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ABSTRACT 

Pulmonary edema clearance is necessary for patients with lung injury to recover and survive. The 
mechanisms regulating edema clearance from the lungs are distinct from the factors contributing edema 
formation during injury. Edema clearance is effected via vectorial transport of Na+ out of the airspaces 
which generates an osmotic gradient causing water to follow the gradient out of the cells. This Na+ transport 
across the alveolar epithelium is mostly effected via apical Na+ and chloride channels and basolateral Na,K-
ATPase. The Na,K-ATPase pumps Na+ out of the cell and K+ into the cell against their respective gradients 
in an ATP-consuming reaction. Two mechanisms contribute to the regulation of the Na,K-ATPase 
activity:recruitment of its subunits from intracellular compartments into the basolateral membrane, and 
transcriptional/translational regulation. Na,K-ATPase activity and edema clearance are increased by 
catecholamines, aldosterone, vasopressin, overexpression of the pump genes, and others. During lung 
injury, mechanisms regulating edema clearance are inhibited by yet unclear pathways. Better understanding 
of the mechanisms that regulate pulmonary edema clearance may lead to therapeutic interventions that 
counterbalance the inhibition of edema clearance during lung injury and improve the lungs’ ability to clear 
fluid, which is crucial for patient survival. 

KEY WORDS: Acute lung injury, alveolar epithelium, alveolar fluid clearance, Na,K-ATPase, pulmonary 
edema 
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INTRODUCTION 

Pulmonary edema is a life-threatening condition of 
fluid excess in the lungs that causes impaired gas 
exchange with consequent symptoms that range 
from mild shortness of breath to acute respiratory 
failure. Approximately 56% of intensive care unit 
patients suffer from acute respiratory failure (ARF), 
with one-third of those subsequently dying.1 The 
pathogenesis of ARF can be classified to cardiogenic 
and non-cardiogenic pulmonary edema. Acute heart 
failure is the most common cause of increased 
hydrostatic pressure and is very prevalent, with 
almost 658,000 emergency department visits in the 
United States per year. The mortality rate from 
acute cardiogenic pulmonary edema ranges from 
12% to 15%.2 In the USA, overall costs of heart 
failure in 2010 have been estimated at $39.2 billion, 
with hospitalization representing approximately 
80% of direct treatment costs for heart failure.3 

Acute lung injury (ALI) that is due to increased 
permeability pulmonary edema is also common, 
with an incidence of 86 per 100,000 person-years, 
and equates to over 190,000 cases and 74,500 
fatalities annually in the United States. Although 
mortality has declined, recent studies still report an 
approximate 25% death rate.2 

For many years, it was believed that fluid 
accumulation in the lung depends only on the 
abrogation of balanced Starling forces—the 
hydrostatic pressure and oncotic pressures.4,5 
However, more recently it has been demonstrated 
that the alveolar epithelium has an active role in 

clearing edema out of the alveoli, a process called 
alveolar fluid clearance (AFC). 

LUNG STRUCTURE 

The lung is responsible for gas exchange: enriching 
the circulation with oxygen (O2) and extruding 
carbon dioxide (CO2). The structure of the lungs is 
designed to facilitate gas exchange by enabling the 
transit of gases through the respiratory airways, 
and, as the gases reach alveolar sacs and alveolus 
clusters, gas exchange actually occurs. The alveoli 
are tightly wrapped with blood vessels allowing the 
diffusion of oxygen from the alveoli to the blood-
stream of the alveolar blood vessels. Then, 
oxygenated blood is perfused throughout the body 
where gas exchange occurs in the capillary beds.6 

Since gas exchange relies on diffusion, it is 
crucial that the layer separating the alveolar space 
from the interstitium is thin and permeable.6 To 
ensure this environment, alveoli are built of a 
monolayer epithelium that contains two alveolar 
epithelial cells (Figure 1), types I and II (AECI and 
AECII, respectively), and macrophages.7 Moreover, 
the alveolar space must be free of fluids and open. In 
utero, the fetal lung is filled with fluid that is 
removed shortly after birth, mainly because active 
reabsorption of sodium ions (Na+) across the 
alveolar epithelium creates an osmotic force 
favoring reabsorption of alveolar fluid.8 

Alveolar epithelial cells type I are squamous with 
a diameter of about 50–100 µm; however, they are 
very thin, thus minimizing the diffusion distance 

 

Figure 1. Schematic Representation of Alveolar Epithelial Cells with the Components that Contribute to the 

Alveolar Fluid Clearance Process. 

AECI, alveolar epithelial cell type I; AECII, alveolar epithelial cell type II; ENaC, epithelial Na+ channel; Na,K-

ATPase, sodium-potassium pump. 
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between the alveolar airspace and the pulmonary 
capillaries, which facilitates gas exchange. Although 
they constitute 5%–10% of all lung cells,9 AECI 
cover more than 90% of the alveolar surface as they 
are very large and have thin cytoplasmic extensions. 
Recently, it was reported that AECI play an active 
role in water permeability and the regulation of 
alveolar fluid homeostasis.10,11 

The alveolar epithelial cells type II are smaller 
and cuboidal, with a diameter of 21 µm in rats and 
50 µm in humans. They occupy only ~5% of the 
surface area, yet AECII constitute ~15% of all lung 
cells and 60% of alveolar epithelial cells. They 
produce, secrete, and recycle lung surfactant; they 
transport ions, participate in lung immune 
responses, and can also be converted to AECI to 
repair damaged epithelium or during fetal lung 
development. The AECII has a distinct morphology 
with characteristic lamellar bodies and a bipolar 
plasma membrane, consisting of an apical side that 
has short microvilli and a basolateral domain. These 
cells contain a wide range of transport proteins, 
including epithelial Na+ channels (ENaCs), Na,K-
ATPase, Na-H exchanger (NHE), and aquaporin-3 
(AQP3).12–16 

HISTORIC PERSPECTIVE 

Normand et al. demonstrated that fetal lamb lungs 
can absorb fluid from the airspaces at birth,17 and by 
using 131I tracer Walters and Olver calculated the 
rate of lung liquid secretion in fetal lambs.18 Matthay 
et al. reported that mature sheep lungs have the 
ability to clear edema.19 Since then, alveolar fluid 
clearance has been extensively investigated.4,20–25 

ALVEOLAR ACTIVE SODIUM TRANSPORT 

MECHANISM 

Alveolar fluid clearance (AFC) is an active process 
carried out mostly by the apical epithelial Na+ 
channels, and the basolateral Na,K-ATPase is 
involved in AFC.13,24 

Briefly, Na+ enters the alveolar epithelial cells 
through the apical amiloride-sensitive Na+ channels 
(ENaC), is transported through alveolar epithelial 
cells, and by a process that consumes energy is 
pumped out of the cell by the Na,K-ATPase located 
in the basolateral membrane in exchange for potas-
sium entry in a ratio of 3:2 Na+–K+ against their 
chemical gradient. This active vectorial Na+ flux 
produces a transepithelial osmotic gradient that 

causes water to move from the airspaces following 
the gradient.8,26–28 

Alveolar fluid reabsorption can be modulated by 
pharmacologic agents, gene therapy, and other inter-
ventions. Catecholamines, growth factors, vasopres-
sin, aldosterone, overexpression of Na,K-ATPase 
subunits and chronic heart failure model increase 
alveolar fluid reabsorption (Figure 2A).16,29–40 

Active Na+ transport and edema clearance are 
inhibited by interventions that can be divided into 
several categories:  

1. General AFC inhibitors such as the sodium 
channel blocker, amiloride,41 and the Na,K-
ATPase inhibitor, ouabain.5 

2. Consequences of acute lung injury (ALI), 
hypoxia,42 and hypercapnia that impair the 
alveolar epithelial function by increasing 
intracellular calcium levels.43,44 

3. Mechanisms of ALI including sepsis,45 
hyperoxia,46 high tidal volume ventilation and 
ventilation-induced lung injury,47 acute left atrial 
hypertension,48 andendothelin (Figure 2).49  

Notably, aerosolized or intravenous β₂-agonist 
therapy did not improve clinical outcomes in 
patients with lung injury; therefore, the use of β₂-
agonist therapy was not recommended in 
mechanically ventilated patients with lung 
injury.50,51 A more recent study appears to shed light 
onto the disparate effect of β₂-agonist therapy 
in vitro in animals, and in patients with lung injury. 
Apparently, the β2-adrenergic receptor (β2AR) on 
alveolar macrophages can augment the release of IL-
6, thus linking the sympathetic nervous system, by 
β2AR signaling, with lung inflammation and en-
hanced susceptibility to thrombotic cardiovascular 
events, which could have negative effects on the 
outcome of patients with acute lung injury.52 

Alveolar fluid clearance reflects active sodium 
transport, and several mediators participate in this 
process, including Na,K-ATPase, Na+ channels, 
aquaporins, and others. The sodium–potassium 
pump, an energy-consuming enzyme (Na,K-
ATPase), is a heterodimeric integral membrane 
protein that is synthesized in polysomes related to 
the rough endoplasmic reticulum. It is composed of 
two subunits: an α-subunit (a catalytic 110-kDa unit) 
and a β-subunit (a regulatory 55-kDa unit). The α-
subunit contains binding sites for ATP hydrolysis, 
Na+, K+, and cardiac glycosides. There are at least 
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three isoforms of  (1, 2, and 3); they differ by 
their affinity to sodium, ouabain, and tissue distri-
bution. The -subunit is thought to be responsible 

for incorporating the -subunit into the plasma 
membrane; there are three known isoforms of -
subunit.  

 

Figure 2. The Effect of Various Pharmacologic and Pathophysiologic Conditions on Alveolar Fluid Clearance. 

A: The rate of alveolar fluid clearance (AFC) was modulated following therapeutic interventions: catecholamines, 

vasopressin, and gene therapy upregulated AFC; however, the administration of endothelin, angiotensin, amiloride, 

ouabain, or colchicine inhibited active sodium transport and thus AFC. The data were adapted from references 13, 

27, 28, 31, 33, 36, 37.  

B: Alveolar fluid clearance (AFC) was decreased in the various states of acute lung injury, such as sepsis, hyperoxia, 

hypercapnia, and ventilation-induced lung injury. Moreover, in rats exposed to acutely increased left atrial pressure 

(e.g. acute left heart failure) AFC was inhibited; whereas AFC was significantly upregulated in chronic heart failure 

rats. The data were adapted from references 34, 40–43.  

The bars represent mean ± SEM. Alfa2, α2-subunit of Na,K-ATPase; Ami, amiloride; beta1, β1-subunit of Na,K-

ATPase; beta2 adr, β2 adrenergic receptor; CT, control; Ouab, ouabain; VILI, ventilation-induced lung injury. 
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A critical role is played by Na,K-ATPase in the 
homeostasis of Na+ and K+ during altered salt intake 
and pH regulation, besides its other important 
functions in several organs; therefore it is strictly 
regulated.8,53 The Na,K-ATPase can be regulated at 
the level of expression, internalization, and recruit-
ment of the pump proteins to the basolateral 
membrane (Figure 3). For example, catecholamines 
enhance the ability of the lungs to clear edema by 
recruiting Na,K-ATPase from the alveolar epithelial 
cell (AEC) cytosol to the basolateral membranes 
within minutes and thus increasing the activity of 
the pump. This process is mediated via the 
cAMP/PKA pathway.30,54,55 In contrast, the adverse 
effects on AFC of hypoxia, hypercapnia, sepsis, and 
endothelin are due to the AMPK/PKC pathway, in 
which Na,K-ATPase is phosphorylated, leading to its 
endocytosis.42,45,49,56 

An important contributor to alveolar sodium 
transport is the sodium channel (ENaC). The ENaC 

is a heterotrimeric protein that can be composed by 
different combinations of three known subunits: 
αENaC, βENaC, and γENaC. Alveolar epithelial cells 
contain three types of channels with different selec-
tivity properties: (1) a Ca2+-activated non-selective 
Na+ channel (NSC) composed of α-subunits alone, 
(2) a Na+-selective (moderately selective) channel 
composed of a combination of αENaC and βENaC or 
γENaC, and (3) the highly NSC composed of the 
three different subunits. The ENaC is located on the 
apical portion of AECs and plays a crucial role in 
sodium transport and AFC.28,30,57 Moreover, it has 
been shown that knocking out αENaC leads to defec-
tive AFC and premature death in newborn mice.  

Water channels or aquaporins (AQPs) are 
expressed in the lungs. AQP1 is located in both the 
apical and basolateral aspects of endothelial cells 
and fibroblasts, and AQP3, AQP4, and AQP5 are 
expressed in the respiratory epithelium. In the 
human respiratory tract, AQP5 is expressed in the 

 

Figure 3. Schematic Representation of Active Sodium Transport in the Alveolar Epithelial Cell Depicting Apical 

Na+ Channels, Basolaterally Located Na,K-ATPase, Aquaporins, and Co-transporters. 

Sodium enters through the apical membrane via Na+ channels and is extruded by the Na,K-ATPase, with water 

following iso-osmotically. Proposed mechanisms by which norepinephrine upregulates active sodium transport and 

alveolar clearance. 
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apical surface of AECI and AQP3 in the apical and 
basal membrane of AECII. Targeted deletions of 
AQPs in transgenic mice suggest that AQPs are not 
essential for alveolar fluid clearance; however, other 
compensatory mechanisms could have taken place 
instead of the deletion of AQPs.58 

While the contribution of AECI to alveolar fluid 
clearance has been suggested, further studies to 
evaluate the role of distal epithelial cells are 
necessary. We also need to explore the role of chlor-
ide channels and their regulation, particularly in the 
pathways of activation as well as functional contri-
butions of AQPs and cystic fibrosis transmembrane 
conductance regulator (CFTR). Additionally, signal 
transduction pathways as well as translation and 
post-translational pathways need to be studied as 
they may inform the field and help with novel 
therapies to modulate these pathways to enhance 
pulmonary edema clearance in patients with lung 
injury. 

CONCLUSIONS 

The mechanisms of lung edema clearance contrast 
with the regulation of pulmonary edema formation. 
Clearance of edema fluid is an active process that 
requires active transport of Na+ out of alveolar 
airspaces, with water following the osmotic gradient. 
The regulation of vectorial Na+ transport across the 
alveolo-capillary barrier is mediated mostly by 
apical Na+ channels and basolaterally expressed 
Na,K-ATPases. In patients with acute respiratory 
distress syndrome and lung injury the mechanisms 
regulating alveolar fluid reabsorption are impaired, 
and the restoration of the alveolar epithelial func-
tion to keep the lungs dry is important for normal 
gas exchange to occur and patients to survive. More 
knowledge about the mechanisms regulating lung 
edema clearance is needed in order to develop novel 
therapeutic strategies to accelerate fluid clearance 
and improve the alveolar epithelial function. 
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