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Abstract

Earlier, it was shown that reversing the downregulation of neuritin expression in the brain 
improves central neuropathy in diabetic rats. We investigated the protective mechanism 
of neuritin in diabetic cognitive dysfunction via astrocytes. Further, the impact of the 
overexpression of neuritin in the cortex and the hippocampus on diabetic cognitive 
dysfunction and astrogliosis in type 2 diabetic (db/db) mice was assessed. Antagonists 
were used to inhibit the JAK2/STAT3 signaling pathway in U-118MG, an astrocyte cell line. 
Immunofluorescence, Western blotting, and real-time PCR were performed. Neuritin 
overexpression in the hippocampus of db/db mice significantly ameliorated cognitive 
dysfunction, hippocampal neuronal impairment, and synaptic plasticity deterioration, and 
inhibited astrogliosis and the JAK2/STAT3 signaling pathway in the hippocampus. Neuritin 
suppressed the JAK2/STAT3 signaling pathway to inhibit lipopolysaccharide-induced 
gliosis in U-118MG cells. It was observed that neuritin regulates the JAK2/STAT3 signaling 
pathway in astrocytes to inhibit astrogliosis and improve diabetic cognitive dysfunction.

Introduction

The incidence of cognitive dysfunction in patients with 
type 2 diabetes is 1.5 times higher than that in nondiabetic 
patients and 60 to 70% of diabetes patients have cognitive 
dysfunction. Currently, the management strategies for 
type 2 diabetes cannot benefit cognitive dysfunction, 
which place a great burden on type 2 diabetes, their 
families, and society (Yuan & Wang 2017). Progressive 
cognitive dysfunction is a central characteristic of diabetic 
encephalopathy (Xu et al. 2017). Prediabetes is linked to 
structural brain abnormalities, with further exacerbation 
of type 2 diabetes (van Agtmaal et  al. 2018). Impaired 
cognition during type 2 diabetes is particularly evident 
in the scope of memory and executive function (Areosa 
Sastre et al. 2017).

Hippocampal synaptic plasticity is the neurobiological 
basis of learning and memory in cognitive function 
and participates in the occurrence and development of 
cognitive dysfunction in type 2 diabetes (Huang et  al. 
2016). Hippocampal synaptic plasticity is regulated by 
several neurotrophic factors, including neuritin (An 
et  al. 2014). Astrocytes not only bridge the gap between 
metabolic supplies by blood vessels and neurons but also 
allow the fine control of neurotransmission by providing 
appropriate signaling molecules and insulation through 
tight enwrapping of synapses (Dallerac & Rouach 2016). 
Abnormalities in synaptic transmission lead to cognitive 
dysfunction (Koyama 2014). Astrocytes play an important 
role in cognitive functions, including learning and 
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memory (Santello et al. 2019). Reactive gliosis is a process 
in which astrocytes maintain the stability of the neuronal 
microenvironment and play a protective role in the early 
stage of the injury, but persistent reactive gliosis forms a 
glial scar at the injury site to repair the missing site and 
further block the nerve. Diabetic rats display astrogliosis in 
the cortex and hippocampus (Tomassoni et al. 2013); while 
type 2 diabetic mice also show synaptic dysfunction and 
astrogliosis with memory impairment (Duarte et al. 2012).

Scar formation in astrocytes after spinal injury is 
regulated by the STAT3 signaling pathway (Wanner et al. 
2013). The JAK2/STAT3 signaling pathway is involved 
in several diabetic complications, such as diabetic 
neuropathy (Li et al. 2019), diabetic cardiomyopathy (Gao 
et al. 2019), and diabetic nephropathy (Wang et al. 2012). 
The JAK2/STAT3 signaling pathway in the hippocampus of 
diabetic rats induced by streptozotocin is one of the most 
significant signaling pathways that regulates the process 
during such complications (Gurzov et  al. 2016). The  
JAK2/STAT3 signaling pathway is involved in 
environmental contaminant-mediated astrocyte 
activation (Chen et al. 2018) and is necessary and sufficient 
to induce and maintain astrocyte reactivity (Ceyzeriat 
et  al. 2018). Over the years, the JAK2/STAT3 signaling 
pathway has emerged as a central regulator of astrocyte 
reactivity and plays a critical role in animal models that 
regulate synaptic plasticity, reactive gliosis, and cognitive 
dysfunction (Ceyzeriat et al. 2016).

Neuritin (also named cpg15) is an activity-induced 
glycosylphosphatidylinositol-anchored axonal protein 
that is mainly expressed in the brain (Zhou & Zhou 
2014). Neuritin ameliorates neurite outgrowth recovery 
of hippocampal neurons after mouse cerebral ischemia 
(Zhao et al. 2017) and improves depression and cognitive 
function during schizophrenia (Son et  al. 2012). Nerve 
growth factor treatment restores neuritin levels in the 
dorsal root ganglia and sciatic nerves of diabetic rats 
(Karamoysoyli et al. 2008). In a previous study, we showed 
that berberine benefits diabetic neuropathy by improving 
micropathology and increasing neuritin expression via 
the mitogen-activated protein kinase signaling pathway 
(Zhou et al. 2016). Administration of exogenous neuritin 
improves the viability and function of Schwann cells in 
diabetic neuropathy rats (Xi et al. 2020).

In the present study, we employed the overexpression 
of neuritin in the cortex and hippocampus of type 2 
diabetic (db/db) mice and lipopolysaccharide induction 
of U-118MG astrocyte cell line to investigate the effects of 
neuritin on diabetic cognitive dysfunction and astrogliosis 
through the JAK2/STAT3 signaling pathway.

Material and methods

db/db/neuritin/Emx1-Cre mice

A transgenic mouse line harboring the CMV-LoxP-STOP-
LoxP-tagged human neuritin transgene was established 
using C57BL/6J mice generated by Cyagen Biosciences Inc. 
((Guangzhou, China) Certificate No. TGBS141013BA1). 
A transgenic mouse model with high cortical and 
hippocampal tissue-specific overexpression of neuritin 
was established by crossing neuritin transgenic mice with 
Emx1-Cre mice (B6.129S2Emx1tm1(cre)Krj/J, https://www.
jax.org/strain/005628). C57BL/6J-Leprdb/+ heterozygous 
littermate (db/m) mice were purchased from the Jackson 
Laboratory (Stock Number: 000699). Nondiabetic db/m 
mice were used to crossbreed C57BL/6J-Leprdb/db 
diabetic (db/db) mice. The db/m mice were crossed with 
the neuritin-Cre transgenic mice to yield db/db/neuritin/
Exm1-Cre (neuritin overexpression db/db) mice, which 
are triple transgenic diabetic mice overexpressing neuritin 
in the cortex and hippocampus. All mice were backcrossed 
onto the C57BL/6J background for ten generations. 
Cre-mediated excision of neuritin was assessed by PCR 
using genomic DNA derived from the tail. In all animal 
studies, male mice were used, and littermates served as 
controls. All mice were bred in a specific pathogen-free, 
temperature-and humidity-controlled environment 
with a 12 h light: 12 h darkness cycle and allowed free 
access to food and water. The animal experiments were 
approved by the Army Medical University according to 
the guidelines of the Institutional Animal Care and Use 
Committee.

Drug treatment

Both standard and high-fat diets containing 45% fat 
were purchased from Mediscience Ltd., Nanjing, China. 
The high-fat diet contained 24.0% protein, 41.0% 
carbohydrate, and 24.0% fat. Six-week-old male mice were 
separated into four groups, with six animals per group. 
One group of mice was fed a standard diet, while the other 
groups were fed a high-fat diet instead of a standard diet for 
8 weeks. (i) db/m mice were fed a standard diet, (ii) db/db  
mice fed a high-fat diet, (iii) neuritin-overexpressing  
db/db mice fed a high-fat diet, (iv) db/db mice fed a 
high-fat diet + JAK2 inhibitor (AG490, 15 mg/kg, Abcam, 
Catalog #ab120950). During the 8 weeks of treatment, the 
mice were intraperitoneally injected with JAK2 inhibitor 
or its dilution vehicle (PBS containing 5% dimethyl 
sulfoxide) (Ignarro et al. 2013).
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Morris water maze test

After 7 weeks of drug administration, the animals were 
tested in a spatial version of the Morris water maze test 
as previously described (Si et al. 2016). The Morris water 
maze consisted of a circular water tank (120 cm diameter, 
50 cm height) that was partially filled with water (25°C). 
Milk powder was used to render the water opaque. The 
training started by acclimating the mouse to the task 
environment with 2 days of free-swimming in the pool 
with no platform. Each session lasted for 2 min. The pool 
was virtually divided into four equal quadrants, labeled 
as N-S-E-W. A platform (10 cm diameter) was placed in 
one of the four maze quadrants (the target quadrant) 
and submerged 0.5 cm below the water surface. The 
platform remained in the same quadrant throughout the 
experiment. The mice were required to find the platform 
using only the distal spatial cues available in the testing 
room. The cues were maintained throughout the time of 
the test. The mice received four consecutive daily training 
trials in the following 5 days, with each trial having a 
ceiling time of 60 s and a trial interval of approximately 
30 s. The mouse had to swim until it climbed onto the 
platform and then submerged beneath the water. After 
climbing onto the platform, the animal remained there 
for 30 s before the commencement of the next trial. The 
escape platform was kept at the same position relative to 
the distal cues. If the mouse failed to reach the escape 
platform within the maximum allowed time of 60 s, it 
was gently placed on the platform and allowed to remain 
there for the same amount of time. The time taken to 
reach the platform (latency in seconds) was measured.

A probe trial was performed to assess the extent of 
memory consolidation. The time spent in the target 
quadrant indicates the degree of memory consolidation 
that occurs after learning. In the probe trial, the mouse 
was placed into the pool as in the training trial, except 
that the hidden platform was removed from the pool. The 
time of crossing the former platform quadrant and the 
total time of crossing all quadrants were recorded for 60 s.

Tissue preparation

After the Morris water maze test, mice were allowed 
to recover for a day, then fasted overnight, and were 
anesthetized with chloral hydrate (ip, 400 mg/kg). Blood 
of mice from each group was collected from the heart, 
transferred immediately into microcentrifuge tubes, 
and allowed to clot to obtain the serum. It was then 
perfused with 0.9% sodium chloride solution containing 

0.1% diethylpyrocarbonate at 25°C followed by 4% 
paraformaldehyde in 0.1 mol/L PBS. After removing from 
the skull, the brains were fixed in 4% paraformaldehyde 
overnight, dehydrated in a 30% sucrose solution for 
3–5 days at 4°C. Serial coronal sections (25 μm thick) 
of the whole hippocampus were cut using a sliding 
microtome and stored at −20°C until used for Nissl and 
immunofluorescence staining. The same sequence number 
section of serial sagittal sections of the brain containing 
the hippocampus was used for each experiment.

Nissl staining

The frozen sections were fixed with 70% ethanol for 30 s  
and rinsed in DEPC-treated water for 30 s. The sections 
were then stained with 1% toluidine blue dye for 10 min 
at room temperature. After washing in distilled water 
for 1 min, the sections were dehydrated in a gradient 
alcohol and mounted with neutral resins. Nissl substance 
was observed under a light microscope (Olympus) with 
live neurons being highlighted by blue staining (Su et al. 
2017). ImageJ 1.50 (National Institutes of Health) was 
used to analyze the average gray value of images.

In vitro U-118MG cells experiment

U-118MG cells were maintained in a humidified incubator 
with 5% CO2 and maintained at 37°C in Dulbecco’s 
modified Eagle’s medium (DMEM), supplemented with 
10% fetal bovine serum. Recombinant human neuritin 
(Sigma Co. Ltd.), JAK2 inhibitor (AG490), and STAT3 
inhibitor (Stattic, Abcam Catalog #ab120952) were 
administered 30 min before stimulation with 1 μg/mL 
lipopolysaccharide. After 48 h of treatment, cells were 
collected and lysed, and cell extracts were analyzed by 
real-time PCR and Western blotting.

Immunofluorescence staining

Enzymatic retrieval was performed by incubating the 
sections in proteinase K for 10 min at 25°C. The sections 
were rinsed with PBS, permeabilized with 0.3% Triton 
X-100 in PBS for 30 min, blocked using blocking buffer 
(PBS containing 5% normal serum and 0.3% Triton 
X-100) for 1 h, and incubated with primary antibodies 
(4°C, 12 h) and secondary antibodies (37°C, 2 h) in PBS 
containing 0.05% Tween 20. The primary antibodies used 
were as follows: GFAP (1:100, Abcam, Catalog #ab7260), 
JAK2 (1:100, Abcam, Catalog #ab108596), p-JAK2 (1:100, 
Abcam, Catalog #ab32101), STAT3 (1:100, Abcam,  
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Catalog #ab68153), p-STAT3 (1:100, Abcam, Catalog 
#ab76315), and neuritin (1:100, Abcam, Catalog #64186). 
The secondary antibodies Alexa 488-labeled goat anti-
rabbit IgG (1:500, Catalog#A0423) and Alexa 647-labeled 
goat anti-rabbit IgG (1:500, Catalog#A0468) were 
purchased from Beyotime (Shanghai, China). Nuclei were 
stained with DAPI (Beyotime). Finally, slides were washed 
five times in PBS and coverslips were mounted in 90% 
glycerol for microscopic analysis.

Western blot

The cortex and hippocampus of the mice were dissected 
on ice. The proteins in the cortex, hippocampus, and 
U-118MG cells were extracted using RIPA lysis buffer 
(Beyotime, Catalog #P0013B), and total proteins in the 
supernatant were determined using a BCA protein assay 
kit (Beyotime, Catalog #P0012). Then, 40 μg of protein 
was mixed in a buffer (25% glycerol, 2% SDS, 0.01% 
bromophenol blue, Tris–HCl, pH 6.8) and heated at 
100°C for 5 min. The samples were subjected to 10% 
SDS-PAGE, followed by transfer onto a PVDF membrane 
(Roche) using the GelDoc XR system (Bio-Rad) (Tang et al. 
2017). The membrane was washed with Tris-buffered 
154 mmol/L NaCl solution with 0.1% Tween 20, and 
incubated with anti-rabbit neuritin (Abcam, Catalog 
#64186), GFAP (Abcam, Catalog #ab7260), JAK2 (Abcam, 
Catalog # ab108596), p-JAK2 (Abcam, Catalog #ab32101), 
STAT3 (Abcam, Catalog #ab68153), p-STAT3 (Abcam, 
Catalog #ab76315), or β-actin polyclonal antibody (100 
in dilution, Sigma, Catalog #A2103) for 1 h at 25°C, and 
incubated with peroxidase-conjugated anti-rabbit IgG 
(1:1000) for 1 h at 25°C. After the reaction, proteins were 
visualized with an ECL kit and images were obtained using 
ImageQuant LAS4010 (GE Healthcare). Samples were run 
in duplicate for each experiment. Densitometry analysis 
of the images was performed using ImageJ 1.50.

Real-time PCR

Total RNA from the cortex, hippocampus, and U-118MG 
cells was extracted using RNAiso Plus (TAKARA, 
Catalog#9108/9109) (Tang et  al. 2017). cDNA was 
synthesized using a Reverse-Transcription Reagent Kit 
(TAKARA, Catalog#RR047A) (Tang et al. 2017). Real-time 
PCR measurements of individual cDNAs were performed 
using SYBR Premix Ex Taq™ II (TAKARA, Catalog#RR820A) 
to measure the duplex DNA formation with the ABI Prism 
7500 Sequence Detection System (Applied Biosystems) 
(Tang et al. 2017), normalized to the amount of β-actin RNA 

and analyzed by the 2−∆∆CT method (Livak & Schmittgen 
2001). The following primers were used: β-actin sense 
5-CTCTAGACTTCGAGCAGGAGAT-3; β-actin antisense 
5-CAGGATTCCATACCCAAGAAGG-3; neuritin sense 
5-GCGGTGCAAATAGCTTACCTG-3, neuritin antisense 
5-CGGTCTTGATGTTCGTCTTGTC-3′.

Statistical analysis

All data are presented as means ± s.d. All grouped data were 
analyzed using SPSS 13.0. Comparisons between groups 
were made by one-way ANOVA followed by Tukey’s test 
to analyze the differences. Statistical significance was set 
at P  < 0.05.

Result

Overexpression of neuritin in hippocampus of mice

Real-time PCR analysis showed significantly increased 
mRNA expression of neuritin in the hippocampus of 
neuritin-overexpressing transgenic C57BL/6J mice 
compared to the WT mice but not in the cortex (Fig. 1A). 
Immunochemical staining (Fig. 1B) and Western blotting 
(Fig. 1C) analysis also confirmed increased neuritin 
expression. However, neuritin expression was not affected 
in the other tissues (data not shown). Since there was 
no difference in the expression of neuritin in the cortex, 
the subsequent experiments were only focused on the 
hippocampus.

Effect of neuritin on memory

Cognitive function was assessed using the Morris water 
maze test. The mean escape latency for the trained mice 
decreased from 70 to 17 s over the course of the 20 
learning trials. The mean escape latency did not differ 
between any of the groups on the first and the second 
days of testing in the Morris water maze. However, from 
the third day onwards, there was a significant difference 
in the transfer latency between db/db and db/m mice.  
db/db mice showed a lower ability to find the platform and 
learned its location on the fifth day of training. Neuritin 
overexpression significantly decreased the mean transfer 
latency in db/db mice (Fig. 2A). This poorer performance 
was also improved upon treatment with the JAK2 
inhibitor, as evident from the animal’s decreased latency 
to find the platform from the third day of training. Figure 
2B displays the representative swimming paths of mice in 
the four groups on the fourth day of training.
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Animals showed a significant difference in the probe 
trial of the Morris water maze study, which measured 
how well the animals had learned and consolidated the 
platform location during the 5 days of training (Fig. 2C). 

db/db mice spent less time in the target quadrant than 
control mice. The time spent in the target quadrant was 
significantly higher in mice with neuritin overexpression 
and JAK2 inhibitor-treated db/db mice than in db/m mice.

Figure 1
Expression profile of neuritin in the cortex and hippocampus of mice overexpressing neuritin. Neuritin mRNA expression in cortex and hippocampus was 
measured by real-time PCR in WT and neuritin-overexpressing mice (A). Neuritin expression in the cortex and hippocampus was observed by 
immunofluorescence (B), the quantification of fluorescence-integrated intensity (C), and by Western blot and its quantification (D) in WT and neuritin-
overexpressing mice. Mean ± standard deviation (s.d.), n = 6. *P < 0.01, compared with WT mice. Overexpression, neuritin overexpression. A full color 
version of this figure is available at https://doi.org/10.1530/JOE-20-0321.

Figure 2
Effects of neuritin on cognitive dysfunction of  
db/db mice. The alteration of transfer latency (A), 
pathway maps of searching for the hidden 
platform at the fourth day of training (B), and the 
alteration of time spent in the target quadrant (C) 
during the Morris water maze test. Mean ± s.d.,  
n = 6. *P < 0.01, compared with db/m mice;  
#P < 0.01, compared with db/db mice. db/db 
neuritin, neuritin overexpression db/db; db/db 
inhibitor, db/db JAK2 inhibitor. A full color version 
of this figure is available at https://doi.
org/10.1530/JOE-20-0321.
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Effects of neuritin on body weight and brain weight

As shown in Fig. 3A, db/db mice showed significantly 
higher body weight than db/m animals that were fed a 
standard diet. Neuritin overexpression slightly decreased 
the body weight of db/db mice However, JAK2 inhibitor 
administration for 8 weeks did not change the body 
weight of db/db mice.

db/db mice showed a significant decrease in brain 
weight compared to db/m mice (Fig. 3B). Neuritin 
overexpression slightly ameliorated the brain weight of 
db/db mice However, JAK2 inhibitor administration for  
8 weeks did not affect the brain weight in db/db mice.

Neuritin improved neuronal impairment in 
the hippocampus

Nissl staining revealed a significantly lower number of 
neurons in db/db mice than in db/m mice (Fig. 4A). DAPI 
staining showed a significantly lower number of all cells, 
including neurons, in db/db mice than in db/m mice 
(Fig. 4B). Overexpression of neuritin and JAK2 inhibitor 
treatment ameliorated these changes in the hippocampus 
of diabetic mice.

Neuritin ameliorated astrogliosis and synaptic 
plasticity in hippocampus

In Fig. 5A, we demonstrated the astrocyte marker 
GFAP in the hippocampus of each group of mice by 
immunohistochemistry. There was a significant increase 
in the expression of GFAP in the hippocampus of db/db 
mice compared to that of standard diet-fed db/m mice. 
GFAP expression was downregulated by both neuritin 
overexpression and JAK2 inhibitor treatment in db/db mice.

db/db mice expressed lower levels of synaptophysin 
in the hippocampus than db/m mice (Fig. 5B). 
Overexpression of neuritin and JAK2 inhibitor treatment 
upregulated the expression of synaptophysin in the 
hippocampus of db/db mice.

Neuritin regulated JAK2/STAT3 signaling pathway 
in hippocampus

To further explore the potential mechanism by which 
neuritin attenuates hippocampal astrogliosis, we 
determined the effect of neuritin on the JAK2/STAT3 
signaling pathway. Protein expression of p-JAK2 and 
p-STAT3 was significantly upregulated in db/db mice 
compared to that in db/m mice, thereby indicating the 
activation of the JAK2/STAT3 signaling pathway (Fig. 
6A and B). This activation was markedly reversed by the 
overexpression of neuritin and JAK2 inhibitor treatment, 
as shown by the significantly decreased expression 
of p-JAK2 and p-STAT3 in db/db mice. This provided 
compelling evidence that the neuritin interfered with the 
JAK2/STAT3 signaling pathway in the hippocampus.

Neuritin inhibited lipopolysaccharide-induced 
gliosis in U-118MG cells

Lipopolysaccharide significantly upregulated GFAP 
expression in U-118G cells compared to that in the control 
group (Fig. 7). However, when pretreated with recombinant 

Figure 3
Effects of neuritin on body weight and brain weight of db/db mice. The 
changes in body weight (A) and brain weight (B). Mean ± s.d., n = 6.  
*P < 0.01, compared with db/m mice; #P < 0.05, compared with db/db 
mice. db/db neuritin, neuritin overexpression db/db; db/db inhibitor,  
db/db JAK2 inhibitor. A full color version of this figure is available at 
https://doi.org/10.1530/JOE-20-0321.
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neuritin (100 ng/mL), JAK2 inhibitor, or STAT3 inhibitor 
for 30 min, there was a suppressed GFAP expression.

Neuritin suppressed lipopolysaccharide-stimulated 
JAK2/STAT3 pathway activation in U-118MG cells

Lipopolysaccharide significantly increased the 
phosphorylation of JAK2 and STAT3 in U-118MG cells 
without affecting the total levels of the proteins. However, 
30 min pretreatment with recombinant neuritin  
(100 ng/mL) decreased the phosphorylation of JAK2 and 
STAT3, while the phosphorylation of JAK2 and STAT3 
showed a similar trend when the cells were incubated 
with JAK2 inhibitor. However, the STAT3 inhibitor only 
downregulated the expression of p-STAT3 (Fig. 8).

Discussion

Our study found that neuritin overexpression in the 
hippocampus of db/db mice significantly ameliorated 

cognitive dysfunction, neuronal impairment, and synaptic 
plasticity, and inhibited astrogliosis and the JAK2/STAT3 
signaling pathway in the hippocampus. Neuritin also 
suppressed the JAK2/STAT3 signaling pathway to inhibit 
lipopolysaccharide-induced gliosis in U-118MG cells.

Obesity is the single best predictor of whether a 
person would develop type 2 diabetes. In our study, 
db/db mice were fed a high-fat diet to induce diabetic 
neuropathy (Islam 2013). Our results show that there is 
significant downregulation in the expression of neuritin 
and increased body weight in db/db mice compared to 
control mice. The downregulated expression of neuritin 
might, thus, be body weight dependent, which is in 
accordance with the results of previous investigations 
in streptozotocin-induced diabetic rats (Karamoysoyli 
et  al. 2008, Xi et  al. 2020). There are no reports on the 
side effects of acute and chronic exogenous neuritin 
administration in mice or rats (An et al. 2014, Gao et al. 
2016, Xi et al. 2020).

The diabetic brain has structural and functional 
abnormalities, including atrophy of the whole brain, 

Figure 4
Neuritin ameliorated neuronal impairment in hippocampus. The Nissl staining (A) and its quantification analysis (B) and DAPI staining (C) and its 
quantification analysis (D) in the hippocampus. Mean ± s.d., n = 6. *P < 0.01, compared with db/m mice; #P < 0.01, compared with db/db mice. Scale 
bar = 100 μm in A, scale bar = 50 μm in B. db/db neuritin, neuritin overexpression db/db; db/db inhibitor, db/db JAK2 inhibitor. A full color version of this 
figure is available at https://doi.org/10.1530/JOE-20-0321.
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gray matter, hippocampus, and amygdala. Progressive 
brain atrophy (Zhou et al. 2020), axon loss, and neuronal 
degeneration in the cortex and hippocampus have been 
observed in diabetic animals and humans (Klein & 
Waxman 2003). Consistent with previous reports in db/db  
mice showing that the brains of db/db mice are smaller 
and lighter than those of control mice (Sheppard et  al. 
1985, Makar et al. 1995, Vannucci et al. 1997, Ahima et al. 
1999), our results showed that the brain weight of db/db  
mice was remarkably lower than that of db/m mice. 
According to the Jackson Laboratory, recombination 
(overexpression of neuritin) occurs in approximately 88% 
neurons of the neocortex and hippocampus, and in the 
glia of the cerebral cortex. Cortical excitatory neurons and 

glia (radial glia, astrocytes, and oligodendrocytes), but not 
GABAergic neurons, are produced in the Emx1-expressing 
lineage (Gorski et  al. 2002). Overexpression of neuritin 
in the cortex and hippocampus increases the lower brain 
weight of db/db mice, but JAK2 inhibitor has no effect 
on the brain weight of db/db mice. Consistent with 
previous reports following Nissl and DAPI staining (Yan 
et al. 2009, Zhang et al. 2018), db/db mice showed a lower 
number of neurons and all cells in the hippocampus than 
that in db/m mice. Overexpression of neuritin prevents 
the loss of neurons in db/db mice, but JAK2 inhibitors 
could not restore the lost neurons in db/db mice. Global 
knockout of neuritin in mice accelerates retinal ganglion 
cell loss and retinal degeneration following optic nerve 

Figure 5
Neuritin ameliorated astrogliosis and synaptic plasticity in the hippocampus. GFAP protein was measured using immunofluorescence in the 
hippocampus (A) and its quantification of fluorescence integrated intensity (B). Synaptophysin protein was measured using immunofluorescence (C) and 
its quantification of fluorescence integrated intensity (D). Mean ± s.d., n = 6. *P < 0.01, compared with db/m mice; #P < 0.01, compared with db/db mice. 
db/db neuritin, neuritin overexpression db/db; db/db inhibitor, db/db JAK2 inhibitor. A full color version of this figure is available at https://doi.
org/10.1530/JOE-20-0321.
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injury (Azuchi et  al. 2018), while adeno-associated 
virus-mediated overexpression of neuritin delays retinal 
ganglion cell apoptosis, regenerates injured axons, and 
maintains retinal ganglion cell function following optic 
nerve injury (Sharma et  al. 2015). Neuritin has similar 
protective effects against sciatic nerve injury in rats (Wang 
et al. 2016).

Diabetic central neuropathy is a critical complication 
of diabetes and is characterized by cognitive dysfunction 
and neurochemical and structural impairments (Sima 
2010). Patients with type 2 diabetes have a higher risk of 
cognitive dysfunction, with deficits in short-term memory 
and executive function. Older type 2 diabetic patients 
have several impaired cognitive domains, with the highest 

ratio of impaired psychomotor speed (McCrimmon et al. 
2012). In accordance with other reports (Infante-Garcia 
et al. 2017, Yan et al. 2019, Yermakov et al. 2019), in the 
Morris water maze test, diabetic mice showed exacerbated 
cognitive performance. Overexpression of neuritin 
ameliorated cognitive impairment, and the JAK2 inhibitor 
showed the same effects in diabetic mice.

Regional brain injury is tightly associated 
with neurocognitive impairment, especially in the 
hippocampus, which is mainly responsible for learning 
and memory (Stranahan et  al. 2008). Synaptic plasticity 
is important for function of the neurons as plastic 
alterations in synaptic strength seem to be implicated 
in learning and memory (Bliss & Collingridge 1993). 

Figure 6
Neuritin suppressed JAK2/STAT3 signaling pathway in the hippocampus. Phosphorylation level of JAK2 was measured using immunofluorescence in 
hippocampus (A) and its quantification of fluorescence integrated intensity (B). Phosphorylation level of STAT3 was measured using immunofluorescence 
(C) and its quantification of fluorescence integrated intensity (D). Mean ± s.d., n = 6. *P < 0.01, compared with db/m mice; #P < 0.01, compared with db/db 
mice. db/db neuritin, neuritin overexpression db/db; db/db inhibitor, db/db JAK2 inhibitor. A full color version of this figure is available at https://doi.
org/10.1530/JOE-20-0321.
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Synaptophysin is ubiquitous at the synapse, and 
therefore, synaptophysin immunostaining could be used 
for the quantification of synapses (Calhoun et al. 1996). 
Consistent with previous reports that diabetic mice show 
lower expression of synaptophysin in the hippocampus 
than control mice (Li et al. 2012, King et al. 2013, Porter 
et al. 2013), our results show that db/db mice expressed 
lower levels of synaptophysin in the hippocampus than 
db/m mice. Overexpression of neuritin and JAK2 inhibitor 
treatment upregulated the expression of synaptophysin 
in the hippocampus of db/db mice. Neuritin causes 
synapse formation and plasticity, neuritogenesis, neurite 
outgrowth, and neurite arborization, which participate 
in the development and function of the CNS (Putz et al. 
2005, Fujino et al. 2011, Shimada et al. 2016, Subramanian 
et al. 2019).

Reactive astrocytes are essential in acute tissue 
remodeling and wound healing processes, eventually 
changing to scar-forming astrocytes and to become a 
dense glial scar (Okada et  al. 2018). GFAP is strongly 
expressed in both reactive and scar-forming astrocytes. 
In several neurological diseases, reactive astrogliosis is 
a response to activated astrocytes. In most conditions, 
reactive astrogliosis can be considered a defensive reaction 
to resist acute stress, reversing CNS homeostasis, and 
preventing tissue damage. Continuing reactive astrogliosis 
can be maladaptive, resulting in the suppression of neural 
plasticity and regenerative responses (Pekny & Pekna 2014).

Figure 7
Neuritin inhibited gliosis in U-118MG cells. GFAP 
protein was measured using immunofluorescence 
in U-118MG cells (A) and its quantification of 
fluorescence-integrated intensity (B). GFAP 
protein was measured using Western blot and its 
quantification (C). Data are given as mean ± s.d.  
(n = 3). *P < 0.01 vs control cells; ##P < 0.01 vs 
lipopolysaccharide-induced cells. LPS, 
lipopolysaccharide. A full color version of this 
figure is available at https://doi.org/10.1530/
JOE-20-0321.

Figure 8
Neuritin inhibits JAK2/STAT3 signaling pathway in U-118MG cells. Data are 
given as mean ± s.d. (n = 3). *P < 0.01 vs control cells; ##P < 0.01 vs 
lipopolysaccharide-induced cells. LPS, lipopolysaccharide. A full color 
version of this figure is available at https://doi.org/10.1530/JOE-20-0321.
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Astrocytes are active participants in synaptic 
processing and are involved in local synaptic plasticity. 
Astrocytes actively participate in normal memory 
function and abnormal processes, resulting in cognitive 
dysfunction under pathological conditions (Santello 
et  al. 2019). Astrocytes regulate neuronal excitability, 
synaptic plasticity, and activity, and play a critical role 
in cognitive functions, such as learning and memory. 
Astrocyte regulation is considered as the focal point 
of processing cellular substrates for information and 
memory formation (Dallerac & Rouach 2016). Gliosis 
induced by astrocyte activation causes hippocampal 
neuronal impairment, leading to cognitive impairment 
(Shentu et  al. 2019). Our results show that db/db mice 
have higher astrogliosis in the hippocampus than db/m 
mice. Neuritin overexpression ameliorates astrogliosis in 
db/db mice. Astrocyte degeneration, reactive astrogliosis 
and dystrophy are observed in Alzheimer’s disease (Shentu 
et  al. 2019). In addition, astrocyte loss occurs at later 
stages of some neurodegenerative diseases, which might 
indirectly change neuronal function and survival (Rossi 
et al. 2008, Rodriguez et al. 2009, Martorana et al. 2012). 
However, another study showed that glial scar tissue 
formed after spinal cord injury might support neuron 
regeneration (Anderson et al. 2016).

Neuritin is an extracellular, glycosylphosphoinositide-
linked protein that can be secreted in a soluble form by 
various cells, including neurons and astrocytes (Naeve 
et  al. 1997, Putz et  al. 2005, Zhao et  al. 2017). One 
recent study found that the soluble form of neuritin 
from astrocytes repairs the damaged hippocampal 
neurons caused by ischemia by adhering to the 
neuronal surface. The increased expression of neuritin in 
astrocytes stimulated by ischemia might be triggered by 
modulation of cAMP response element-binding protein 
phosphorylation, mitogen-activated protein kinases, and 
phosphatidylinositide 3-kinases signaling pathways (Zhao 
et al. 2017).

Our results showed that the overexpression of 
neuritin suppressed the activated JAK2/STAT3 signaling 
pathway in the hippocampus of db/db mice and neuritin 
suppressed JAK2/STAT3 signaling pathway to inhibit 
lipopolysaccharide-induced gliosis in U-118MG cells. 
Other studies have shown that astrogliosis has the 
potential to interfere with synapse sprouting (Cirillo 
et  al. 2012, Shentu et  al. 2019) and is associated with 
the JAK2/STAT3 signaling pathway (Robson et al. 2014). 
Astrogliosis might also damage neuronal survival, which 
is ameliorated by JAK2 inhibition (Ignarro et  al. 2013). 
LPS induces the activation of retinal astrocytes via the 

JAK2/STAT3 signaling pathway (Jang et  al. 2007). The 
JAK2/STAT3 signaling pathway also contributes to the 
development of diabetic macrovascular complications 
by mediating inflammation associated with vascular 
endothelial cells and/or monocytes (Yang et al. 2017) and 
involves the renal protective effect of paeoniflorin (Li 
et al. 2018).

In conclusion, neuritin overexpression in the 
hippocampus of db/db mice significantly ameliorated 
cognitive dysfunction, hippocampal neuronal 
impairment, and synaptic plasticity deterioration, and 
suppressed astrogliosis and the JAK2/STAT3 signaling 
pathway in the hippocampus. Neuritin regulates the  
JAK2/STAT3 signaling pathway to inhibit 
lipopolysaccharide-induced gliosis in U-118MG cells. 
Therefore, neuritin might at least partly regulate the 
JAK2/STAT3 signaling pathway to inhibit astrogliosis and 
improve diabetic cognitive dysfunction.
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