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ABSTRACT

Although thousands of pseudogenes have been
annotated in the human genome, their transcrip-
tional regulation, expression profiles and functional
mechanisms are largely unknown. In this study,
we developed dreamBase (http:/rna.sysu.edu.cn/
dreamBase) to facilitate the investigation of DNA
modification, RNA regulation and protein binding
of potential expressed pseudogenes from multidi-
mensional high-throughput sequencing data. Based
on ~5500 ChiIP-seq and DNase-seq datasets, we
identified genome-wide binding profiles of various
transcription-associated factors around pseudogene
loci. By integrating ~18 000 RNA-seq data, we anal-
ysed the expression profiles of pseudogenes and ex-
plored their co-expression patterns with their par-
ent genes in 32 cancers and 31 normal tissues.
By combining microRNA binding sites, we demon-
strated complex post-transcriptional regulation net-
works involving 275 microRNAs and 1201 pseudo-
genes. We generated ceRNA networks to illustrate
the crosstalk between pseudogenes and their parent
genes through competitive binding of microRNAs. In
addition, we studied transcriptome-wide interactions
between RNA binding proteins (RBPs) and pseudo-
genes based on 458 CLIP-seq datasets. In conjunc-
tion with epitranscriptome sequencing data, we also
mapped 1039 RNA modification sites onto 635 pseu-
dogenes. This database will provide insights into the
transcriptional regulation, expression, functions and
mechanisms of pseudogenes as well as their roles in
biological processes and diseases.

INTRODUCTION

Pseudogenes are defined as dysfunctional copies of protein-
coding genes (1-4). Pseudogenes arise from genomic du-
plications or mRNA retro-transposition into the genome,
which results in the loss of pseudogene expression due to
loss of the transcription regulation region or accumulation
of deleterious mutations (5-8). The human genome con-
tains ~15 000 pseudogenes, and this value is compatible
to that of protein-coding genes (7,9,10). Importantly, ac-
cumulating evidence demonstrates that numerous pseudo-
genes exhibit transcriptional activity and are expressed as
non-coding RNAs (ncRNAs) that play important roles in
biological processes and diseases (5,9,11,12).

Transcribed pseudogenes have been validated to perform
at least three functions: (i) pseudogenes are transcribed as
sense or antisense products of their counterparts to regu-
late the expression of the functional gene (13,14); (ii) pseu-
dogenes unite dsRNAs with their parent genes to gener-
ate endo-siRNAs and further inhibit gene expression via
the RNAI pathway (15-18) or impact the stability of the
protein-coding mRNA (19-23); (iii) pseudogenes function
as competitive endogenous RNAs (ceRNAs) to absorb mi-
croRNAs from their cognate genes (24-28). Therefore, the
transcribed products of pseudogenes critically impact their
parent protein-coding genes via the ceRNA network (29).
However, the number of expressed pseudogenes and their
regulatory features are largely unknown and need to be in-
vestigated.

Given the high sequence similarity between pseudogenes
and their parent genes, it is difficult to specifically detect the
transcripts of an expressed pseudogene by traditional ex-
periments. Currently, the development of high-throughput
sequencing technologies makes the detection and analysis
of expressed pseudogenes more efficient than ever before.
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RNA-Seq technology has been broadly used to identify
and quantify expressed RNAs (30). Researchers have devel-
oped computational pipelines to inspect transcribed pseu-
dogenes (5,9). In addition, chromatin immunoprecipitation
followed by sequencing (ChIP-seq) is a technique for iden-
tifying transcription factor binding sites and histone modi-
fications across pseudogenes (31,32). High-throughput se-
quencing of RNA isolated by crosslinking immunopre-
cipitation (CLIP-seq) is a technology developed to detect
the relationships between RNA and RNA-binding proteins
(RBPs) and is useful to investigate the functions and mech-
anisms of pseudogenes. Recently, various epitranscriptome
sequencing technologies have been used to decode RNA
modifications at the whole transcriptome-level (33,34), fa-
cilitating the analysis of different types of RNA modifi-
cations on pseudogenes. It is necessary to integrate these
sequencing data for systematic investigations of expressed
pseudogenes and their functions.

In this study, by assessing a large amount of high-
throughput sequencing data, we established dreamBase to
comprehensively study the regulatory features and func-
tions of potentially expressed pseudogenes (Figure 1).
Through integrating and analysing these multi-dimensional
data, we identified millions of regulatory features, includ-
ing both transcriptional regulation and post-transcriptional
regulation of pseudogenes. All of these analysed data
could be visualized in our dreamBase genome browser and
freely downloaded. dreamBase will facilitate studies on the
transcriptional regulation, expression, and modification of
pseudogenes and their interactions with microRNAs and
RBPs in human health and disease.

MATERIALS AND METHODS

Integration and annotation of pseudogenes from public
databases

The human pseudogenes were retrieved from public re-
sources, including Yale pseudogene database (version 83)
(10), GENCODE database (version 26) (35), the Pseudo-
gene Decoration Resource (psiDR) (7) and ENSEMBL
database (version 89) (36). To guarantee a precise descrip-
tion of the pseudogenes, we only retained terms that were
annotated in at least two of these resources. All the genomic
coordinates of these pseudogenes were converted into the
human GRCh38 assembly (also known as hg38) using the
UCSC LiftOver tool (37).

Comprehensive identification of transcriptional regulation ev-
idence of pseudogenes from ChIP-seq and DNase-seq exper-
iments

The data from ChIP-seq and DNase-seq experiments per-
formed in multiple human cell lines were retrieved from
the Gene Expression Omnibus (GEO) (38) and ENCODE
project (39,40). In total, we manually collected ~5100
ChIP-seq experimental datasets of numerous DNA-binding
proteins, including transcription factors (TFs), Pol II and
histone modifications, and 385 DNase-seq experimental
datasets of DNase I (Table 1). In dreamBase, we annotated
examined transcriptional regulatory domains (from —4 kb
to +4 kb around the TSSs) of pseudogenes by using these

ChIP-seq and DNase-seq data. In addition, we also inte-
grated the regulatory data from psiDR (7) into dreamBase,
which analysed ~500 ChIP-seq experiments (Table 1) and
chromatin activity data from GENCODE project.

Expression analysis of pseudogenes in multiple cancers and
human tissues by RNA-Seq data

We manually collected a large number of expressed pseu-
dogenes from ~18 000 RNA-Seq experiments that were
analysed using a pipeline especially designed for pseudo-
genes (5,9). In addition, the expression of pseudogenes and
their parent genes, was assessed in 10 359 RNA-Seq exper-
iments of 32 types of cancers derived from the TCGA (The
Cancer Genome Atlas) project (41) (Supplementary Table
S1) and 7834 RNA-Seq experiments of 31 normal tissues
derived from GTEx (Genotype-Tissue Expression) project
(42) (Supplementary Table S2). FPKM values (43) and log,-
fold change (log2FC, scaled by FPKM + 0.01) were used to
quantify the pseudogene’s expression level and the expres-
sion change between tumour and normal samples, respec-
tively. To ensure the accuracy of analysis results, we only
retained pseudogenes that were expressed in at least 50% of
the total samples for downstream analysis.

Exploration of co-expression patterns between pseudogenes
and their parent genes

We developed a tool named Co-Pseudo to explore the co-
expression patterns between pseudogenes and their par-
ent genes. The Co-Pseudo tool allowed users to study co-
expression patterns with both of pseudogenes and their par-
ent genes expressed at least in 30%, 50%, 80% or 90% of
RNA-seq samples. Co-expression patterns were determined
by Pearson correlation coefficient and P-value using t-tests
(44). We provided the visualization of these expression data
in either FPKM or log, (FPKM + 0.01) forms with scatter
plots accompanied with regression lines and boxplots ac-
companied with outliers.

Study of RBP binding sites on pseudogenes from published
CLIP-seq data

To investigate the binding sites of RBPs on pseudogenes,
we manually collected the cluster/peak data generated from
~500 CLIP-seq experiments, including HITS-CLIP, PAR-
CLIP, iCLIP and CLASH. The clusters/peaks generated by
these CLIP-seq data were firstly obtained from the public
database (38,45) and then intersected with the coordinates
of pseudogenes to investigate the potential binding regions
on pseudogenes.

Establishment of the microRNA-mediated post-
transcriptional regulation network of pseudogenes and
other genes

Based on CLIP-seq data of AGO proteins and the bind-
ing sites of microRNAs, we inferred thousands of regula-
tory relationships between microRNAs and pseudogenes.
The binding sites of microRNAs on pseudogenes, long non-
coding RNAs (IncRNAs) and 3’UTR regions of protein-
coding genes were predicted by miRanda (46) using the
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Figure 1. System overview of the dreamBase core framework. All results generated by dreamBase are deposited in MySQL relational databases and

displayed in the visual browser and web page.

Table 1. Number of ChIP-seq datasets integrated in dreamBase

Active promoter Active polll Histone Dnasel Total
Manually collected 2490 200 2466 385 5541
Download from psiDR - - - - 500

‘-strict’ parameter. The binding sites of microRNAs that
shared over 95% regions with data of AGO CLIP-seq data
were retained for downstream analysis. To construct the
ceRNA network, the AGO-binding evidence for pseudo-
genes and parent genes or IncRNAs should be observed in
the same CLIP-seq experiments simultancously. A hyperge-
ometric test (47) was performed to evaluate the significance
of each pseudogene-gene/IncRNA pair. The test calculated
the P-value using the following formula:

min(K,n)

Py

i=k

Ck vk
Cy

where N represented the total number of miRNAs used to
predict targets, K represented the number of miRNAs that
interacted with the pseudogenes, n represented the number
of miRNAs that interacted with the parent genes/IncRNAs,
and k represented the common miRNA number between
these two genes. In addition, Pearson correlation anal-
ysis was performed between each pair of pseudogene-
gene/IncRNA, microRNA-pseudogene and microRNA-
gene/IncRNA. Cytoscape.js (48), a fully featured graph li-
brary that is written in javascript, was used to visualize the
complex ceRNA networks.

Mapping of RNA modification sites on pseudogenes using
high-throughput modification sequencing data

We curated RNA modification data derived from ~400
epitranscriptome sequencing experiments of 18 studies
from public resources (49), including m6A-Seq, pseudo-seq,
CeU-Seq data, Aza-IP data and RiboMeth-Seq data. Af-
ter calling the peak distribution for the entire genome, bed-
tools (50) was used to characterize RNA modification sites
on pseudogenes by mapping these data onto the respective
RNA molecules.

Construction of dreamBase genome browser

We used Jbrowse (51) to construct the dreamBase genome
browser to display all of the binding sites generated from
these high-throughput sequencing data. We integrated all of
our curated peak data, including the binding sites of tran-
scription factors, pol I, DNase I, histone modification, mi-
croRNAs, RNA binding proteins, RNA modifications and
the sequences of pseudogenes and displayed this informa-
tion in the dreamBase genome browser.
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DATABASE CONTENT AND WEB INTERFACE

The genome-wide landscape of transcriptional regulatory el-
ements around pseudogenes

dreamBase provides comprehensive annotation and iden-
tification of the relationships between the transcriptional
regulatory elements and pseudogenes based on a large
amount of ChIP-seq and DNase-seq experiments. These ex-
periments reflect the binding sites of transcription-related
factors and other chromatin-associated proteins (including
transcription factors, pol I, DNase I and histone modifica-
tions) distribution around the TSSs of pseudogenes.

The pseudogene of ATP binding cassette subfamily A
member 17 (ABCA17P) is a ubiquitously expressed pseu-
dogene in various human tissues (52). In dreamBase,
our results revealed strong transcriptional evidence for
ABCA17P. Around the TSS of ABCA17P, we observed ac-
tive binding signals of pol II, TFs, histone modifications
and DNase I hypersensitivity sites, which were supported by
3, 81, 298 and 39 experiments, respectively (Supplementary
Figure S1A). The information of sample details and bind-
ing site locations could be inspected by clicking the corre-
sponding number of supporting experiments (Supplemen-
tary Figure SIB&C).

Users can use comparison operators to search multiple
columns simultaneously with flexible parameters. For ex-
ample, by setting all the transcriptional-related columns
with ‘> = 10" parameter, dreamBase selects ~2000 pseudo-
genes, which contained transcriptional signals of four types
of transcription-associated factors, and each signal was sup-
ported by at least 10 high-throughput sequencing experi-
ments (Supplementary Figure S2).

Expression profiles of pseudogenes across multiple cancer
types and human tissues

Increasing evidence demonstrated that expressed pseudo-
genes have tissue- and cancer-specific characteristics and
play important roles in cancers and biological processes.
On our website, we provide 3 sub-modules of the ‘Expres-
sion” module, including ‘Joint-analysis’, ‘Pan-Cancer’ and
‘Normal-Tissues’ (Materials and methods), to explore the
expression profiles of pseudogenes from RNA-Seq data in
different cancers and human tissues (Supplementary Figure
S3).

In the Pan-cancer page, log2FC of pseudogenes between
tumour and normal samples in all of the 32 types of cancers
were visualized through heatmap tables. Red colour repre-
sents the expression of pseudogenes that are upregulated in
tumour samples, whereas blue colour represents downregu-
lated expression. A recent study reported that double home-
obox A pseudogene 8 (DUXAPS8) was upregulated in non-
small-cell lung cancer cell tissues, and this gene had the po-
tential to be a new candidate prognostic marker for NSCLC
patients (53). Using the ‘Pan-Cancer’ sub-module, which
was developed based on the TCGA Pan-Cancer project,
we clearly observed that DUXAPS was upregulated ap-
proximately 3.3-fold in lung squamous cell carcinoma as
demonstrated by expression heatmap tables. In addition,
DUXAPS was up regulated not only in lung cancer but also

in most other cancer types, which suggesting that DUXAPS
may serve as an oncogene in many cancers (Figure 2).

Transcriptome-wide co-expression analysis and ceRNA net-
work construction between pseudogenes and their parent
genes

Transcribed pseudogenes can regulate their parent genes via
co-expression. Moreover, increasing evidence showed that
pseudogenes and their parent genes form regulatory pairs
and function by influencing each other. Therefore, the co-
expression networks of pseudogenes and their parent genes
could be used to predict functions of pseudogenes based
on the annotation of their co-expressed parental protein-
coding genes. We developed a web-based tool named Co-
Pseudo to explore the co-expression patterns between pseu-
dogenes and their parent genes in multiple human cancers
and normal tissues. A previous study demonstrated that
ATP binding cassette subfamily C member 6 (ABCC6) and
its transcribed pseudogene ABCCO6P1 were co-expressed
across a variety of human tissues (54). Using our Co-Pseudo
tool to inspect this event in 31 normal tissues derived from
the GTEx project, significantly positive co-expression rela-
tionships between ABCC6P1 and ABCC6 were clearly illus-
trated across numerous tissues (Supplementary Figure S4).

One of the important roles of an expressed pseudogene
is distracting microRNAs from their parent genes and es-
tablishing ceRNA networks (27,29,55). In dreamBase, we
constructed a tool named CeRNA-Pseudo to visualize the
crosstalk between pseudogenes and their parent genes based
on competitive microRNA binding evidence. A recent study
reported a potential ceRNA pair composed of a putative tu-
mour suppressor a-catenin (CTNNAT1) and its pseudogene
CTNNAIPI (9). In our study, we inspected the relation-
ship between CTNNAT and CTNNAI1PI using CeRNA-
Pseudo. Our results presented that these two genes shared
seven common microRNAs (Supplementary Figure S5).
Detailed information, including average expression value,
the correlation coefficient and P-value for each set of pseu-
dogenes, parent genes and microRNAs, were also calculated
in every cancer (Supplementary Figure S6).

Interactions between RBPs and pseudogenes

Accumulated evidence has demonstrated that various RBPs
play important roles in regulating ncRNAs at the post-
transcription level (56,57). However, research on the rela-
tionships between these RBPs and the transcribed pseudo-
genes is lacking. We identified 112 RBPs that had thou-
sands of binding sites on RNA molecules of pseudogenes
by analyzing peak data from 458 CLIP-seq experiments.
On average, each pseudogene contained 2.06 RBP bind-
ing sites which were supported by 1.15 experiments. Some
RBPs were significantly enriched in pseudogenes. For in-
stance, fused in sarcoma (FUS) protein has interaction sites
with 5106 distinct pseudogenes (Supplementary Table S3).
Among these sites, RP11-958N24.1 contains 94 distinctive
binding sites that were supported by four CLIP-seq experi-
ments. Detailed information regarding RBPs and the cor-
responding number of supporting CLIP-seq experiments
were also recorded (Supplementary Figure S7).



Expression Patterns of DUXAPE

50

40

Expressioin level: FPKM
n
3

DUXAP8 Expression Patterns Across 32 Cancers From TCGA Project

Data Source: dreamBase project

Nucleic Acids Research, 2018, Vol. 46, Database issue D89

Print chart

Download PNG image
Download JPEG image
Download PDF document
Download SVG vector image

Download the expression patterns
of pseudogene >

| Expressions in Tumor Tissue

Expressions in Normal Tissue

Figure 2. The boxplot expression patterns of DUXAPS in 32 types of cancers.

The distribution of different types of RNA modifications on
pseudogenes

In eukaryotes, >100 different types of RNA modifications
have been identified on various RNA molecules. How-
ever, the characteristics and distribution of these modifi-
cations on pseudogenes remain largely unknown. In our
study, we provided transcriptome-wide RNA modification
maps of pseudogenes based on RNA modification sites
identified from a large amount of high-throughput epi-
transcriptome sequencing experiments. Our results demon-
strated 1423 RNA modification sites distributed on 1237
pseudogenes, and most of these site (~88%) involved N6-
Methyladenosine (m6A) modification. In addition, pseu-
douridine (W) modification and 2’-O-methylation (2'-O-
Me) modification were also identified on pseudogene RNA
molecules. Our analysis results will further the study of the
post-transcriptional modification mechanisms of expressed
pseudogenes.

DISCUSSION AND CONCLUSIONS

Compared with other pseudogene resources (7,10), which
mainly focus on the annotation of pseudogenes, dreamBase
has some distinct and important promotions (Figure 1).
dreamBase advances this field of study based on the follow-
ing features:

a. We annotated genome-wide transcribed signatures on
the transcriptional regulatory domains of pseudogenes
using a large amount of ChIP-seq data and DNase-seq
data. To summarize, we annotated active promoter and
enhancer regions of pseudogenes based on millions of
binding sites of 475 different TFs and 48 histone modi-

fications. In addition, we employed the binding sites of
Pol I to characterize the transcriptional signals of pseu-
dogenes.

b. We collected and analysed expression data from ~18 000
RNA-seq experiments that were processed by a bioin-
formatics pipeline especially designed for pseudogenes
(5,9) and investigated the expression level of pseudo-
genes across cancer tissues and cell lines. We also per-
formed pan-cancer and co-expression analysis on ex-
pressed pseudogenes ground on expression data from
~10,000 RNA-seq experiments of 32 tumor tissues and
31 normal tissues.

c. We combined predicted binding sites of microRNAs
with evidence supported by AGO CLIP-seq data
to study the relevance of microRNAs against RNA
molecules of pseudogenes. In addition, we combined
these interaction and expression data of pseudogenes,
and therefore constructed ceRNA networks that con-
sisted of pseudogenes and other RNAs. These features
will make dreamBase a valuable resource for under-
standing the complex networks and mechanisms medi-
ated by pseudogenes.

d. We integrated the binding sites of RBPs derived from
458 CLIP-seq datasets and systematically study the
binding patterns of RBPs on RNA products of pseudo-
genes.

e. We provided transcriptome-wide profiling of RNA mod-
ifications on expressed pseudogenes based on epitran-
scriptome sequencing technologies.

In conclusion, dreamBase was assembled with a large
amount of data derived from ChIP-seq, DNase-seq, RNA-
Seq and CLIP-seq experiments and provided regulatory ev-



D90 Nucleic Acids Research, 2018, Vol. 46, Database issue

idence of the transcription, RNA regulation and protein
binding features of potentially expressed pseudogenes. We
also identified thousands of post-transcriptional regulatory
relationships between pseudogenes and their parent genes,
IncRNAs, microRNAs, and RBPs. dreamBase will provide
researchers with a comprehensive and powerful platform to
decode the transcription, expression, regulation, and modi-
fication of pseudogenes in multiple cancers and normal tis-
sues.

FURTHER DIRECTIONS

The amount of high-throughput sequencing data is grow-
ing rapidly and applied to a broader set of tissues, cell
lines, and conditions. Moreover, new technologies, such as
single-cell sequencing, single-molecule sequencing, and di-
rect RNA sequencing become increasingly important in
identifying variations in sequences and sub-cell types and
can be applied to more accurately demonstrate the various
characteristics of expressed pseudogenes and other types
of RNAs. We will continuously maintain and update the
database with the integration of more aspects of the data to
improve our understanding of expressed pseudogenes and
other types of genes in human health and diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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