

ronal input-output functions are unavailable in analytical form; however, it is straightforward

to solve the underlying differential equations numerically in the steady state [48] and for the

first-passage-time density in the Fourier domain [49] (see Section 3.2 of that paper). For the

latter calculation, replacing iω with z allows for all of the exponential expectations (Eq 1)

required for the analytical results of this paper to be straightforwardly derived. Using this

methodology, in Fig 5A–5E the results given in Fig 4 for the LIF are generalised to the EIF

model, with the additional complexity of multiple contacts per presynaptic neuron included.

Fig 5. Approximate rate of a postsynaptic EIF neuron driven by a pool of presynaptic EIF neurons, using the matched-variance approximation.

(A) Firing rate of presynaptic neurons as a function of μ for three pairs (vT − vre, σ) representing bursting (−3mV, 2.0mV; blue), intermediate (1.0mV,

1.45mV; green) and regular (10mV, 0.2mV; red) firing. (B) Example presynaptic-voltage time courses (Eq 49) corresponding to symbols in panel A.

In panels C-F parameters vre and σ were simultaneously varied linearly between the values of the blue and red curves in panel A (μ adjusted so the

presynaptic rate remained 10Hz). Hence, vT − vre ranges from bursting −3mV to regular 10mV. (C) Shows the mean pre-spike vesicle occupancy (Eq

9), (D) the mean post-synaptic voltage (Eq 32) and (E) its standard deviation (From Eq 42). In (F) the post-synaptic rate was approximated using the

matched-variance approximation, in which the voltage mean and variance (exactly calculated for this filtered drive) are used in the white-noise EIF

firing rate calculation. For comparison, the symbols are simulations of the true firing rate. In Panels D-F Nn = 1000 with (N, n) taking the values

(1000, 1: grey), (100, 10: yellow), (50, 20: orange) and (25, 40: purple). The reset for the post-synaptic neuron was held constant at vre = 5mV and

other parameters are given in Table 1. The code used to generate this figure is provided in the Supporting Material.

https://doi.org/10.1371/journal.pcbi.1006232.g005
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From voltage moments to firing rate of IF neurons

It has been shown [44] that the postsynaptic firing rate of EIF neurons is surprisingly insensi-

tive to (positive) temporal correlations when driven by coloured Gaussian noise for a given

voltage mean and variance. This allows for a matched-variance approximation to be used in

which the firing rate of a coloured-noise driven EIF neuron is approximated by its white noise

equivalent but using the same subthreshold mean and variance. Eqs (32) and (42) can be used

to find the voltage mean and variance and the EIF rate for white-noise drive is given in [36].

To test whether this approximation has validity, we consider the firing rate of an EIF neuron

driven by depressing, stochastic synapses from a presynaptic population of EIF neurons. Fol-

lowing the same approach used in Fig 4 for LIF neurons, we covaried vre and σ to get a range

of spiking statistics in the presynaptic EIF population (see Eq 49 for the EIF model definition).

In Fig 5A the firing rate of an EIF neuron as a function of the constant drive μ is shown for

three different combinations of vT − vre and σ, with example time courses given in Fig 5B each

having a rate 10Hz. In Fig 5C–5F the occupancy, voltage statistics and post-synaptic rate are

plotted, as vT − vre and σ are simultaneosly linearly varied from their values on the blue and

red curves in Fig 5A (with μ adapted so that the presynaptic rate is always 10Hz). A range of

connectivity is considered by four combinations of N and n (as marked). As can be seen, the

simulations agree well with the post-synaptic firing rate over a range of presynaptic firing pat-

terns and forward connectivity choices. Hence, the matched variance approximation provides

a fair account of the firing rate even in cases where the incoming fluctuations are negatively

correlated, extending previous results [44].

Generalisation to filtered synapses

It is worth noting it is fairly straightforward to generalise the voltage-variance calculations Eqs

(29 and 42) to neurons receiving more biophysically shaped excitatory post-synaptic potentials

(EPSPs). For example, if an isolated release event generates an EPSP of the form EðtÞ then,

under the assumption of additivity,

v ¼ hvi þ
Z t

� 1

dt0Eðt � t0Þ
X

i

ðwiðt
0Þ � hwiÞ ð50Þ

becomes the generalisation of Eq (25) where the voltage mean is

hvi ¼ mþ Nhwi
Z 1

0

dtEðtÞ: ð51Þ

Following the same approach that led to Eq (29), the voltage variance in this case can be writ-

ten

VarðvÞ ¼ Nhwi
Z 1

0

dt EðtÞ2
� �

1þ 2p
Z 1

0

dz GðzÞ � rhxi
1

ð Þ

R1
0

dt EðtÞEðt þ zÞ
R1

0
dt EðtÞ2

 !

: ð52Þ

If the form of the EPSP is modelled as a sum of multiple exponentials then the variance can

again be expressed by Laplace transforms of G(t). For example, a two-exponential model for

an EPSP

EðtÞ ¼ a
t1 þ t2

t1 � t2

e� t=t1 � e� t=t2

� �

ð53Þ
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has the integrals

Z 1

0

dt EðtÞ2 ¼
a2

2
ðt1 þ t2Þ and

R1
0

dt EðtÞEðt þ zÞ
R1

0
dt EðtÞ2

¼
t1e� z=t1 � t2e� z=t2

t1 � t2

: ð54Þ

On substitution into the equation for the variance, and after identifying any Laplace trans-

forms of G(t), this gives

VarðvÞ ¼
ðt1 þ t2ÞNa2

2
hwi 1þ 2p

t1LGð1=t1Þ

t1 � t2

þ
t2LGð1=t2Þ

t2 � t1

� rhxi
1
ðt1 þ t2Þ

� �� �

: ð55Þ

The forms LGðzÞ are provided in the second equation of the pair (20) in terms of the Laplace

transform of the first-passage-time density.

Discussion

We have presented a series of novel analytical results that extend the level of biophysical detail

incorporated in models of synaptic transmission. Non-Poissonian activity is commonly seen

in vivo and can have a substantial effect on neuronal activity; relating this to synaptic dynamics

allows for a more comprehensive understanding of the typical behaviour of plastic synapses.

We have derived the exact spike-triggered mean vesicle occupancy, noting that it takes a par-

ticularly compact form when the input spike train is a renewal process, and highlighted the

relationship between the spike-triggered mean and the overall level of vesicle occupancy, con-

firming the numerical results of Matveev and Wang (2000, [25]), de la Rocha and Parga (2005,

[8]) and Reich and Rosenbaum (2013, [33]). We have derived the autocorrelations in vesicle

release in terms of integral transforms, confirming the numerical results of Goldman et al

(2002, [26]) and extending the analytical results of Goldman (2004, [29]) to account for the

biophysically important case of probabalistic vesicle release.

The exact subthreshold voltage variance calculated from the neurotransmitter release auto-

correlations is a potentially useful result and incorporates many biophysical details of autocor-

related input spikes, quantal effects, stochastic and cross-correlated vesicle release, and short-

term plasticity. The relative effects of these biophysically relevant phenomena can now be

quantitatively analysed [27, 50], providing insights into how changes in release-site number n
arising from long-term plasticity [51] or in release probability p due to developmental changes

[52–54] reshape the postsynaptic response to correlated spike trains.

The results for synaptic transmission when the presynaptic integrate-and-fire neuron is

driven by short-time correlated noise processes are another important application, expanding

the utility of the model to allow for study of synaptic dynamics alongside other known results

concerning the firing rate [41, 42] and correlation structure [18, 43] of such neurons.

Context

Many previous studies have examined how plastic, probabilistic and quantal synapses affect the

statistics of patterned transmission through the synapse, and we now provide a selective over-

view. Vere-Jones (1966) [5] examined a model of a quantal, probabilistic synapse, finding that

the release of neurotransmitter is more Poissonian than the afferent activity. Maass and Zador

(1999) [27] considered the binary output of a single vesicle release site, investigating how trip-

lets of incoming spikes corresponded to different release patterns under varying synaptic

parameters. In particular they showed that dynamic synapses transmit bursts of spikes more

reliably than static synapses and have enhanced computational power. Matveev and Wang

(2000, [25]) numerically studied the effects of naturalistic presynaptic firing patterns on vesicle
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release, both with bursts generated by a two-state Markov model and long-time correlated

trains. They found that spikes within a burst are suppressed by synaptic depression compared

to isolated spikes, and, like Vere-Jones, that neurotransmitter release is more Poissonian than

the incoming spikes. Goldman et al (2002, [26]) examined the transmission of doubly-stochas-

tic Poissonian spike trains, constructed to reflect experimentally recorded neuronal bursting,

finding again that dynamic synapses decorrelate afferent spike trains and so reduce coding

redundancy across a broad range of synaptic parameters. As part of this study, the autocovar-

iance of neurotransmitter release in response to temporally structured spike trains was calcu-

lated numerically. Goldman (2004, [29]) derived the information transmission efficiency of a

depressing synapse analytically, finding the autocovariance of neurotransmitter release under

the assumption of a synapse that reliably releases neurotransmitter whenever a vesicle is pres-

ent. Using a model comprising a single neurotransmitter release site, de la Rocha et al (2002,

[55]) showed that dynamic synapses were more effective transmitters of afferent signals only

when the input is non-Poisson, analytically describing the distribution of synaptic release events

when the input is a renewal process. They later [8] numerically studied the impact of temporal

correlations on synapses containing multiple release sites, showing that bursty stimuli elicited

fewer releases of neurotransmitter but that there could be a non-monotonic relationship

between presynaptic and postsynaptic firing rates in the presence of input correlations and syn-

aptic dynamics. Fuhrmann et al (2002, [56]) developed the stochastic quantal model used in

this paper, capturing the same processes as the continuous phenomenological Tsodyks-Mark-

ram model of short-term plasticity [30], but focussed the initial analysis on Poisson spike trains.

Ly and Tranchina (2009, [57]) considered numerically the transmission of temporally corre-

lated spike trains across stochastic, but not dynamic, synapses and plotted the autocovariances

in vesicle release, as well as the postsynaptic firing rate for renewal process inputs. Rosenbaum

et al (2012, [12]) studied information transmission for Poissonian inputs, finding that the incor-

poration of stochastic quantal effects differentially affected information transmitted at different

presynaptic rates. This paper approximated the auto- and cross covariances in neurotransmitter

release in response to Poisson drive and these results were shown to be exact by Bird and Rich-

ardson (2014, [9]). Reich and Rosenbaum (2013, [33]) studied models of presynaptic spiking

both more and less regular than a Poisson process, showing numerically that more regular fir-

ing patterns can increase the rate of vesicle release, thereby enhancing the fidelity and efficiency

of signal transmission, whilst more irregular spike trains can lead to a decrease in neurotrans-

mitter release. Zhang and Peskin (2015, [50]) developed the results of [12] on information

transfer with unreliable dynamic synapses using a slightly simpler model of vesicle recovery,

analytically studying the effects of a more general model of presynaptic spiking on neurotrans-

mitter release rates and numerically simulating the effects on the postsynaptic membrane.

Extensions

The matched-variance firing rate approximation in Fig 5 does not constitute a complete frame-

work for treating recurrent networks of neurons with stochastic depressing synapses, because

only the rate and not the full ISI statistics of the post-synaptic neuron were derived. However,

it does suggest that some approximation scheme that goes beyond the first-order statistics of

the ISI distribution might be used to analyse recurrent networks. This is currently a problem

of great interest [21, 43, 58] given the strong effects correlated spike trains are acknowledged

to have even across static synapses [18]. To include the components of vesicle-release autocor-

relation arising from short-term depression, as modelled here, would increase physiological

relevance and bring studies of output firing patterns into line with much of the literature on

neuronal networks [31, 32, 59].
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Another interesting extension is to account for the effect of spike-frequency adaptation cur-

rents on presynaptic firing. Adaptation is present across the nervous system [60] and can mod-

ulate responses to persistent activity by high-pass filtering and response selectivity [61–63].

These functional roles overlap with those attributed to synaptic depression [64], and there

have been a number of recent studies on the interactions of short-term synaptic plasticity with

slow adaptation mechanisms [65, 66]. A key feature of adaptation currents is the creation of

correlations between interspike intervals [67], generating non-renewal spike trains. These cor-

relations have recently been shown to take the form of a geometric series [68]. Eq (8) presents

a way of deriving approximate results for the synaptic transmission for weakly correlated ISIs

and suggests a promising avenue of research to go beyond renewal processes and study the

effect of these two key short-term adaptive processes in neural circuits.

Supporting information

S1 Code. The Jupyter Notebook S1 Code generates and plots simulations of afferent spike

trains, vesicle occupancy, and release for a single release site receiving a spike train with

gamma-distributed ISIs for different values of α. It plots the ISI densities (Eq 3) and cumula-

tive densities for different values of α. It plots the two occupancy means hxi1 and hxi (Eq 9) as

a function of α, as well as their variances and the vesicle release mean hχi.
(JSON)

S2 Code. The Jupyter Notebook S2 Code plots the temporal and spectral statistics of affer-

ent spike trains and vesicle release for spike trains with gamma-distributed ISIs. It plots

event-triggered rates, auto-covariances, and power spectra for the afferent spike train and vesi-

cle release (Eqs 18 to 21). It plots the post-synaptic voltage mean (Eq 24), standard deviation

(Eq 29), and coefficient of variation as a function of α.

(JSON)

S3 Code. The Jupyter Notebook S3 Code generates and plots simulations of afferent spike

trains, vesicle occupancy, and release for a single neuron with three independent release

sites receiving a spike train with gamma-distributed ISIs for different values of α. It plots the

correlation (Eq 34) and covariance (Eq 35) in occupancy as a function of α and the cross-covari-

ance in vesicle release (Eq 39). It plots the post-synaptic voltage standard deviation (Eq 42) and

coefficient of variation as a function of α for different numbers n of release sites per neuron.

(JSON)

S4 Code. The Jupyter Notebook S4 Code plots the presynaptic firing rate of an LIF neuron

receiving white noise drive for different spike threshold and reset values (Eq 45) [41]. It

generates and plots presynaptic voltage traces and spike times for different parameter sets (Eq

44). It plots the spike-triggered occupancy hxi1 (Eq 48) and the post-synaptic voltage mean,

variance, and coefficient of variation as a function of the threshold-reset difference for differ-

ent presynaptic spike rates.

(JSON)

S5 Code. The Jupyter Notebook S5 Code plots the presynaptic firing rate of an EIF neuron

[36] receiving white noise drive for different spike threshold and reset values [49]. It gener-

ates and plots presynaptic voltage traces and spike times for different parameter sets (Eq 49). It

plots the spike-triggered occupancy hxi1 and the post-synaptic voltage mean, variance, and

simulated and estimated firing rates as a function of the threshold-reset difference for different

presynaptic spike rates [44].

(JSON)
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