
Engineering a serum-resistant and thermostable vesicular 
stomatitis virus G glycoprotein for pseudotyping retroviral and 
lentiviral vectors

Bum-Yeol Hwang and David V. Schaffer1

Chemical and Biomolecular Engineering, Bioengineering and the Helen Wills Neuroscience 
Institute, University of California, Berkeley, CA 94720-3220, USA

Abstract

Vesicular stomatitis virus G glycoprotein (VSV-G) is the most widely used envelope protein for 

retroviral and lentiviral vector pseudotyping; however, serum inactivation of VSV-G pseudotyped 

vectors is a significant challenge for in vivo gene delivery. To address this problem, we conducted 

directed evolution of VSV-G to increase its resistance to human serum neutralization. After six 

selection cycles, numerous common mutations were present. Based on their location within VSV-

G, we analyzed whether substitutions in several surface exposed residues could endow viral 

vectors with higher resistance to serum. S162T, T230N, and T368A mutations enhanced serum 

resistance, and additionally K66T, T368A, and E380K substitutions increased the thermostability 

of VSV-G pseudotyped retroviral vectors, an advantageous byproduct of the selection strategy. 

Analysis of a number of combined mutants revealed that VSV-G harboring T230N + T368A or 

K66T + S162T + T230N + T368A mutations exhibited both higher in vitro resistance to human 

serum and higher thermostability, as well as enhanced resistance to rabbit and mouse serum. 

Finally, lentiviral vectors pseudotyped with these variants were more resistant to human serum in 

a murine model. These serum-resistant and thermostable VSV-G variants may aid the application 

of retroviral and lentiviral vectors to gene therapy.
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INTRODUCTION

Since the first human gene therapy trial in 1989,1 there has been remarkable progress in both 

understanding the genetic basis of human disease and developing improved gene delivery 

vector systems to treat them.2–4 For the latter, clinical gene delivery to date has focused 
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primarily on viral vehicles due to their evolved ability to efficiently transport genetic 

information to into cells. However, viral vectors still face a number of challenges including 

immunogenencity, targeted delivery, safe genome integration, and vector production.7–9

Pseudotyping – the replacement of a virus’ attachment protein with that of a different virus – 

has enabled progress in addressing several of these concerns. For example, vesicular 

stomatitis virus G glycoprotein (VSV-G) is the most widely used glycoprotein for retroviral 

and lentiviral vector pseudotyping, as it offers several advantages including effective 

delivery to a broad range of cell types, enhanced vector stability, and increased infectious 

titer.16,17 That said, VSV-G is cytotoxic to producer cells,18 though the use of tetracycline-

regulating promoters has alleviated this problem and facilitated the generation of stable cell 

lines expressing VSV-G.19 As an additional problem, however, serum inactivation of VSV-

G pseudotyped viral vectors impedes their in vivo use.20 This inactivation is mediated by 

proteins of the complement cascade. In general, complement activation can occur via 

classical, alternative, and lectin pathways, and these systems are tightly regulated by the 

complement regulatory proteins (CRPs).21 However, the precise mechanism of VSV-G 

inactivation and the protein regions involved are not known.

Several approaches have been explored to overcome serum inactivation. Although known 

inhibitors of complement improve vector survival in serum in vitro,22 systemic delivery of 

complement inhibitors can be accompanied by toxicity.23 Incorporating CRPs directly into a 

virus – including human decay-accelerating factor (DAF)/CD55 and or membrane cofactor 

protein (MCP)/CD46 – enhanced the resistance of the virus to human serum 

inactivation.24–26 However, the efficiency of CRP incorporation into virions varied with the 

types of virus and producer cell, and the direct fusion of CRP to viral proteins resulted in 

low titers. As a result, only systemic use of modified adenovirus has been reported.27 As 

another approach, chemical “shielding” of VSV-G via bioconjugation of polyethylene glycol 

(PEG) or polyethylenimine enhanced the serum resistance of lentiviral vectors,28,29 though 

vector titer was reduced, and a chemical modification adds an additional step in vector 

production for clinical development. Alternatively, using different, serum-resistant 

glycoproteins – such as feline endogenous virus envelope protein RD114 or cocal virus 

envelope30,31 – for pseudotyping could pose a solution. However, RD114 pseudotyping 

resulted in lower titers (approximately 100-fold) compared to the VSV-G pseudotyping, and 

its use in vivo has thus been somewhat limited to date.32,33 Furthermore, the cocal envelope 

has not been tested in vivo to date, in contrast to the considerable in vivo characterization of 

VSV-G. Finally, utilizing packaging cell lines in which alpha-galactosyl-transferase genes 

are disrupted can generate vector lacking galactosyl-α(1,3)galactose epitopes and thereby 

reduce sensitivity to human complement, through this approach has not been broadly 

explored.25

Directed evolution has recently been developed and implemented to improve numerous 

properties of viral vectors, and this approach can be effective even in the absence of a 

mechanistic understanding of challenges facing a vector system. In particular, multiple 

studies have applied molecular evolution to improve vector stability, pseudotyping 

efficiency, transduction efficiency, resistance to antibodies, genomic integration selectivity, 

and other properties.34–39 Here, we explore whether directed evolution of the VSV-G 
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envelope may enable pseudotyped viral vectors to resist neutralization by human serum. 

Through a combination of evolution and site-directed mutagenesis, we created VSV-G 

variants that are both resistant to a panel of human and animal sera and are thermostable. 

Furthermore, variants exhibited enhanced gene delivery in the presence of human serum in 

vivo.

RESULTS

Library construction and selection

VSV-G libraries were constructed by error-prone PCR at two different mutation rates: a 2 × 

106 mutant library with a low error rate of 1–4 nucleotide mutations per VSV-G sequence 

and a 2 × 105 mutant library with 3–8 nucleotide mutations per sequence, as quantified by 

sequencing of randomly chosen clones. For selection, these libraries were inserted into a 

retroviral vector plasmid that was used to package a library of vector particles, where each 

harbored a vector genome encoding the VSV-G variant incorporated in the envelope of that 

particle. This requires that ~1 plasmid carrying a VSV-G variant be transfected into a 

producer cell during packaging. For initial optimization of this process, HEK 293T cells 

were transfected with 62.5 ng – 2 µg of the retroviral vector CLPIT-GFP followed by flow 

cytometry analysis (Supplementary data Fig. S1.). Upon transfection with 62.5 ng of 

CLPIT-GFP, approximately 15% of cells expressed GFP, suggesting that these conditions 

may introduce on average <1 plasmid per cell and could thus produce the desired virion 

library. Therefore, the two CLPIT VSV-G libraries were packaged separately using these 

conditions, and the resulting vectors were combined for selection.

To develop a strategy for selecting VSV-G variants resistant to serum neutralization, 

retroviral vector pseudotyped with wild type VSV-G was diluted fivefold in a mixture of 

human serum from 18 donors and incubated at 37°C (Supplementary data Fig. S2.). Vector 

infectivity progressively decreased with longer incubations, such that only ~5% of the vector 

remained infective after 6 hours. The VSV-G library was thus selected to evade human 

serum inactivation by incubating the virions with serum at 37°C for 6 hours. 293T cells were 

then infected with the treated viral vector library (at a MOI < 0.1 to prevent multiple 

infections of a single cell). Following selection with 1 µg/ml of puromycin, the selected viral 

pool was rescued via transfection of the pCMV gag/pol helper plasmid.

This process was repeated for six selection steps, and VSV-G variants were then recovered 

from 293T cell genomic DNA via PCR and inserted into the plasmid pcDNA IVS to 

generate helper plasmids for vector production. DNA sequencing revealed that while there 

were no duplicates among 36 randomly chosen VSV-G clones, common mutations were 

present (Figure 1A; Supplementary data Fig. S3.). The positions of these ‘hot spot’ 

mutations were analyzed within the structure of the prefusion form of VSV-G (Figure 1B),40 

which indicated that Lys66, Ser162, Asp208, Ser212, Lys216, Thr230, Thr368, and Glu380 

are located on the protein surface. In addition, Thr344 is located in the core region, Ile98 and 

Phe125 are located on the leg region that points toward the viral membrane, and Phe470 is 

located on the transmembrane domain of VSV-G. The latter, non-solvent exposed residues 

(Thr344, Ile98, Phe125, and Phe470) would appear unable to interact with components of 

human serum, and the former set of mutations was instead investigated.
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Functional analysis of individual VSV-G mutations

As there were no dominant individual clones following selection, we analyzed the roles of 

the common mutations in potential VSV-G serum resistance. Site-directed mutagenesis was 

used to introduce the individual, identified point mutations into the surface-exposed 

positions of wild type VSV-G (Figure 1), and GFP-expressing retroviral vectors were 

packaged. We found that, with the exception of S162T, the genomic titers (G-titers) of 

mutant vectors were equivalent to wild type vector (Figure 2A) suggesting that VSV-G can 

tolerate mutations that emerged from this library selection without loss of assembly. The 

mutant infectious titers (I-titers) were similar to wild type, with the exceptions that VSV-G 

E380K exhibited a 40% increase, and K66T and T368A showed a 70% decrease, 

respectively, in infectivity (Figure 2B). We investigated the relative ratio of infectious titer 

to genomic titer of all mutant variants (Figure 2C & Supplementary data Fig. S4C). Vector 

containing K66T, S162T, T230N, or T368A VSV-G showed somewhat lower I-titer/G-titer 

ratios compared to the wild type, suggesting that these mutations slightly decreased the 

infectivities of the viral vectors. We also investigated the relative ratio of VSV-G expression 

level, as obtained with a VSV-G ELISA assay, to G-titer (Figure 2C), and did not observe 

any significant differences compared to wild type VSV-G.

Human serum inactivation of variant VSV-G retroviral vectors

The human serum inactivation of retroviral vectors bearing wild type and single mutant 

VSV-G variants was examined. Since non-infectious of empty particles could conceivably 

affect a neutralization assay, we used the results of a VSV-G ELISA assay (Supplementary 

data Fig. S4C.) to equalize the amount of VSV-G added to each sample. The resulting 

ELISA-normalized viral vectors levels were incubated with the mixture of human serum 

from 18 donors. Following serum incubation at 37°C for 1 hr, titers were quantitated and 

reported as the percentage of remaining titer compared to that of control samples incubated 

at 37°C for 1 hr with phosphate-buffered saline (PBS) (pH 7.4) (Figure 3A) or heat 

inactivated (56°C, 30 min) human sera (HIHS) (Supplementary data Fig. S5A). Viral vectors 

were not inactivated in HIHS, suggesting that the inactivation may be caused by 

complement (Supplementary data Fig. S5B), and the results of these two normalization were 

thus very comparable. In particular, individual VSV-G mutants S162T (p < 0.05), T230N (p 

< 0.05), or T368A (p < 0.05) showed significantly increased human serum resistance 

compared to wild type VSV-G (Figure 3A).

Incubation in serum at 37°C may select not only for serum resistance but serendipitously 

also for thermostability, so we further examined the results for the vectors before and after 

incubation for 1 hr in PBS (Figure 3B). Mutants carrying K66T, T368A, or E380K 

interestingly showed higher thermostability compared to wild type VSV-G (p < 0.05). Due 

to the combined effects of serum resistance and thermal stability, a mutant carrying T368A 

showed > 1.6-fold higher infectivity (p < 0.01) compared to wild type VSV-G upon 

incubation in human serum at 37°C for 1 hr (Figure 3C). Based on these data, the S162T, 

T230N, and T368A mutations were deemed beneficial for serum resistance.

Combining mutations that individually contribute to a given property can further enhance 

that property.41,42 We therefore generated a number of double and triple VSV-G mutants 
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from individual mutations shown to confer serum resistance. All VSV-G mutants analyzed 

showed significantly higher resistance (p < 0.01 or 0.05) to human serum (grey bars in 

Figure 4A). Furthermore, all such mutants showed similar thermal stability compared to 

wild type VSV-G (striped bars in Figure 4A). For comparison, we also prepared retroviral 

vector pseudotyped with an RD114 envelope, which has previously been reported to have 

higher serum resistance than wild type VSV-G,33,43 as another control. As reported RD114 

showed increased resistance to human serum compared to wild type VSV-G, though again 

this envelope cannot package vector to the high titers needed for in vivo use.33 Collectively, 

the T230N + T368A mutant showed the highest residual infectivity (~68%) compared to the 

residual infectivity of parental VSV-G (~37%) and similar residual infectivity (~ 68%) of 

RD114 after incubation in human serum at 37°C for 1 hr.

K66T, T368A, and E380K mutations increased VSV-G thermal stability (Figure 3), and we 

thus investigated the effects of adding these mutations to the promising serum resistant 

variants. Several variants containing K66T or K66T + E380K substitutions showed similar 

or slightly higher thermal stability compared to wild type VSV-G, and several mutants 

(K66T + S162T + T230N + T368A, K66T + T368A + E380K, and K66T + S162T + T230N 

+ E380K) also showed statistically higher serum resistance (p < 0.05) (Figure 4B&C).

Human serum inactivation of variant VSV-G lentiviral vectors

While the envelope compositions of retroviral and lentiviral vectors are likely similar, we 

also analyzed the ability of VSV-G variants to confer serum resistance to lentivirus. Based 

on results with retroviral vectors, we analyzed the top five VSV-G variants (S162T + 

T230N, S162T + T368A, T230N + T368A, K66T + T368A + E380K, and K66T + S162T + 

T230N + T368A) showing higher serum resistance for retrovirus. Equal amounts of 

packaged lentivirus (7 × 104 GFP TU) were diluted fivefold in human serum, or PBS (pH 

7.4) as a control, and incubated at 37°C for 1 hr. Vector pseudotyped with several mutant 

VSV-G showed a greater resistance to human serum compared to wild type VSV-G 

pseudotyped lentiviral vector (Figure 5). Importantly, mutants T230N + T368A or K66T + 

S162T + T230N + T368A had higher combined thermostability and serum-resistance than 

wild type VSV-G.

Vector inactivation by animal serum

VSV-G pseudotyped viral vectors can be inactivated by sera from mouse, rat, and guinea 

pig, which can impact the interpretation of animal studies.25,44 The relative sensitivity of 

VSV-G pseudotyped retroviral or lentiviral vectors to several animal sera was thus tested 

(Figure 6A and 6B, respectively). S162T + T230N, T230N + T368A, or K66T + S162T + 

T230N + T368A VSV-G showed statistically higher resistance to mouse and rabbit sera for 

both retroviral and lentiviral vectors.

In vitro transduction of several cell lines

While the infectivities of 293T cells were comparable to wild type VSV-G in the absence of 

human serum (Figure 2), we characterized transduction of several other cell lines to 

determine whether the mutations affected infectivity (Figure 7). While the infectivities of the 

variants were somewhat lower for several cell types, the trends in infectivity for all lines was 
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similar between wild type and mutant VSV-G. Interestingly, the mutant carrying K66T + 

S162T + T230N +T368A showed statistically higher transduction efficiency to HeLa cells 

compared to wild type (p < 0.01).

In vivo analysis of human serum resistance

The ability of two promising variants – which we now term mutant 1 (T230N + T368A) and 

mutant 2 (K66T + S162T + T230N + T368A) – to resist human serum neutralization in a 

murine model was analyzed. For the in vivo neutralization assays, vector could be added to 

100% human serum; however, human serum administration in vivo results in a ~ tenfold 

dilution of the serum into circulation. To tune the level of vector that should be administered 

to observe neutralization, a preliminary study with wild type VSV-G was conducted, and the 

interval between serum and lentiviral vector administration was also varied. BALB/c mice 

were injected with 200 µl of human serum, or PBS as a control, into the tail vein. One, 5, or 

24 hours later, lentiviral vector encoding firefly luciferase was administered. For an 8 × 1010 

vector genome administration, after two weeks expression was observed in the liver, the 

primary site of lentiviral vector transduction.45 Also, expression levels were lower for vector 

administered 1 or 5 hours, but not 24 hours, after infection of human serum, compared to the 

PBS control (data not shown).

To assess neutralization of the VSV-G mutants, equal levels of lentiviral vector (8 × 1010 

vector genomes) were injected via the tail vein 1 hour after the administration of 200 µl of 

human serum or PBS. After two weeks, the mice were sacrificed, and luciferase expression 

levels were analyzed in liver. The presence of human serum reduced luciferase expression 

mediated by wild type VSV-G to only 22.1% of PBS-injected controls in liver. The human 

serum reduced mutants 1 and 2 to only 60% of PBS controls, levels that were nearly 3-fold 

higher than WT VSV-G under the same conditions (Figure 8).

DISCUSSION

Due to their broad tropism and high stability, VSV-G pseudotyped retroviral and lentiviral 

vectors are promising vehicles for gene transfer gene in vitro and in vivo. However, while 

VSV-G pseudotyped vectors have been increasingly explored for ex vivo gene delivery in 

clinical trials,46,47 serum neutralization of the VSV-G pseudotyped viral vectors is a 

significant obstacle for direct, in vivo administration. In this study, we conducted directed 

evolution of VSV-G to create serum-resistant VSV-G mutants. After 6 selection steps, 

followed by functional analysis of common mutations, we identified several mutations 

(S162T, T230N, and T368A) that enhanced VSV-G serum resistance. Furthermore, since 

incubation at 37°C was inherent to the selection, we also identified several adventitious 

mutations (K66T, T368A, and E380K) that apparently increased VSV-G thermostability. 

Upon combining these two classes of mutations, retroviral and lentiviral vectors 

pseudotyped with two resulting VSV-G variants (T230N + T368A and K66T + S162T + 

T230N +T368A) showed higher resistance to human and animal sera as well as increased 

thermostability compared to wild type VSV-G. While adeno-associated virus (AAV) has 

been evolved to resist antibody neutralization,38,48,49 to our knowledge this is the first effort 
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to harness iterative random mutagenesis and selection to endow retroviral or lentiviral 

vectors with the capacity to resist serum inactivation.

VSV-G pseudotyped viral vectors can be inactivated in serum by complement,20,30 a major 

element of the innate immune response that in general functions via classical, alternative, 

and lectin pathways.21 All pathways can mediate virus opsonization, virolysis, and 

anaphylatoxin and chemotaxin production. However, the particular mechanisms by which 

complement inactivates VSV-G presenting virions are unknown. The mutation sites 

(Ser162, Thr230, and Thr368) we identified do not lie within several known antibody 

binding epitopes50, indicating that these residues may lie in previously uncharacterized 

epitopes or that VSV-G may interact with complement via mechanisms independent of 

antibody neutralization. Despite the lack of mechanistic information underlying a given gene 

delivery problem, directed evolution can still be employed to create enhanced variants, 

which in this case could aid future efforts to investigate mechanisms of retroviral or 

lentiviral vector inactivation by complement.

As a byproduct of the evolution, mutations that enhanced the thermal stability of VSV-G 

were also identified, which can potentially enhance vector production and reduce dosage of 

administration. The extracellular half-life of retroviral vectors lies between 3.5 hrs and 8 hrs 

at 37°C,35,51,52 and our measurement (t1/2 = ~ 3 hrs) is close to this range. Therefore, our 

incubation of the library for 6 hours in human serum at 37°C also selected for enhanced 

thermostability. An increased protein thermal stability can be caused by several factors such 

as disulfide bond formation, hydrophobic interactions, or change of electrostatic interactions 

of the surface.53 The E380K mutation in VSV-G may eliminate a like-charge repulsion with 

Asp381 and create opposite-charge attraction on the protein surface to confer thermostability 

to the protein. By comparison, potential mechanisms for K66T and T368A 

thermostabilization are not as readily apparent. At any rate, combining these mutations with 

others that conferred serum-resistance resulted in vectors with both properties. In particular, 

mutants 1 and 2 showed a two-fold increase in half-life at 37°C (t1/2 = ~ 6 hrs). These 

improvements of thermal stability may have also contributed slightly to a greater stability to 

vector concentration by ultracentrifugation (data not shown).

Cocal-pseudotyped lentiviral vectors may have potential for in vivo gene therapy, due to 

their high titers, broad tropism, stability, and reported increased resistance to human serum 

compared to VSV-G-pseudotyped vectors.31 However, unlike VSV-G, their in vivo use has 

not yet been reported. RD114-pseudotped vectors also exhibit resistance to human serum. 

Green et al. conducted immunostaining for RD114 receptors,54 which were present in colon, 

testis, bone marrow, skeletal muscle, and skin epithelia. However, the receptors are absent in 

lung, thyroid, and artery, suggesting that the application of RD114-pseudotyped vectors to 

treat some diseases may be limited. By comparison, VSV-G pseudotyped lentiviral vectors 

have potential for broad tropism.55

In this study, we evolved VSV-G and successfully created variants with higher resistance to 

human, rabbit, and mouse sera in vitro and human serum in vivo. This work therefore further 

establishes the power of directed evolution to improve viral vectors, and these results may 

enhance the utility of retroviral and lentiviral vectors to treat human disease. In addition, 

Hwang and Schaffer Page 7

Gene Ther. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vesicular stomatitis virus (VSV) itself has emerged as a promising candidate in the field of 

oncolytic virus therapy. Therefore, incorporating a VSV variant encoding a human serum-

resistant and thermostable VSV-G may enhance the therapeutic potential of VSV for 

treating human cancer.

MATERIALS AND METHODS

Library construction and selection

Random mutagenesis libraries were generated by standard error-prone PCR of a VSV-G 

template using VSV-G fwd and VSV-G rev as primers (see Supplementary Table S1 for all 

primer sequences). The amplified PCR fragments were digested with Sfi I and Xho I, and the 

resulting fragments were ligated into the corresponding sites of the retroviral vector 

pCLPIT, which contains a puromycin resistance gene and places VSV-G under a 

tetracycline responsive promoter.

HEK 293T cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM) 

supplemented with 10% FBS (Invitrogen, Calrsbad, CA) and 1% penicillin/streptomycin 

(Invitrogen) at 37°C and 5% CO2. The VSV-G library was packaged into retroviral vectors 

via calcium phosphate transfection of 62.5 ng of pCLPIT VSV-G Lib, 6 µg of pCMV gag-

pol, and 14 µg of pBluescript II SK (Stratagene, Santa Clara, CA) in a ~ 80% confluent 10-

cm dish of HEK 293T cells. The library vector supernatant was twice harvested, 2 and 3 

days post-transfection, and then concentrated by ultracentrifugation. For selection, 18 

individual human serum samples were obtained from Innovative Research, Inc. (Southfield, 

MI). The viral vector library was diluted fivefold in the pooled human serum and incubated 

for 6 hours at 37°C. These viral vectors were used to infect 293T cells at a MOI of < 0.1. 

The infected cells were selected and enriched using 1 µg/ml of puromycin for two or three 

weeks. Packaging-competent virus variants were rescued through transfection of pCMV 

gag/pol into the expanded 293T cells and concentrated by ultracentrifugation for the next 

round of screening.

Sequence analysis and site-directed mutagenesis

After 5 and 6 rounds of the selection process, genomic DNA of the infected 293T cells was 

extracted using the QIAamp® DNA Mini kit (Qiagen, Valencia, CA). For sequencing of 

individual VSV-G clones, the VSV-G genes were amplified from this genomic DNA by 

PCR (using VSV-G IVS fwd and VSV-G IVS rev primers). The resulting PCR fragments 

were digested with Eco RI, and the fragments were ligated into the corresponding site of 

pcDNA IVS.56 Randomly chosen clones were sequenced (with IVS seq fwd, IVS seq rev, 

and VSV-G seq in primers).

Site-directed mutagenesis was conducted on the plasmid pcDNA IVS VSV-G using the 

QuickChange PCR-based technique, with Pfu polymerase and primers described in 

Supplementary Table S1. The amplified PCR products were treated with Dpn I and 

propagated into E. coli DH10B. Mutations were verified by DNA sequencing.
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Viral production

The individual VSV-G mutant retroviral vectors were packaged with 10 µg of pCLPIT GFP, 

6 µg of pCMV gag-pol, and 4 µg of pcDNA IVS VSV-G (or pcDNA IVS VSV-G mut) in a 

~ 80% confluent 10-cm dish of HEK 293T cells. RD114 envelope pseudotyped retroviral 

vector was packaged with pcDNA IVS RD114 which was obtained by substitution of VSV-

G gene by RD114 gene from pLTR-RD114A (Addgene, Cambridge, MA). The culture 

medium was changed 12 hours post-transfection, and the viral supernatant was collected 

both 24 h and 48 h later and concentrated by ultracentrifugation. To determine the titers of 

GFP-expressing vectors, 4 × 105 293T cells were infected with at least three different 

volumes of vector supernatant or concentrate. The cells were assayed for GFP expression by 

flow cytometry 3 days after infection. Vector genomic titers were measured by real-time 

qPCR using the iCycler iQ Real Time Detection System (Bio-Rad) and SYBR Green I 

(Invitrogen) with primers 5′-ATTGACTGAGTCGCCCGG-3′ (forward) and 5′-

AGCGAGACCACAAGTCGGAT-3′ (reverse). Individual VSV-G mutant lentiviral vectors 

were packaged with 10 µg of lentiviral transfer vector HIV-CSCG, 5 µg of pMDLg/pRRE, 

1.5 µg of pRSV Rev, and 3.5 µg of pcDNA IVS VSV-G (or pcDNA IVS VSV-G mut) and a 

process similar to retroviral vector production. Lentiviral vectors harboring firefly luciferase 

were packaged with 10 µg of Fluc, 5 µg of pMDLg/pRRE, 1.5 µg of pRSV Rev, and 3.5 µg 

of pcDNA IVS VSV-G (or pcDNA IVS VSV-G mut).57

Serum inactivation assay

In addition to the 18 human serum samples were obtained from Innovative Research, Inc. 

(Southfield, MI), mouse and rabbit serum were purchased from Sigma (St. Louis, MO). 

Serum inactivation experiments were carried out as described previously with some 

modifications.58 Briefly, 20 µl of viral vector normalized based on VSV-G ELISA data was 

diluted fivefold in human sera, heat-inactivated human sera (56°C, 30 min), or PBS (pH 7.4) 

as a control. Each sample was incubated for 1 hour at 37°C. All samples were then serially 

diluted and titered on 293T cells. Gene transfer was evaluated by flow cytometer for GFP 

expression 3 days after infection. To determine the change in titer after exposure to serum, 

the percentage of GFP-expressing cells for vector incubation in the serum was divided by 

the percentage of GFP-expressing cells for vector in PBS and reported as the percentage of 

titer recovery. To investigate thermal stability of the viral vectors, samples in PBS without 

incubation at 37°C was used as a control.

ELISA assay

To evaluate the expression level of VSV-G of purified viral vectors the binding of viral 

vector populations to a VSV-G polyclonal antibody was monitored by ELISA.59 MaxiSorp 

(Nunc) 96 well plates were coated at 4°C overnight with 50 µl of viral vectors diluted in 

carbonate coating buffer (100 mM, pH 9.6) and washed three times with PBS (pH 7.4). The 

wells were blocked by adding 200 µl of PBS with 5% non-fat dry milk at room temperature 

(RT) for 2 hours and washed twice with PBS. 100 µl of biotin conjugated anti-VSV-G tag 

antibody (1:3,000) (Abcam, Cambridge, MA) in carbonate coating buffer was added. After 

incubation overnight at 4°C, the plates were washed four times with PBS and 100 µl of 

streptavidin-alkaline phosphatase (1: 1,000) (Invitrogen) was added and incubated for 2 
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hours at RT. After four times washing with PBS, p-nitrophenly-phosphate (pNPP) substrate 

solution (Invitrogen) was added. Plates were read to determine the OD405 after 30 min 

incubation at RT.

Transduction analysis in vitro

To determine the relative transduction efficiencies the selected mutants compared to parental 

wild-type VSV-G pseudotyped retroviral vectors, HEK293T, CHO K1, NIH 3T3 (mouse 

embryonic fibroblast cell line), HeLa, and HT1080 cells were plated at a density of 4.0 × 

105 cells per well 24 hours prior to infection. Cells were infected with wild type or VSV-G 

variants pseudotyped retroviral vectors. The fraction of GFP positive cells was assessed 72 

hours post infection using a Beckman-Coulter Cytomics FC-500 flow cytometer.

In vivo human serum inactivation

Eight-week-old female BALB/c mice (Jackson Laboratories, Bar Harbor, ME; n = 4) were 

used for all experiments. 200 µl of pooled human serum, or PBS as a control, was 

administered into the tail vein with a 30-gauge needle. One hour after human serum or PBS 

introduction, recombinant lentiviral vectors carrying cDNA encoding firefly luciferase under 

the control of human ubiquitin promoter was injected into the tail vein. Two weeks after 

virus injection, animals were transcardially perfused with PBS, and liver was harvested and 

frozen. Frozen tissue samples were homogenized in 1× reporter lysis buffer (Promega, 

Madison, WI) and clarified by centrifugation for 10 min at 10,000 g. Luciferase reporter 

activities were determined as previously described,60 and the luciferase signal was 

normalized to total protein content as determined by a bicinchoninic acid assay (Pierce, 

Rockford, IL). Animal protocols were approved by the UCB Animal Care and Use 

Committee and conducted in accordance with National Institutes of Health guidelines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Common mutations following directed evolution of VSV-G
(a) The frequency of mutation at each amino acid residue of VSV-G among 36 randomly 

chosen VSV-G clones after 5 or 6 selection steps. (b) The location of each apparent ‘hot 

spot mutation’ in the crystal structure of the prefusion form of VSV-G (PDB ID: 2J6J). 

Figure was made using PyMol (http://www.pymol.org). Each monomer of VSV-G was 

colored in green, purple, and sky-blue, respectively. Green, blue, and red balls represent 

carbon, nitrogen, and oxygen atoms, respectively.
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Figure 2. Genomic and infectious titers of VSV-G chimeric retroviral vectors
Murine retroviral vector was packaged with the pCLPIT GFP vector plasmid, pCMV gag-

pol, and pcDNA IVS VSV-G helper plasmid containing individual VSV-G variants. (a) 
Vector genomic titers were measured by real-time qPCR. (b) Transduction efficiencies on 

293T cells were determined by flow cytometry analysis of retroviral vector mediated GFP 

expression. (c) Relative ratios of infectious titers to genomic titers (grey bars) titers and 

VSV-G ELISA data to genomic titers (black bars) of the retroviral vectors were calculated 

with the ratio of wild type VSV-G pseudotyped retroviral vector as 1, respectively. Error 

bars denote SD (n = 3). * and ** indicate statistical differences of P < 0.05 and P < 0.01, 

respectively, compared to infectivity of wild type VSV-G, as determined using an one-way 

ANOVA.
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Figure 3. Human serum resistance and thermostability of retroviral vectors pseudotyped with 
VSV-G mutants
The amounts of viral vectors were normalized based on VSV-G ELISA assay. (a) Human 

serum neutralization was quantified by measuring vector titers after incubation with human 

serum at 37°C for 1 hr, relative to those after incubation with PBS at 37°C for 1 hr. (b) 
Thermal effects were determined by quantifying relative titers after incubation with PBS at 

37°C for 1 hr compared to those without incubation at 37°C. (c) Human serum 

neutralization and thermal effects were determined by calculation of relative titers after 

incubation with human serum at 37°C for 1 hr compared to those without incubation at 

37°C. Error bars denote SD (n = 4). * and ** indicate statistical differences of P < 0.05 and 

P < 0.01, respectively, compared to infectivity of wild type VSV-G, as determined using an 

one-way ANOVA.
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Figure 4. Human serum neutralization and thermostability of retroviral vectors pseudotyped 
with VSV-G variants that combine several ‘hot spot mutations’
VSV-G mutants with combined beneficial mutations were generated by site-directed 

mutagenesis. The amounts of viral vectors were normalized based on VSV-G ELISA assay. 

Thermal effects, human serum neutralization, and combined serum neutralization and 

thermal effects were determined by quantifying relative titers after incubation with PBS at 

37°C for 1 hr compared to those without incubation at 37°C, after incubation with human 

serum at 37°C for 1 hr compared to those after incubation with PBS at 37°C for 1 hr, and 

after incubation with human serum at 37°C for 1 hr compared to those without incubation at 

37°C, respectively. (a) Variants contained ‘hot spot mutations’ for human serum resistance. 

(b) K66T and (c) E380K were added to enhance the thermal stability of retroviral vectors. 

Error bars denote SD (n = 4). * and ** indicate statistical differences of P < 0.05 and P < 

0.01, respectively, compared to the wild type VSV-G, as determined using an one-way 

ANOVA.
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Figure 5. Human serum neutralization and thermostability of lentiviral vectors pseudotyped 
with VSV-G variants
A standard, GFP encoding lentiviral vector was packaged with five VSV-G mutants that 

appeared promising in the retroviral results. Five VSV-G variants (S162T + T230N, S162T 

+ T368A, T230N + T368A, K66T + T368A + E380K, and K66T + S162T + T230N + 

T368A) showing higher resistance and thermal stability for retroviral vector packaging were 

selected. Thermal effects, human serum neutralization, and combined serum neutralization 

and thermal effects were determined by quantifying relative titers after incubation with PBS 

at 37°C for 1 hr compared to those without incubation at 37°C, after incubation with human 

serum at 37°C for 1 hr compared to those after incubation with PBS at 37°C for 1 hr, and 

after incubation with human serum at 37°C for 1 hr compared to those without incubation at 

37°C, respectively. Error bars denote SD (n = 4). * and ** indicate statistical differences of 

P < 0.05 and P < 0.01, respectively, compared to the wild type VSV-G, as determined using 

an one-way ANOVA.
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Figure 6. Aminal serum neutralization of retroviral and lentiviral vectors pseudotyped with 
VSV-G variants
For three variants (S162T+T230N, T230N +T368A and K66T + S162T + T230N + T368A) 

and wild type VSV-G, neutralization by animal sera was examined. (a) Retroviral vectors 

and (b) lentiviral vectors were diluted fivefold in animal sera and incubated at 37°C for 1 hr. 

Serum inactivation was determined by quantifying relative titers after incubation with 

human serum at 37°C for 1 hr compared to those after incubation with PBS at 37°C for 1 hr. 

Error bars denote SD (n = 4). * and ** indicate statistical differences of P < 0.05 and P < 
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0.01, respectively, compared to the wild type VSV-G, as determined using an one-way 

ANOVA.
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Figure 7. In vitro transduction of multiple cell lines with retroviral vectors pseudotyped with 
VSV-G variants
Retroviral vectors expressing GFP were used to transduce a panel of cell lines: HEK 293T, 

HT1080 (human fibrosarcoma cell line), CHO K1, NIH 3T3 (mouse embryonic fibroblast 

cell line), and HeLa cells to assess the transduction profile of the novel VSV-G variants. 

Error bars denote SD (n = 3). ** indicates statistical differences of P < 0.01, as determined 

using an one-way ANOVA.
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Figure 8. Human serum neutralization in vivo
For two variants (T230N +T368A and K66T + S162T + T230N + T368A) and wild type 

VSV-G, lentiviral vectors encoding luciferase were administered via tail vein injection to 

female BALB/c mice one hour after human serum or PBS introduction. After two weeks, 

levels of luciferase activity were determined and normalized to total protein for each sample 

analyzed. Relative luciferase expression in liver was determined by quantifying relative 

enzyme activity from human serum-primed mice relative to activity from naïve mice. Error 
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bars denote SD (n = 4). * and ** indicate statistical differences of P < 0.05 and P < 0.01, 

respectively, compared with wild type VSV-G, as determined using an one-way ANOVA.
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