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ABSTRACT

R-loops are dynamic, co-transcriptional nucleic acid
structures that facilitate physiological processes but
can also cause DNA damage in certain contexts. Per-
turbations of transcription or R-loop resolution are
expected to change their genomic distribution. Next-
generation sequencing approaches to map RNA–
DNA hybrids, a component of R-loops, have so
far not allowed quantitative comparisons between
such conditions. Here, we describe quantitative dif-
ferential DNA–RNA immunoprecipitation (qDRIP), a
method combining synthetic RNA–DNA-hybrid inter-
nal standards with high-resolution, strand-specific
sequencing. We show that qDRIP avoids biases in-
herent to read-count normalization by accurately pro-
filing signal in regions unaffected by transcription
inhibition in human cells, and by facilitating accu-
rate differential peak calling between conditions. We
also use these quantitative comparisons to make the
first estimates of the absolute count of RNA–DNA
hybrids per cell and their half-lives genome-wide. Fi-
nally, we identify a subset of RNA–DNA hybrids with
high GC skew which are partially resistant to RNase
H. Overall, qDRIP allows for accurate normalization
in conditions where R-loops are perturbed and for
quantitative measurements that provide previously
unattainable biological insights.

INTRODUCTION

R-loops are three-stranded nucleic acid structures consist-
ing of a Watson–Crick RNA–DNA hybrid and a displaced
single strand of DNA. They typically form during transcrip-
tion, when nascent RNA hybridizes to its DNA template,
and they appear to facilitate certain biological processes
while provoking DNA damage in other contexts (1,2). R-
loops are highly dynamic structures that can form in dif-

ferent locations depending on cell type (3,4) and growth
conditions (5). Thus, it is expected that perturbations in
growth conditions or depletion of R-loop resolving factors
(6,7) would change their genomic levels and distribution.
However, truly quantitative comparisons of R-loop levels
between such conditions have so far proven elusive.

A number of recent studies have mapped where R-loops
form genome-wide through next-generation sequencing ap-
proaches. In the most-widely adopted mapping technique,
DNA:RNA immunoprecipitation sequencing (DRIP-seq)
(8), the hybrid component of R-loops is directly immuno-
precipitated using the S9.6 RNA–DNA hybrid antibody
from restriction-digested genomic DNA (9). Various sub-
sequent methods have modified DRIP-seq to increase the
resolution by sonication (10–12), to map hybrids to a spe-
cific strand (4,10,11), or to capture R-loops in a more native
context within permeabilized cells (12). Increasingly, hybrid
mapping has been used to detect regions of change when
growth conditions (5) or R-loop processing factors are al-
tered (13–16). In all of these studies, comparisons are made
after hybrid signal has been normalized to the total mapped
reads from each sample. However, normalizing to total read
counts makes a key assumption: that the RNA–DNA hy-
brid content remains constant between conditions. While
this assumption may be appropriate for small perturbations,
it is likely inaccurate when the R-loop content significantly
changes between samples.

This issue is not specific to RNA–DNA hybrid map-
ping, and in a range of other next-generation sequencing
approaches this type of normalization has been shown to
introduce biases, obscure real changes between conditions
and even lead to misinterpretations (17–19). Well-defined
internal standards have proven to be a reliable tool to facil-
itate the accurate comparison of sequencing signal between
experimental conditions (18–23). These spiked-in standards
or ‘spike-ins’ are introduced during sample preparation,
carried through the experimental workflow, and ultimately
sequenced to provide an internal normalization factor in-
dependent of total mapped reads. In ChIP-seq, Drosophila
chromatin spike-ins have been used to quantitatively nor-
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malize sequencing signal from histone marks on the hu-
man genome, revealing a genome-wide depletion of these
marks that was not apparent with normalization using to-
tal read counts (21). In RNA-seq, synthetic RNA spike-ins
reduced bias in quantifying short genes (20) and changed
data interpretations compared to standard normalization,
thereby reconciling apparently contradictory experimen-
tal data (18). Recently, Drosophila cells were added at the
beginning of the DRIP-seq workflow and the Drosophila
RNA–DNA hybrids used to normalize between conditions
(24). As these hybrids are derived from cells, they cannot be
quantified, and therefore this spike-in approach does not
allow for absolute quantitation of cellular hybrid content,
which is possible with a pure internal standard. Moreover,
the benefit of including a spike-in was not evaluated or ex-
plored in this study. Synthetic RNA–DNA hybrids have
also been used to confirm that RNA–DNA hybrids and ad-
jacent dsDNA structures are compatible with a modified
DRIP-seq protocol (11), but these spike-ins were not used
for normalization.

Because RNA–DNA hybrids can be created in vitro,
pure, synthetic RNA–DNA hybrids are a potential alterna-
tive that can be used to normalize hybrid signal and provide
absolute quantification of the cellular hybrid content. Here,
we describe quantitative differential DNA–RNA immuno-
precipitation sequencing (qDRIP-seq), a modified, high-
resolution form of strand-specific ssDRIP-seq (11) that is
compatible with the use of synthetic RNA–DNA hybrids
and Drosophila cell-based hybrids as internal standards. We
show that qDRIP-seq allows for sensitive, high-resolution,
strand-specific mapping of RNA–DNA hybrids, and facili-
tates comparisons in hybrid content between different bio-
logical conditions.

MATERIALS AND METHODS

Cell culture

HeLa cells were obtained from ATCC (Manassas, VA,
USA), where they were tested for mycoplasma and veri-
fied by STR profiling. These cells were grown in DMEM
(Gibco, Dublin, Ireland) supplemented with 10% FBS and
1% penicillin/streptomycin/glutamine, and grown in 5%
CO2 at 37◦C. DRB (Cayman Chemical Company, Ann
Arbor, MI, USA) was mixed into pre-warmed media at
100 �M and added to cells for 40 min, or the indicated
time, prior to cell harvest. Drosophila Schneider 2 (S2) cells
were obtained from ThermoFisher Scientific and grown ac-
cording to manufacturer’s instructions at 27◦C in Schnei-
der’s Drosophila Medium (Gibco) containing 10% heat-
inactivated FBS, 50 units penicillin G and 50 �g strepto-
mycin sulphate per milliliter of medium.

Preparation of spike-in hybrids

Escherichia coli genomic DNA was prepared as in
(https://bio-protocol.org/bio101/e97). Briefly, 1.5 ml of an
overnight culture was lysed in 0.6% SDS for 1 h, and
genomic DNA was extracted using a standard phenol–
chloroform isolation. The sequences used for spike-in hy-
brids were then amplified by PCR using Phusion DNA

polymerase, and using primers containing the T7 poly-
merase promoter sequence. RNA was produced from these
PCR templates using in vitro transcription from 120 ng of
DNA template per spike-in, and purified using an RNeasy
kit (#74104, Qiagen, Hilden, Germany), with DNase treat-
ment performed on the columns for 15 min (#79254, Qi-
agen). The complementary DNA sequence was ordered
directly as single-stranded ultramers or megamers (Inte-
grated DNA Technologies, Coralville, IA, USA) (Supple-
mentary Table S1). Annealing was performed between 400
ng of RNA and 100 ng of DNA in 45 �l of 1× buffer 2.1
(#B7202S, New England Biolabs, Ipswich, MA, USA), be-
ginning with a denaturation step for 10 min at 95◦C, and fol-
lowed by seventy cycles of 90 s holds at decreasing intervals
of 1◦C until the temperature reached 25◦C. Hybrids were
then purified by 1 h of electrophoresis on a 0.9% agarose
gel, followed by excision of the hybrid band and purifica-
tion by centrifugation for 10 min at 5000 rpm as in (25).
Ethanol precipitation was found to cause some dissociation
of synthetic RNA-DNA hybrids, and was therefore not used
for purification. The final concentrations of nucleic acids af-
ter cleanup were determined by fluorimetry using the Qubit
HS RNA assay kit (#Q32852, Thermo Fisher Scientific,
Waltham, MA, USA). To make the dsDNA spike-ins, se-
quences were amplified from the E. coli genome by PCR
using Phusion DNA polymerase, purified by electrophore-
sis on a 0.9% agarose gel, excised and isolated by gel ex-
traction. The ssDNA spike-in was purchased directly as an
ultramer (Integrated DNA Technologies) (Supplementary
Table S1). All seven spike-ins were diluted and combined to
produce a stock solution of 2.5 pM for each spike-in. Five
microliters of the spike-ins were added to individual exper-
imental samples just prior to cell lysis, giving a final ratio
of 3.76:1 compared to the cell count. This ratio was cho-
sen to put the spike-in copy number roughly on parity with
the average HeLa genome copy number, as HeLa cells are
approximately hypertriploid.

Considerations for spike-in design

In addition to the two synthetic RNA–DNA spike-ins de-
scribed (∼280 bp long), two additional RNA–DNA spike-
ins were designed, each ∼130 bp long. These sequences were
successfully synthesized, purified and recovered in DRIP
(Figure 1B, C). However, standard size-selection with AM-
Pure XP beads (Beckman Coulter, Brea, CA, USA) de-
pleted these smaller spike-ins disproportionately during li-
brary preparation (Supplementary Figure S2B). Although
altering the size-selection parameters improved the recovery
of the shorter spike-ins, this unacceptably compromised li-
brary quality (Supplementary Figure S2B). Therefore, care
must be taken when using spike-ins <150 bp in length, as
these may not be compatible with all library synthesis pro-
cedures.

As a significantly cheaper alternative to the use of long
DNA oligomers, hybrids were also made using PCR-
generated dsDNA templates for annealing reactions to-
gether with purified RNA. While these hybrids could be
used as spike-ins, both DNA strands were present in se-
quencing libraries, indicating that some hybrid molecules
were formed containing the non-template strand. To gener-
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Figure 1. Preparing and evaluating synthetic RNA–DNA hybrids as spike-ins for DRIP. (A) Experimental scheme showing how hybrids were synthesized.
Briefly, target regions were amplified from E. coli genomic DNA with a flanking T7 promoter. RNA was prepared from these templates by in vitro
transcription, then hybridized to a synthetic ssDNA oligo. Hybrids were purified by agarose gel electrophoresis. (B) Gel image showing RNase H reversible
size-shifts after hybridization of RNA and DNA. Unlabeled samples were separated on a 2.5% agarose gel which was then stained with RedSafe nucleic
acid staining solution. (C) qPCR of genomic (left) and spike-in (right) hybrids following transcription inhibition with DRB. RNase H (RH) treatment
demonstrates antibody specificity. Error bars represent 95% confidence interval (CI) of the mean. Results are significantly different as determined by
non-overlapping 95% CIs. In primer name, GB indicates gene body.

ate a more homogeneous hybrid population, the synthetic
hybrids used in this study were made by annealing RNA to
commercially-sourced pure ssDNA templates as described
above.

DRIP sonication

DRIP was adapted from the previously published proce-
dure (8,26). 2 × 106 HeLa cells were resuspended in 1.6 ml
TE and lysed with 50 �l 20% SDS and 5 �l Proteinase K
20 mg/ml (Thermo Fisher Scientific) for 3 h at 37◦C. Syn-
thetic RNA–DNA hybrid spike-ins (5 �l of a stock solution
at 2.5 pM) were added to cells in TE buffer prior to lysis.

For spike-in with Drosophila S2 cells, 1.3 × 106 S2 cells were
mixed with 2 × 106 HeLa cells in TE prior to cell lysis to give
a 1:1.5 S2:HeLa cell ratio, with the aim of obtaining ∼10%
of total sequencing reads from the Drosophila genome.

DNA was extracted by phenol–chloroform extraction us-
ing phase lock tubes and ethanol precipitated. Precipitated
DNA was gently spooled and washed with 70% ethanol
without centrifugation. DNA was allowed to air dry for 20
min and resuspended on ice in 130 �l TE buffer. DNA was
sonicated in 6 × 16 mm microtubes (Covaris, Woburn, MA,
USA) to a peak fragment size of 300 bp, performed on a
Covaris machine (E220 evolution) using SonoLab 7.3 soft-
ware, with 10% Duty Factor, 200 cycles/burst, 140 peak in-
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cident power and for 60 s per tube. Where relevant, samples
were treated with RNase H (5000 units/ml, New England
Biolabs) prior to immunoprecipitation. For low RNase H
treatment, 10 �g of sonicated DNA was digested with 6 �l
RNase H in 1× RNase H digestion buffer in 80 �l total vol-
ume overnight at 37◦C and purified using standard methods
described above. For high RNase H treatment, 4 �g of son-
icated DNA per reaction was digested with 18 �L RNase H
in 180 �l total volume overnight at 37◦C. Following RNase
H treatment, DNA was purified with phenol-chloroform
extraction and ethanol precipitation. For each immunopre-
cipitation, 4 �g of sonicated DNA (with or without pre-
treatment with RNase H treatment) was bound with 20
�g of S9.6 antibody (Antibodies Incorporated, Davis, CA,
USA) in 1× binding buffer (10 mM NaPO4 pH 7, 140 mM
NaCl, 0.05% Triton X-100) overnight at 4◦C. Dynabeads
Protein G beads (Thermo Fisher Scientific) were added for
2 h. The use of magnetic beads compared to agarose beads
increased our fold enrichment ∼2-fold relative to hybrid-
negative genomic loci. Bound beads were washed three
times in binding buffer and elution was performed in 250
�l elution buffer (50 mM Tris pH 8, 10 mM EDTA, 0.5%
SDS, 8 �l Proteinase K 20 mg/ml) for 45 min with rotation
at 55◦C. DNA was purified with phenol–chloroform extrac-
tion and ethanol precipitation.

DRIP digestion

This was performed as described previously (8,26) and de-
tailed above for DRIP sonication but with the following dif-
ferences: ethanol precipitated, spooled and dried genomic
DNA was resuspended in 200 �l water and fragmented with
a cocktail of restriction enzymes (Bsrg1, EcoR1, HindIII,
SspI, XbaI, 2 �l each) in NEB 2.1 buffer and 1 mM sper-
midine for 10 h at 37˚C. DNA was extracted by phenol–
chloroform extraction using phase lock tubes and ethanol
precipitated. Immunoprecipitation and subsequent steps
were performed as described above for DRIP sonication.

Library preparation and sequencing for qDRIP-seq

DNA libraries were prepared from three pooled technical
replicate DRIPs per sample. While the DNA material from
one IP (or less) is sufficient for successful library prepa-
ration, we found pooling IPs effective in minimizing tech-
nical variability due to sample handling in pilot experi-
ments. DNA libraries were synthesized from ssDNA using
the Accel-NGS 1S DNA library kit (Swift Biosciences, Ann
Arbor, MI, USA), according to the manufacturer’s proto-
col. Using multiplexing adapters from the 1S Plus Set A In-
dexing Kit (Swift Biosciences), adapter-ligated DNA was
amplified by PCR. For inputs 12 PCR cycles were used
to amplify 1 ng of DNA, and for IP samples 13 PCR cy-
cles were used on the equivalent amount of DNA from one
IP reaction. Following PCR, DNA fragments 200–600 bp
were retained by size selection using a 0.6× volume ratio
of AMPure XP beads (Beckman Coulter)/sample followed
by 1.0× ratio. Library DNA was analyzed on a Bioanalyzer
DNA HS (Agilent, Santa Clara, CA, USA) at the Stanford
Protein and Nucleic Acid Facility, quantified by qPCR us-
ing NEBNext Library Quant Kit for Illumina (New Eng-
land Biolabs), then pooled and sequenced on a HiSeq 4000

(Illumina, San Diego, CA, USA) at the Stanford Genome
Sequencing Service Center, using 2 × 151 bp sequencing.

qPCR

qPCR was performed on a Roche LightCycler 480 Instru-
ment II using SYBR-Green master mix (Bio-Rad Laborato-
ries, Hercules, CA, USA). Primers used for qPCR are listed
in Supplementary Table S2.

EU nascent transcription assay

Cells were pulsed for 1 h with 100 �M 5-ethynyl uridine
(EU) from the Click-iT RNA Alexa Fluor 488 imaging kit
(Thermo Fisher Scientific). Cells were fixed in 4% PFA/PBS
for 15 min, and permeabilized with 0.25% Triton/PBS for
15 min. The Click-iT reaction was performed according to
manufacturer’s instructions. Cells were then incubated in
DAPI for 15 min, and the slides mounted with Pro-Long
Gold Antifade (Thermo Fisher Scientific) and imaged on a
Zeiss Axioscope with a 20× objective (Zeiss, Oberkochen
Germany). EU signal intensity from ≥1200 cells per condi-
tion was calculated using CellProfiler (version 3.1.8).

qDRIP analysis

Prior to alignment, Skewer (27) was used to remove adapter
sequences, and Cutadapt (28) was used to remove low com-
plexity G-rich tails from the beginning of R2 with ‘cutadapt
-j $N CORES –minimum-length 30 -U 12’. Trimmed reads
were aligned to a custom genome combined from hg38 and
the sequences of the synthetic spike-ins with bwa-mem (29).
Reads were separated into positive and negative stranded
files using SAMtools (30) and unix text-processing utilities.
BEDTools (31) was used to convert these SAM files into
BEDPE format, with subsequent sorting, filtering for con-
cordant reads, and duplicate alignment removal performed
using unix text-processing utilities. Genome browser tracks
were produced with the BEDTools genomecov utility, and
visualized using IGV (32). Reads from the spike-in did not
have duplicate alignments removed, as we expect multiple
coincidental fragments to derive from the spike-ins.

Peak calling and differential peak calling

Peaks were called directly from aligned reads from both
strands using MACS2 (33) with default broad peak set-
tings. BEDTools was then used to obtain coverage in each
experiment over these consensus peaks. Using these read
counts, we filtered out only those regions that showed
strong (2-fold) reduction after RNase H treatment as mea-
sured by reads per million. We further filtered these RNase
H-sensitive peaks to those deriving at least two-thirds of
their reads from a single strand. For peak calling on the
Drosophila genome, we required peaks to be highly statis-
tically enriched above input (FDR cutoff of 1e–14) and to
derive at least 70% of their reads from the expected strand.

For differential peak calling, we separately called peaks
for the DMSO and DRB samples using the protocol de-
scribed above. We then used BEDTools to merge these re-
gions in combination with a comparable number of random
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5000 bp peaks to include some unchanged background re-
gions to reduce bias in the differential analysis. The DE-
Seq2 R package (34) was then used to obtain fold change
estimates and FDR-corrected P-values for differential ex-
pression across peaks.

Metaplots

Metaplots around genes, transcription start sites and other
genome features were produced from genome browser
tracks with deepTools (35). For gene centered analyses, we
used Gencode V29 canonical genes filtered to only include
those that had at least one sense read in a publicly available
GRO-seq dataset obtained in HeLa cells (36). Tracks for
GC and AT-skew were produced using the BEDTools nuc
tool with further processing from unix text processing tools.
To calculate G-quadruplex density around peak sites, the
locations of G-quadruplexes as determined biochemically
in (37) were turned into a track using the bedtools genome-
cov utility (where the track was 1 to indicate the presence
of a G-quadruplex, or 0 to indicate the absence), and these
values were used to produce metaplots with deepTools.

R-loop absolute quantitation and lifetime analysis

For absolute quantitation, we used BEDTools to calculate
maximum read depths over each called peak. We addition-
ally estimated the gene copy number over 10 kb intervals
on the genome using our sequenced input samples, find-
ing that most intervals fell into three populations of read-
counts with modes having integral ratios of approximately
2:3:4. We thus assigned each 10 kb region as having 2N, 3N
or 4N DNA content. Each hybrid peak was assigned a copy
number from the modal copy number call across the peak.
We then normalized the maximum read depths for peaks
in each sample to the estimated genomic copy number at
their respective sites, and divided it by the mean spike-in
read count obtained for that sample. Interpreting these al-
lelic fractions as the probability that a given site contained
a hybrid, we carried out a numerical simulation of the num-
ber of expected hybrids in a cell. To do this, we first assumed
that hybrid formation was completely uncorrelated between
sites. We further made the simplifying assumption that ev-
ery site either fully contained a hybrid, or did not contain
a hybrid. In each simulated haploid genome, each site was
randomly assigned as either hybrid-containing, or hybrid-
absent using the allelic fraction at that site as a probability.
We counted the number of peaks simulated to be hybrid-
containing in 200 000 haploid genomes, and then summed
pairs of these counts to obtain estimates for 100 000 diploid
cells.

For the lifetime analysis, we first used BEDTools to select
only those genes with RNase H reversible R-loop peaks,
and binned each gene into 500bp regions. Gene specific
rates of transcription were obtained from (38). For each
bin, we calculated the time without new transcription as
tDRB = ttreatment − (vgene ∗ xbin), where ttreatment is the treat-
ment time with DRB (40 minutes), vgene is the gene specific
rate of transcription (in kb per minute) Xbin is the start po-
sition of the bin within the gene (in kb). We then calculated
spike-in-normalized qDRIP read densities for DRP (ρDRB)
and DMSO (ρDMSO) over these bins by normalizing the

qDRIP read counts over these bins to their associated mean
spike-in read count. Using these densities, we calculated
the fraction remaining as the ratio of these read densities
(rDRB = ρDRB/ρDMSO). For each gene with at least 3 esti-
mated data points, we then built two linear regression mod-
els to estimate the intercept a and decay constant β under
models of zeroth order decay (rDRB = a + βtDRB) or first
order decay (In (rDRB) = a + βtDRB). To avoid high lever-
age points from skewing the estimated regression line, the
logarithmic regression model was weighted by the square
root of rDRB. For genes well fit by first order decay models
(Pearson’s R2 > 0.8), half-lives were calculated as log 2 over
the estimated decay constant (ln(2)/β). To calculate the to-
tal number of resolution events per day in a cell, we made
use of the differential equation for first order decay which
relates the rate of decay (dN/dt) to the time constant (k) and
the amount of material to decay (N) : dN/dt = –kN. As we
found a mean resolution time of 11 minutes, we calculated
a mean time constant of ln(2)/(11 min) or 0.063/min. Mul-
tiplying this by the estimated count of R-loops in a cell at
steady state (300), we find that 18.9 R-loops would be re-
solved per minute, which is ∼27 000 per day.

To analyze biological correlates of lifetimes, 500 bp win-
dows were scored as ‘more stable,’ ‘average’ or ‘less stable’
based on whether their remaining quantity at a given time
fell over one standard deviation above the mean, within a
standard deviation of the mean, or more than one stan-
dard deviation below the mean. Bedtools was used to over-
lap tracks of total transcription (GRO-seq from (36)), nu-
cleotide content (determined with bedtools and unix util-
ities), and G-quadruplex counts (as determined biochemi-
cally in (37)), and position in gene (using the Gencode V29
canonical annotations.) To determine the relative collision
orientation across each bin, we used the replication fork di-
rection across each 500 bp window (as determined by Repli-
Seq in (39)) and compared it to the annotated direction of
transcription in each bin. Thus, a region with an RFD of
1 (indicating that the leading strand is found to fully coin-
cide with the Watson strand) would be scored as ‘fully co-
directional’ in a Watson gene, and ‘fully head-on’ in a Crick
gene.

Data processing, data visualization and statistical analysis

Data processing for metaplots, differential peak calls, life-
time analysis, and absolute quantitation was performed
with a standard Python scientific stack (Python 3.6.8,
NumPy 1.14.0, Pandas 0.22.0). Data were visualized
with the Python packages Matplotlib (version 2.1.2) and
Seaborn (version 0.8.1). Statistical analysis was primarily
performed in Python using the Scipy stats package (1.0.0)
for statistical tests and statsmodels (0.8.0) for regression
analysis. R (Version 3.1.0) was used for Negative Binomial
regression, and for differential peak calling statistics with
the Bioconductor DESeq2 package (Love 2014) (version
1.6.3).

RESULTS

Design and preparation of RNA–DNA hybrid spike-ins

To carry out quantitative RNA–DNA hybrid mapping, we
wanted to generate internal standards compatible with a
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hybrid mapping approach. To test the ability of synthetic
RNA–DNA hybrids to serve as internal standards or ‘spike-
ins’, we began by selecting E.coli sequences with little ho-
mology to the human genome which could therefore be
clearly distinguished from the human genome in sequencing
and by qPCR. We designed four RNA–DNA hybrid spike-
ins (L132, H136, L286, H281), although only the two longer
spike-ins (L286 and H281) were ultimately used to normal-
ize the sequencing signal. We also designed two double-
stranded DNA (dsDNA) spike-ins (LDNA, HDNA) and
one ssDNA spike-in (ssDNA) as negative internal controls
(Supplementary Table S1). To generate the spike-ins, we am-
plified target regions from purified E. coli genomic DNA
using primers containing a flanking T7 promoter. RNA
was then prepared by in vitro transcription using T7 poly-
merase, purified, and annealed to synthetic complementary
ssDNA (Figure 1A). To account for potential biases in se-
quence recognition with the S9.6 antibody (40), our hybrid
and dsDNA spike-ins were designed both with low and high
GC-content (Supplementary Table S1). After confirming an
RNase-H-reversible size shift in our hybridization product
by gel electrophoresis (Figure 1B), we excised the shifted hy-
brid band and isolated pure hybrids with a gentle gel crush-
ing procedure (25). Ethanol precipitation caused some hy-
brid dissociation, whereas our purification approach was
faster and produced cleaner intact hybrids, as we confirmed
by subsequent visualization on a gel (Supplementary Figure
S1A).

We next determined how efficiently our synthetic RNA–
DNA hybrids were isolated by immunoprecipitation as
compared to genomic hybrids. To best control for tech-
nical variation between samples, we introduced spike-ins
during the initial cell lysis. Genomic DNA was then ex-
tracted from 2 million HeLa cells, fragmented by sonication
and DRIP-qPCR was performed. We fragmented genomic
DNA by sonication rather than restriction enzyme diges-
tion as this has been shown to improve resolution and re-
duce certain biases in hybrid mapping near promoters (41).
We first confirmed that spike-ins were efficiently recovered
(Figure 1C), that our antibody concentration was not limit-
ing for genomic R-loops (Supplementary Figure S1B), and
that spike-ins did not compete for available antibody with
genomic sites (Supplementary Figure S1C). We additionally
confirmed that our spike-ins remained stable even during
extended periods of immunoprecipitation (Supplementary
Figure S1D).

Next, we tested whether the spike-ins would remain
unchanged after global hybrid perturbation using 5,6-
dichloro-1-�-D-ribofuranosylbenzimidazole (DRB), a po-
tent inhibitor of RNA Pol II transcription that reduces
hybrids at many genomic sites (3,4). After confirming
that DRB reduced transcription outside of the nucle-
olus by imaging nascent RNA incorporating 5-ethynyl-
uridine (EU) (Supplementary Figure S1E, F), we com-
pared changes in levels of genomic hybrids and spike-ins by
qPCR. DRB treatment dramatically reduced hybrids at ge-
nomic loci, but left the yield of spike-in hybrids unchanged
(Figure 1C), indicating that the spike-ins can serve as effec-
tive standards for qPCR under strong perturbations of ge-
nomic R-loops. Although the spike-ins were purified (Sup-
plementary Figure S1A), we did not obtain 100% recovery

from the IP. As sonication is proposed to disrupt RNA–
DNA hybrids (42), we tested recovery of both genomic and
spike-in hybrids following fragmentation with either soni-
cation or restriction digestion. Sonication consistently de-
creased the yield of recovery compared to enzyme diges-
tion. However, we still did not obtain 100% yield for spike-in
constructs with restriction digestion (Supplementary Fig-
ure S1G), indicating that there are additional losses or dis-
solution of hybrids during the DRIP procedure which can-
not fully be attributed to sonication. This further highlights
the need for spike-ins, which could prevent misinterpreta-
tions of technical variation in this loss for biological vari-
ation. In all cases, signal both from genomic and spike-in
sites was highly RNase H sensitive (Figure 1C), confirming
the purity of the synthetic hybrids and the S9.6 antibody’s
specificity for hybrid structures.

High resolution, strand-specific sequencing of genomic and
spike-in hybrids

To sequence both genomic and spike-in hybrids, we adopted
an approach similar to ssDRIP-seq which directly se-
quences the template ssDNA strand of the hybrid (11). We
chose this approach because the library preparation method
used in DRIP-seq (8) requires double-stranded DNA, and
we did not efficiently capture the single-stranded DNA used
in the hybrid spike-ins. Sequencing RNA as in RDIP (10)
or DRIPc (4) would work in principle, but we sought to
avoid RNA-based techniques due to the S9.6 antibody’s off-
target affinity for double-stranded RNA (43,44). We also
modified the ssDRIP-seq protocol to fragment the genome
by sonication, rather than enzymatic digestion (Figure 2A,
Supplementary Figure S2A). We found that this workflow,
using a highly sensitive sequencing library preparation pro-
cedure, reduced the necessary number of cells from 10 mil-
lion to 1–2 million, and is even possible with <0.5 million
cells. After processing we found that only the longer spike-
ins (L286, H281) could be used for analysis, as sequencing
experiments showed that our shorter length hybrid spike-ins
(L132, H136) were removed during the size selection step
of library preparation (Supplementary Figure S2B), along
with most DNA fragments under 150 bp (Supplementary
Figure S2C). Because very little of the genomic DNA was
fragmented smaller than 150 bp during sonication (Supple-
mentary Figure S2A), we do not expect this size selection to
substantially bias sequencing results on the genome.

We sequenced IPs from two biological replicates, a
matched input and a control IP treated with RNase H prior
to pulldown. After adapter trimming, reads were aligned to
human genome build hg38, with duplicate alignments re-
moved prior to further analysis. We found qDRIP-seq sig-
nal to derive primarily from the template strand of tran-
scribed areas within the genome, consistent with isolation of
co-transcriptional RNA–DNA hybrids (Figure 2B). From
our spike-ins, we detected significant hybrid signal only
from the DNA strand of the synthetic hybrids, but not
from the ssDNA or dsDNA controls (Figure 2C). Only a
small number of reads were detected in the input, consistent
with the expected coverage for regions with no enrichment.
The strand bias indicates that the template DNA strand
must be enriched on the genome. Although the reasons for
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Figure 2. qDRIP provides strand-specific, high resolution RNA–DNA hybrid mapping. (A) Schematic of qDRIP experimental process. (B) Representative
genome browser view of qDRIP-seq signal. From top to bottom: two qDRIP-seq biological replicates, RNase H digested sample pooled prior to IP,
and input pooled from replicates. All tracks normalized by reads per million mapped. Negative strand signal in red, positive in blue. Bent arrows represent
TSS, while large triangular arrows represent TES (transcription end site). (C) Read counts from template strand (TS) and non-template strand (NTS) of
hybrids, as well as from ssDNA and dsDNA negative controls. (D) GC (green) and AT (red) skew across coding strand of qDRIP peaks, including 600 bp
flanking 5’- and 3’-ends. (E) Fractions of qDRIP peaks overlapping noted genomic features (P = 2.5e–2798, chi-square test). (F) Scaled metaplot of sense
hybrids between TSS and first-intron exon boundary, as well as 1 kb upstream of TSS and 1 kb downstream of first intron-exon boundary. Tracks shown
are mean IP (blue) and pooled input (grey). Bands represent 95% CI of mean read signal.
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this are not clear, it is possible that sonication disrupts the
non-template DNA strand (42) or that this strand is re-
moved during the wash steps of the immunoprecipitation
(11) (Supplementary Figure S2D).

Next we sought to determine how our results compared
to those obtained from existing methods for sequencing R-
loops. To provide an appropriate basis of comparison, we
re-analyzed two previously published R-loop sequencing
datasets obtained in HeLa cells: DRIP-seq data (45), and a
recent RDIP-seq dataset (46). DRIP-seq remains the most
popular sequencing method for R-loops, although it has
limited resolution and no strand-specificity. By contrast,
RDIP-seq incorporates a sonication step, but it also derives
strand-specific signal by sequencing the RNA, raising the
possibility of non-specific signal. At the human beta-Actin
gene (ACTB), a well-validated site of R-loop enrichment,
all three methods detected robust R-loops. However, the ex-
tent and enrichment of the signal varied between samples,
with DRIP-seq identifying regions lying far upstream of
the ACTB transcription start site (TSS) as R-loop forming,
and RDIP-seq finding R-loops across the gene body but not
at the previously studied R-loop-forming pause site (47,48)
and only weakly at the TSS (Supplementary Figure S3A).
By contrast, qDRIP-seq only detected signal downstream
of the ACTB gene TSS, and this signal extended across the
gene body and into the 3′ pause site. When taking a broader
view of the genome, we found that RDIP-seq showed strand
biases consistent with those observed by qDRIP-seq, and
both methods showed good enrichment at TSS sites and
within gene bodies (Supplementary Figure S3B). DRIP-seq
and qDRIP-seq both showed strong association to genic
regions, although the enrichment tended to be stronger in
DRIP-seq than qDRIP-seq. This difference in enrichment
between qDRIP-seq and DRIP-seq may derive from the use
of sonication rather than restriction digest to fragment the
genome (Supplementary Figure S2A), which we found to
decrease percent recovery by qPCR (Supplementary Figure
S1G).

To confirm that these observations held more generally,
we examined the distribution of signal in all three sequenc-
ing methods around the TSS of the top 10,000 expressed
genes in HeLa cells by GRO-seq (Supplementary Figure
S3C) (36). Gene promoters have been shown in a vari-
ety of R-loop mapping methods to form R-loops robustly
(3,4,8,10–12,42). Both qDRIP-seq and RDIP-seq detect R-
loops only within gene bodies, and find no signal upstream
of the TSS. By contrast, DRIP-seq finds a broad profile that
extends approximately 2 kb upstream of the TSS. This pat-
tern may reflect either the lower resolution obtained from
fragmenting the genome by restriction digestion, or anti-
sense R-loops upstream of the promoter that cannot be dis-
tinguished from sense signal downstream of the promoter.
In terms of signal enrichment, qDRIP-seq does not detect
as robust of a signal at the TSS compared to DRIP-seq,
consistent with our observations at individual sites. Both
qDRIP-seq and RDIP-seq show high signal enrichment
within the gene body. Overall, we conclude that qDRIP-seq
and RDIP-seq have higher resolution than DRIP-seq at the
cost of slightly reduced sensitivity. RDIP-seq and qDRIP-
seq both offer strand-specific and high-resolution R-loop
mapping, but in qDRIP-seq the DNA moiety of the RNA–

DNA hybrid is sequenced. This avoids the potential issues
of non-specific S9.6 binding to dsRNA (43,44).

We then turned our attention to analysis of the data
we obtained using qDRIP-seq. We performed peak calling
against a matched input sample and, to facilitate down-
stream analysis, selected 16,895 peaks with strong strand
bias and RNase H sensitivity, representing 191 Mb (6.3%)
of genome space. These values are similar to previous re-
ports of the hybrid-containing fraction of the genome,
which have found between five and ten percent of the
genome to form hybrids (4,11). We found a broad distri-
bution of peak sizes (Supplementary Figure S4A), with
a median of 3.7 kb and an interquartile range between
1.1 and 14 kb. The size distribution of reads contained
within these peaks was comparable to that found in the
control IP sample as a whole (Supplementary Figure S2C).
As most R-loops are thought to be 100–2,000 bp in length
(6,8,49), most peak sites likely represent a population av-
erage of several individual R-loops, as recently suggested
by single-molecule experiments (50). Across qDRIP-seq
peaks, we found patterns of GC-skew (asymmetry in G
content between strands) and AT-skew (asymmetry in A
content between strands) as previously reported (Figure
2D) (8,11). We additionally found qDRIP-seq peaks to be
highly and significantly underrepresented in intergenic re-
gions and particularly over-represented at the 3′- and 5′-
ends of genes when compared to the total fraction of the
genome within these compartments (Figure 2E), consis-
tent with other reports (4,10). Within intergenic regions, R-
loops were highly enriched over repetitive regions as identi-
fied by RepeatMasker on the human genome (Supplemen-
tary Figure S4B).

We next asked how qDRIP-seq hybrid signal correlated
with known features of the genome. Across promoters,
sense hybrid signal was precisely bounded by the TSS, and
increased strikingly across the first exon to peak down-
stream of the first intron-exon boundary, consistent with
previous reports of R-loops forming robustly across the first
exon (12) (Figure 2F). This may reflect a role of the splic-
ing machinery in preventing R-loop formation (51) or in-
creased RNA Pol II pausing at the intron-exon boundary
(52). These patterns are consistent with co-transcriptional
R-loop formation and demonstrate the high resolution and
strand selectivity of our mapping protocol. We also found
that transcription correlated with R-loop density at the
TSS (Supplementary Figure S4C), and no R-loop signal
was detected around the TSS of non-expressed genes (Sup-
plementary Figure S4D). Around promoters positive for
hybrids, histone modifications associated with active tran-
scription were over-represented compared to an expression-
matched set of non-hybrid-containing promoters (Supple-
mentary Figure S4E), as previously reported for hybrids
(4,10,11).

Having shown that qDRIP-seq can detect hybrids on syn-
thetic RNA–DNA templates and on the human genome, we
next ascertained whether qDRIP-seq would also be com-
patible with a Drosophila cell-based spike-in that has pre-
viously been used to normalize RNA–DNA hybrids in se-
quencing (24). We detected robust signal across a number of
loci in the Drosophila genome (Supplementary Figure S5A),
with signal generally derived from the template strand as it
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is on the human genome. After performing peak calling to
find robust, highly enriched sites of hybrid formation (see
methods), we examined the pattern of hybrids at the TSS of
genes containing these peaks. As on the human genome, hy-
brids were significantly enriched above background only in
gene bodies, and were precisely bounded by the TSS (Sup-
plementary Figure S5B). Comparing two biological repli-
cates of control cells, we found that synthetic hybrid spike-
ins and the cell-based spike-ins predict similar degrees of
normalization between the replicates (Supplementary Fig-
ure S5C), establishing consistency between these spike-in
approaches.

Synthetic spike-ins allow for absolute quantitation of genomic
hybrid fractions

Our hybrid spike-ins were prepared in vitro and purified,
added at levels similar to the genome copy number in HeLa
cells, and carried through the entire experimental workflow.
Spike-in read counts should therefore be similar to a ge-
nomic site that forms R-loops 100% of the time. We thus
reasoned that spike-ins could be used to estimate the abso-
lute hybrid frequency at each peak site: that is to say that a
site forming R-loops at approximately 5% of all copies in a
population of cells would be expected to have ∼5% of the
spike-in read depth. Summing these frequencies through-
out the genome, we can therefore estimate the number of
hybrids per cell.

To accurately quantify the percent of hybrid-containing
molecules at each site, we first estimated the genome copy
number at every hybrid peak site by examining input DNA
read counts over 10 kb bins. We found a mean DNA con-
tent at each locus slightly greater than 3N (Supplemen-
tary Figure S6A), consistent with measurements and known
copy number alterations in HeLa cells (Supplementary Fig-
ure S6B) (53). After normalizing the read depth over each
qDRIP peak site to its respective genome copy number, we
then compared these read depths to the read depth mea-
sured over the spike-ins.

We find that the mean qDRIP peak region contains a hy-
brid at ∼0.8% of copies (Figure 3A), although some hybrids
at housekeeping genes were found to form at rates between
1 and 10%. These percentages are approximately consistent
with previous site-by-site measurements obtained by qPCR
(54). As comparisons to a pure internal standard also ac-
count for dissolution of hybrids during the experimental
workflow, these values represent an independent estimate
of genomic fractions from qPCR.

We next used these data to simulate the count of hybrids
expected in the genome of cells. To do this, we first assumed
that hybrid formation was uncorrelated between different
sites in the genome, and that hybrid formation was a binary
choice (either fully present, or fully absent.) These assump-
tions allowed us to use the allelic fraction of hybrids at each
peak as the probability that each peak formed an R-loop
in any given cell. To simulate the hybrid count in a single
cell, we used these probabilities to assign each peak site to
either contain a hybrid or not, and then counted the num-
ber of sites assigned to contain hybrids. Using this simula-
tion procedure for 100,000 cells, we found the mean unper-
turbed cell to have ∼300 R-loops at steady state (Figure 3B).

This estimate likely represents a lower bound due to incom-
plete recovery of hybrids in the sequencing protocol, and
the strong possibility that more than one distinct R-loop
structure may form within a single genomic peak site.

Synthetic RNA–DNA spike-ins allow for accurate hybrid sig-
nal normalization across R-loop perturbations

Having established a method to sequence genomic and syn-
thetic RNA–DNA hybrids, we next evaluated the spike-ins
under experimental conditions where R-loop formation is
strongly perturbed. As a proof of principle, we chose to
examine hybrid levels in the presence and absence of the
RNA Pol II transcription elongation inhibitor DRB, which
should acutely perturb R-loop formation at predictable
sites. In particular, we expected that DRB treatment would
reduce hybrids in places where DRB inhibits transcription,
such as downstream of the pause site in Pol-II-transcribed
genes, but not within non-pol-II genes such as ribosomal
DNA. As DRB would reduce the total number of hybrid-
containing sites on the genome, we also expected that raw
read counts across remaining areas would be correspond-
ingly increased. If normalizing by total read counts, this
would lead to an artifactually high signal at these regions
after DRB treatment relative to controls. A similar pattern
of overestimation has previously been observed for nascent
transcription by GRO-seq after DRB treatment (36).

We thus performed qDRIP-seq in HeLa cells treated with
100 �M DRB for 40 min, a time-point previously shown
to reduce but not eliminate hybrids at a subset of human
genes (4). As expected for inhibition of transcription elon-
gation, treatment with DRB severely affected hybrid for-
mation (Figure 4A, Supplementary Figure S7A, B) and
nascent transcription (Supplementary Figure S7C–E) re-
ducing hybrid signal within the 5’-ends of long genes while
retaining hybrids lying far downstream from promoters. As
short DRB treatment is not expected to affect transcription
from non-RNA Pol-II-transcribed genes, these genomic re-
gions effectively act as a natural internal standard that can
be used to evaluate whether synthetic spike-ins are effec-
tive in allowing accurate normalization between samples
(36). At the polymerase-I-transcribed 18S and 28S riboso-
mal DNA genes, we confirmed by qPCR that hybrid signal
remained unchanged (Supplementary Figure S8A). Using
read counts over annotated Pol I and Pol III genes, we found
that synthetic spike-in hybrids significantly reduced the ex-
tent to which signal at these regions was overestimated (Fig-
ure 4B). Similarly, in metaplots of qDRIP-seq read density
of Pol I genes, we found that normalizing with read counts
overestimated the hybrid signal under DRB treatment. By
contrast, normalizing using spike-ins approximately equal-
ized signal between the control and DRB treatment condi-
tions. Although differences in signal were not statistically
significant, the trend of correction was within our expecta-
tion (Supplementary Figure S8B, C).

As a CDK9/PTEF-b inhibitor, DRB blocks transcrip-
tion by preventing engaged RNA polymerases from tran-
sitioning to processive elongation after the 5′-pause site
(55). However, DRB does not affect polymerases that have
cleared this stage of the transcription cycle. We thus ex-
pected that transcription at the 3′-end of long genes should
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A B

Figure 3. Absolute quantitation of genomic hybrids using the spike-in. (A) Histogram of estimated maximum genomic hybrid frequencies across consensus
qDRIP peaks. Data is pooled from mean of two biological replicates. (B) Histogram of distribution of R-loop frequencies in diploid cells obtained from
numerical simulation on genome-frequency data.

be largely unaffected by DRB treatment. Using publicly
available GRO-seq data collected from DRB-treated and
control samples (36), we confirmed that nascent transcrip-
tion remained mostly unchanged at these sites after 30 min
of treatment using the same dose of DRB (Supplementary
Figure S8D). We reasoned that R-loop formation should
also remain largely unchanged in these regions after 40 min
of DRB treatment, which we confirmed by qPCR measure-
ments at the 3′ ends of a selection of long genes (Supple-
mentary Figure S8E). As hypothesized, normalization of
hybrids with mapped read counts showed a marked increase
at the 3′-end of genes (Figure 4C). In contrast, the signal
was equalized at these regions using spike-in read counts,
consistent with nascent transcript levels and the known bi-
ology of DRB (Figure 4C). Interestingly, the DRB hybrid
signal was equivalent to that in the control ∼130 kb down-
stream of the TSS. This is consistent with measurements
of transcriptional elongation rates in HeLa cells which sug-
gest that an average polymerase would have traveled 135 kb
in 40 min (38). Thus, we find that normalization by total
read counts consistently overestimates hybrid levels in re-
gions that should be unaffected by DRB, whereas normal-
izing with spike-ins brings these regions close to parity.

Hybrid spike-ins facilitate accurate differential peak calling

Having shown that synthetic spike-in hybrids could ef-
fectively normalize qDRIP-seq signal across genome fea-
tures that are unaffected by DRB treatment, we next asked
whether spike-ins could facilitate unbiased discovery of dif-
ferential hybrid-containing regions. In most sequencing ex-
periments, regions where IP signal changes between condi-
tions are not known a priori, and are generally discovered
through differential peak calling. We thus performed dif-
ferential peak calling between our DMSO and DRB sam-
ples over 81,151 preliminary peaks from the union of the
two conditions. We selected differential regions between the
samples at a 1% false discovery rate, and further filtered
these calls to include only strand-specific and RNase H-
sensitive qDRIP-seq peaks in the final differential peak set.

With spike-ins, we found 94 hybrid sites that were sig-
nificantly induced and 4812 sites that were significantly re-

pressed after DRB treatment (Figure 5A). Using qPCR, we
confirmed that regions called as significantly down (Supple-
mentary Figure S9A) and up (Supplementary Figure S9B)
in DRB were indeed significantly altered. Without spike-in
normalization, we found that 754 (4.5%) peaks were called
as increased in hybrid content under transcription inhibi-
tion, an increase of 660 peaks (Figure 5A). We addition-
ally found 394 fewer peaks called as significantly down with
read-count normalization compared to spike-in normaliza-
tion. Given the co-transcriptional nature of R-loops, we ex-
pect that most regions should decrease in hybrid formation
after DRB addition. Therefore, we suspected that many re-
gions called as increased only in the read-count normaliza-
tion were likely false positives, and regions that failed to be
called as down in the read-count normalization were likely
false negatives.

To test whether these classes of peaks actually repre-
sented false negative and false positive calls, we examined
changes at a few representative peaks from each class by
qPCR. Regions were selected to represent a variety of posi-
tions within genes (5′, 3′ and gene body). At the peaks that
were significantly decreased after DRB treatment only with
spike-in normalization, qPCR measurements confirmed a
significant decrease (Figure 5B). Thus, normalizing our dif-
ferential peak calls with spike-ins strikingly increased the
sensitivity of these calls. We additionally tested the speci-
ficity of our calls by examining regions called as increased
by read-count normalization, but unchanged by spike-in
normalization. By qPCR, these regions had no significant
differences (Figure 5C), again confirming that spike-ins
properly normalized differential calls. Finally, we selected
regions that were predicted to have almost no change be-
tween our conditions as called by spike-in normalization,
but that would be predicted as slightly (1.2-fold) increased
in the DRB sample by read-count normalization. Measur-
ing these regions by qPCR, we found that levels did not
show any consistent bias towards greater signal in DRB
(Supplementary Figure S9C). Thus, regions that are pre-
dicted to have identical signal using spike-in normalization,
but that show consistent (if small) biases by read-count nor-
malization, show no bias when measured by qPCR. Taken
together, these results show that normalization with spike-
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Figure 4. qDRIP allows for effective normalization when R-loops are acutely perturbed by transcription inhibition. (A) Genome browser view taken from
a long gene (AUH) showing effects of DRB on hybrid formation. In order from top to bottom, tracks shown are two biological replicate DRB-treated
IP samples, two biological replicate control (DMSO) IP samples, and a track showing genes. All tracks are normalized by reads per million mapped. Red
indicates negative strand signal, while blue indicates positive strand signal. Bent arrows represent TSS, while large triangular arrows represent TES. (B)
Scatter plots showing read-counts over Pol I or Pol III-transcribed regions compared for DMSO and DRB treatment using read counts to normalize (left)
and spike-ins to normalize (right). Individual regions are shown as grey dots, while the regression line and bootstrapped 95% CI are shown as a grey
line and grey band, respectively. Blue diagonal line represents expected trend line if read counts are equal. The normalization factor calculated using read
counts is 1.373 with a bootstrapped 95% CI of (1.247, 1.459), while the normalization factor calculated using spike-ins is 1.170 with a bootstrapped 95% CI
of (1.063, 1.242). Altogether, spike-ins significantly reduced overestimation of non-pol II genes (P = 0.006, non-parametric bootstrap of the difference of
means). (C) Metaplots of DMSO (blue) and DRB (red) IP signal over the first 200 kb of all genes longer than 200 kb expressed in HeLa cells by GRO-seq
(36), normalized using total read counts (left) or spike-in read counts (right).

ins substantially increases the sensitivity and specificity of
our differential peak calls, and confirms the importance of
using internal standards to discover regions that change in
hybrid content between biological conditions.

Observation and analysis of RNase H-resistant signal

Throughout these sequencing experiments, we included a
control sample that had been pre-treated with RNase H
prior to pulldown with the S9.6 hybrid antibody. RNase
H specifically degrades RNA contained within an RNA–
DNA hybrid; therefore, treatment with RNase H would be
expected to reduce measured hybrid levels to those observed
in the input sample. RNase H treatment substantially re-

duced signal across genomic regions (Figure 2B) and spike-
in constructs (Figure 2C). However, we were surprised to
observe that substantial signal remained in some regions af-
ter RNase H treatment. Deeming this remaining signal as
RNase H-resistant (RHR), we sought to better understand
its characteristics.

Among known genome features, we found RHR signal
to be particularly high immediately downstream of pro-
moters (Figure 6A), although RHR signal was detectable
above input across entire gene bodies (Supplementary Fig-
ure S10A). High positive GC-skew immediately down-
stream of the TSS has previously been identified as a ma-
jor contributing factor to R-loop formation in these regions
(8). Given that promoters had high RHR signal, we asked
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Figure 5. Spike-ins facilitate accurate differential peak calling. (A) Comparison of DESeq2 calls normalized using total read counts (left) or DESeq2 calls
normalized using spike-in read counts (right). Using a cutoff of 0.01 for the FDR corrected p-value, sites significantly increased in the DRB are highlighted
in red, and sites significantly decreased in the DRB are highlighted in blue, for both normalization methods. (B) qPCR measurements over genes called as
significantly down by spike-in normalization, but non-significant by total read counts. For all qPCR measurements, error bars represent 95% CI of mean
value. Results are significantly different (marked as *) as determined by non-overlapping 95% CIs. In primer name, GB indicates gene body, 3’ indicates
TES proximal regions, 5’ indicates TSS proximal regions. (C) Same as for (B), but for regions significantly up by read-count normalization.

whether the degree of RHR signal at promoters correlated
with GC-skew downstream of the TSS. Indeed, RHR signal
correlated to GC-skew downstream of the TSS even more
strongly than total qDRIP-seq signal, and RHR signal was
highly restricted to these regions of high GC-skew (Figure
6B).

To generalize these patterns, we performed peak calling
on the RHR signal from our control qDRIP-seq experi-
ment, obtaining 125,187 peaks over 106.8 Mb. These peaks
were considerably smaller on average than those obtained
for qDRIP without RNase H with a median peak size of
0.4 kb and an interquartile range between 0.29 and 0.58 kb
(Supplementary Figure S10B compared to Supplementary
Figure S4A). The mean read lengths within the control and
RHR peaks were 283 and 237 bp, respectively (Supplemen-
tary Figure S10C). Peak calling revealed that RHR regions
were not restricted to promoter regions, and were found
at terminators, gene bodies and intergenic regions (Supple-
mentary Figure S10D). While the majority of qDRIP-seq

peak regions were not contained within an RHR peak, a
number of RHR peaks were not contained within a called
qDRIP-seq peak (Supplementary Figure S10E). To better
understand the source of these apparently ‘new’ RHR re-
gions, we examined the distribution of qDRIP-seq signal
before RNase H treatment around these peaks. We found
a small but significant accumulation of this signal above in-
put at RHR peaks (Supplementary Figure S10F). We there-
fore conclude that these apparently new peaks consist of
low levels of signal that may not have met the threshold for
peak calling in the original qDRIP-seq sample, but that are
highly selected for after RH treatment.

Focusing on genic RHR peaks where there was an an-
notated direction of transcription, we asked whether GC-
skew was elevated over these regions. We found that GC-
skew over RHR peaks was elevated compared to nearby re-
gions of the genome and regions selected from DRIP-seq
peaks, confirming that these patterns in nucleotide content
generalize outside of promoter regions (Figure 6C). High
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Figure 6. RNase H resistant signal. (A) Aggregate plot of qDRIP-seq signal around the TSS of top 10,000 expressed genes as determined by GRO-seq
(36). Tracks are IP (blue), RHR (red) and input (grey). Error bands represent 95% CI of mean. (B) Heatmaps of mean IP signal, RNase H-resistant signal
and GC-skew around top 10,000 promoters ranked by GC-skew immediately (0–500 bp) downstream of the TSS. Correlation coefficient between IP signal
and GC-skew was 0.06, whereas correlation coefficient for RHR signal was 0.22 (Spearman’s rho). (C) GC-skew around RNase H resistant regions within
the full (unfiltered) qDRIP-seq peak set. qDRIP peaks (red) compared to regions of equal lengths randomly selected from non-resistant qDRIP-peaks
(blue). As before, bands represent 95% CI of mean read signal. (D) Same as (C), but showing biochemically determined G-quadruplex density (37) over
these regions. (E) RNase H-resistant signal around RH-resistant peak calls. Peaks lying 5’ in genes (which DRB should affect) are in blue, while peaks
lying 3’ in genes (which DRB should not affect) are in red. Left panel is RNase H treatment in control cells, while right panel is RNase H treatment in
DRB treated cells. As before, error bands represent 95% CI of the mean.

concentrations of guanine on one strand are also associated
with secondary structures such as G-quadruplexes (56). We
therefore also examined the correlation to biochemically-
determined G-quadruplex forming sequences (37), likewise
finding a strong association of these regions with RNase
H-resistant peaks (Figure 6D). Thus, RHR signal displays
general correlations to these sequence features.

There are two major possibilities that might explain
widespread RHR signal in qDRIP. As certain secondary
structures (57,58) have been shown in specific contexts to
be resistant to RNase H, this signal could represent regions
that are not efficiently digested by the enzyme. Alternatively,
if RNase H does completely and uniformly digest all hy-

brids on the genome, this enrichment could be an off-target
effect of the S9.6 antibody for particular DNA sequences or
secondary structures. As S9.6 and RNase H are the two key
reagents for studying RNA–DNA hybrids, it is critical to
understand which of these possibilities contributes to this
unexpected RHR signal.

To address this issue, we first asked whether increasing
RNase H treatment could affect this signal. If some regions
of the genome are partially resistant to RNase H, increas-
ing the enzyme concentration and treatment time might be
expected to reduce this RHR signal. Conversely, if the sig-
nal derives from off-target S9.6 binding, increases in enzyme
concentration would not reduce this signal, and might in
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fact further purify the resistant component of the signal.
We thus examined the degree of RHR signal under these
increased treatment conditions, finding that increased treat-
ment reduces signal across the genome (Supplementary Fig-
ure S11A) and systematically brings down signal at peaks of
different levels of GC-skew (Supplementary Figure S11B).
This indicates that RHR signal is affected by more strin-
gent digestion conditions, implying that this signal comes
from partial rather than complete resistance to digestion.
Second, transcription should induce R-loops, but it would
not be expected to affect the off-target propensity of S9.6
to recognize particular DNA sequences or structures. DRB
treatment therefore provides a means to test whether RHR
signal represents bona fide R-loops. If the RHR signal is
reduced after DRB treatment, this is consistent with re-
duced digestion by RNase H, but not with off-target bind-
ing. As previously discussed, short treatments with DRB
are not expected to affect transcription far from the TSS,
but should affect peaks towards the 5′ ends of genes. With-
out DRB treatment, we find that these two regions have
identical RHR signal; however, DRB treatment substan-
tially reduces RHR signal at peaks where DRB is expected
to act (Figure 6E), indicating that the observed RHR sig-
nal does indeed come from partially resistant RNA–DNA
hybrids on the genome.

We finally asked whether RHR signal could be detected
with other R-loop mapping methods performed in HeLa
cells. Using publicly available datasets, we found accumu-
lation of RDIP-seq signal around the RHR sites, both in
samples from control cells and those endogenously over-
expressing RNase H1 (Supplementary Figure S11C), indi-
cating that some RNA–DNA hybrids are resistant to hu-
man RNase H1 acting in vivo, and not only to ex vivo treat-
ment as we have performed. We also analyzed data from
RR-ChIP-seq, a method which does not use S9.6 but in
which RNA is sequenced following immunoprecipitation of
GFP-tagged human RNase H1 in cells (46). We did not de-
tect signal at the RHR sites from samples immunoprecipi-
tated with either catalytically inactive RNase H1-D210N or
wild-type RNase H1 (Supplementary Figure S11D).

Determination of hybrid lifetimes

Having shown that synthetic spike-in hybrids could accu-
rately normalize between control and DRB-treated sam-
ples, we leveraged the spike-ins as a tool to carry out a
natural experiment to estimate intrinsic R-loop lifetimes
genome-wide. Because DRB inhibits new transcription but
does not halt actively elongating RNA Pol II, it does not
instantaneously halt transcription across the entire gene
body. Instead, polymerases that began elongation before
DRB treatment continue to transcribe. At the time of cell
harvest, regions lying increasingly upstream from the last
initiated polymerases (or the ‘front’ of transcription) will
have spent increasingly more time without new transcrip-
tion, and therefore without the formation of new R-loops.
Thus, every gene effectively contains a natural timecourse
of transcription inhibition (Figure 7A).

Using gene-specific rates of transcription previously de-
termined by 4sUDRB-Seq (38) and the length of DRB
treatment (40 minutes), we can estimate the position of the

last front of transcription. We can additionally work back-
wards from the position of this front, using the rate of tran-
scription to estimate the time without new transcription at
each position upstream from the front. By comparing this
time to the remaining fraction of hybrid signal after DRB
treatment, we can find areas that are longer or shorter lived
than the average, and make some quantitative estimates of
hybrid half lives.

To determine R-loop lifetimes genome-wide, we com-
pared the inferred time without transcription (calculated us-
ing transcription rates) to the fraction of remaining hybrid
signal without transcription in our experiment. At early
time points, we observed parity between the hybrid content
in DMSO and DRB (Figure 7B), consistent with our pre-
vious findings at the ends of long genes and with the idea
that hybrids are not instantaneously resolved (Figure 4C,
Supplementary Figure S8E). At progressively longer time
points without transcription, we found a striking reduction
in signal. Hybrid levels declined to ∼20% of what is ob-
tained in control samples, with a half-life of ∼15 min (Fig-
ure 7B). These results are in line with qPCR timecourses
at a limited selection of genes that found promoter hybrid
levels diminish with a half-life of ∼10 min during a DRB
treatment timecourse (4).

We noticed that there was wide variability in the quan-
tity of remaining signal (as indicated by the 95% confidence
interval), with some regions being resolved much faster or
slower than the average. After validating these apparent
differences in kinetics with a DRB treatment time course
(Figure 7C, Supplementary Table S3), we asked whether
there were any genomic factors that could predict whether
regions had increased or decreased hybrid stability. Strik-
ingly, hybrid lifetimes strongly correlated with GC con-
tent, with shorter-lived hybrids having lower average GC-
content and more stable hybrids having higher GC con-
tent (Figure 7D). We additionally found that an increase
in G-quadruplex-forming sequences significantly correlated
with longer hybrid lifetimes by negative binomial regres-
sion (Figure 7E). Using Repli-seq data obtained in HeLa
cells (39), we also found that sites predicted to participate
in head-on replication-transcription collisions had longer
lifetimes than co-directional collisions (Figure 7F), consis-
tent with measurements of higher hybrid content in these
regions (45). We did not observe any consistent trends for
GC-skew or AT-skew (Supplementary Figure S12A, B).
Low stability and high stability hybrids were both somewhat
over-represented at the 5′ and 3′-ends of genes, but there
was no consistent trend across categories (Supplementary
Figure S12C). Lifetimes also did not consistently correlate
with sense transcription, suggesting that total transcription
may influence hybrid levels (Supplementary Figure S4C)
through formation but not resolution (Supplementary Fig-
ure S12D).

We finally sought to quantify the half-lives of specific hy-
brids. Previous measurements from DRB timecourses using
qPCR (4) have found hybrids to be resolved in a manner
approximately consistent with first order (exponential) de-
cay. To generalize this pattern, we determined whether loga-
rithmic fits of the remaining proportion of reads after DRB
added any explanatory value beyond a simple linear model.
As we only had one true time-point of DRB inhibition, we
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Figure 7. R-loop lifetimes. (A) Schematic of transcription with and without DRB. (B) Ratio of DRB to control signal in RNase H-sensitive peaks, compared
to estimated time without transcription. Error bands are 95% CI of the mean. Horizontal dotted line indicates a 2-fold decrease in DRB signal. (C) qPCR
measurements during a DRB timecourse at regions predicted to be unstable (top) or stable (bottom) by pseudo-timecourse obtained from sequencing data.
Error bars represent 95% CI of the mean. In primer name, GB indicates gene body. (D) GC content across 500 bp regions with shorter, longer or close
to average (NS) lifetimes (P = 2.5e–143, Kruskal–Wallis test). (E) Biochemically determined G-quadruplex counts (37) over the same regions as (D) (P
= 2.7e–7, ANOVA on Negative Binomial regression, likelihood ratio test). (F) Relative replication fork directionality (RFD) (39) to transcription over
the same regions as (D), where 1 represents fully co-directional and –1 represents fully head-on (P = 3.5e–12, Kruskal–Wallis test). (G) Distribution of
half-lives assuming first-order decay.
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fit each curve to pseudo time-points collected across sin-
gle genes, reasoning that sites within a single gene would
likely be resolved by similar co-transcriptional mechanisms.
In 224 (85%) of these genes, we found that exponential mod-
els fit the data better as measured by Pearson’s R2 (Sup-
plementary Figure S12E). Furthermore, the generally high
quality of these fits confirmed that site-to-site variation in
lifetimes was fairly low across these gene bodies. Among the
107 genes fitted extremely well (R2 > 0.95) by an exponen-
tial model, we found that 88% had hybrids with mean half-
lives between 7 and 15 min, with a mean of 11.0 min (Fig-
ure 7G). These values suggest that previous measurements
at selected promoters (4) generalize across the genome.

With genome-wide estimates of both the hybrid count per
cell and the mean lifetimes of these hybrids, we next esti-
mated the rate at which cells resolve hybrids. A half-life of
11 minutes with first order decay implies that 6.3% of cellu-
lar hybrids are turned over every minute. Using our previous
result that cells contain ∼300 hybrids at steady state, we cal-
culated that 19 hybrids are resolved every minute, for a total
of 27,000 per day. As a frame of reference, this is approxi-
mately double the rate of depurination in human cells (59).
Altogether, these results underscore the power of absolute
quantitative measurements as provided by qDRIP.

DISCUSSION

A persistent challenge for the R-loop field has been accu-
rate comparison of hybrid levels between conditions where
R-loops are perturbed. More generally, normalization us-
ing the conventional approach of total read count assumes
that total signal remains unchanged between samples in
next-generation sequencing experiments. Sequencing exper-
iments under conditions that strongly decrease or increase
signal at a subset of genomic sites will therefore inher-
ently suffer from over- or under-estimation of signal at un-
changed sites, respectively. Spiked-in standards have been
shown to correct these biases, revealing changes between
conditions that were otherwise obscured, and preventing
misinterpretations (17–21), but this approach has not been
widely recognized as needed for R-loop mapping.

Here, we describe qDRIP-seq, a method that combines
stranded, high-resolution hybrid sequencing with synthetic
RNA–DNA hybrid spike-ins for cross-condition normal-
ization. We first show that our sequencing procedure rec-
ognizes hybrid-containing sites generally consistent with
known biology (Figure 2). We additionally use the spike-
ins to make absolute estimates of the genomic R-loop frac-
tion at different genomic sites, and used these estimates to
model the count of hybrids in an average cell (Figure 3).
In cells treated with the Pol II transcription elongation in-
hibitor DRB, we also show that normalization using total
read count overestimates hybrid signal at non-pol II tran-
scribed genes and the ends of long genes. By contrast, nor-
malization using synthetic RNA–DNA hybrid standards
corrects these biases (Figure 4). Finally, we find that the
use of hybrid spike-ins reduces the false-positive and false-
negative rates of differential hybrid peak calling between
control and DRB-inhibited conditions (Figure 5), and we
identify a set of RNA–DNA hybrids that show partial re-
sistance to RNase H (Figure 6). Collectively, these data

demonstrate the need for and the potential utility of syn-
thetic RNA–DNA hybrid spike-ins in hybrid mapping ex-
periments.

Here, we also provide the first data of hybrid lifetimes at
a genomic scale (Figure 7). Measuring kinetic off-rates as
opposed to thermodynamic steady state levels could prove
to be a powerful new approach to study R-loop biology. For
example, hybrid lifetimes would be expected to increase af-
ter depletion of R-loop processing factors. Thus, identifying
the specific sites where hybrid lifetimes increase could reveal
where these factors act. As our lifetime estimates critically
rely on the ratio of DRB treated to control R-loop signal,
spike-in normalization was crucial for accurate results be-
cause normalizing by total read count overestimates hybrid
signal at the ends of genes. Interrogating lifetimes genome-
wide allowed us to discover that high-GC content and G-
quadruplex formation, but not high transcription or nu-
cleotide skew, correlate with longer R-loop lifetimes on the
genome. Where sufficient data were available across genes
to make lifetime estimates, we also found hybrid levels at
most genes diminish exponentially with a half-life of ∼11
min. While many factors may influence R-loop lifetimes,
the observed exponential decay implies that R-loop reso-
lution does not increase when R-loops are depleted across
the genome. This implies that R-loop resolution is not rate-
limiting at steady state.

Our estimate that mammalian cells must resolve on the
order of 27,000 R-loops per day brings into clear focus
the substantial resources that cells must invest to turn over
R-loops. Even if 99% of R-loops occur in contexts where
they are benign, this would leave 260 potential detrimen-
tal events per day, a rate comparable to serious events such
as DNA base damage (59). If R-loops only cause damage
in specific contexts as some recent studies suggest (60,61),
it would be interesting to understand what necessitates this
speedy resolution even outside of these contexts. Addition-
ally, this high rate of resolution may partially explain the
large and diverse set of pathways required for efficient R-
loop processing and resolution (6,7).

Beyond these insights into cellular hybrid content and
lifetimes, our sequencing results also open up some inter-
esting questions regarding the nature of the signal obtained
by hybrid pulldown and sequencing. We are the first to re-
port substantial RNase H-resistant regions on the genome
(Figure 6), and define these regions as having distinct nu-
cleotide and sequence characteristics. Although the source
of this signal is not precisely defined, our data suggest that
this signal likely represents bona-fide co-transcriptional R-
loops that show decreased sensitivity, rather than complete
resistance to RNase H. Intriguingly, RDIP-seq also ex-
hibits RNase H1-resistant hybrid signal at these sites, in-
dicating that this phenomenon can be detected using mul-
tiple R-loop mapping methods. DRIP-seq results including
an RNase H control do not detect these resistant regions
(5,26), possibly because resistant regions are relatively small
compared to the size of the restriction fragments used in
DRIP-seq. While the S9.6 antibody is known to show bi-
ases in sequence recognition (40), these results indicate that
RNase H may show a possibly distinct set of biases, either in
recognition or catalytic activity. RR-ChIP-seq, which uses
RNase H1 itself as a tool for R-loop detection, does not ex-
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hibit hybrid signal at the same RHR sites as qDRIP and
RDIP-seq. Although there are alternative interpretations,
this could indicate that RNase H binds poorly to these re-
sistant sites. This would be consistent with our observation
of RNase H resistance at these sites. Overall these results
indicate that the use of RNase H as a tool for R-loop de-
tection (16,62) requires careful evaluation, since RNase H
does not seem to bind or act on all R-loops uniformly. Fur-
thermore, our work highlights the need to optimize RNase
H digestion conditions in hybrid mapping experiments, as
restricting the genomic regions analyzed to those that are
deemed RNase H sensitive could lead to certain biases de-
pending on the extent of digestion, and hence in the regions
analyzed.

Additionally, our work implies that the choice of son-
ication or restriction digest poses an important trade-off
in sequencing RNA–DNA hybrids. While sonication sub-
stantially improves the resolution of hybrid signal, it also
reduces sensitivity in qDRIP-seq. Although the decrease
in sensitivity is relatively minor for qDRIP-seq when com-
pared to the gains in resolution and strand-specificity,
DRIP-seq may still be the more appropriate technique for
experiments requiring extreme sensitivity. Nevertheless, use
of spike-ins allowed us to quantify the loss of hybrid mate-
rial throughout the experimental procedure, as even with
gentle fragmentation, pure hybrids can only be isolated
with ∼50% yield (Supplementary Figure S1G). While our
method inherently assumes that genomic hybrids are recov-
ered with the same efficiency as the synthetic hybrids, these
losses highlight the importance of including standards that
can account for any variation in pulldown efficiency.

We have additionally shown our approach to be com-
patible with cell-based hybrid spike-ins such as those re-
cently used in DRIP-seq (24). As an important technical
note, we found that the Drosophila genome tended to have
weaker hybrid signal within peaks when compared to the
human genome. This necessitates careful selection of peak
regions within the Drosophila genome to avoid counting
background signal in the normalization, which was also the
approach taken for the previous study using this cell-based
spike-in for DRIP-seq (24). In a head-to-head comparison,
we found a cell-based spike-in to behave similarly to the
synthetic hybrids used in this study (Supplementary Figure
S5), although it will be useful to further evaluate their rela-
tive behaviour under conditions in which R-loops are per-
turbed. Cell-based spike-ins provide some advantages over
synthetic spike-ins, as they provide greater sequence diver-
sity, and are easier to prepare than biochemically pure hy-
brids. On the other hand, cell-based spike-ins could vary
between biological replicates due to different growth con-
ditions affecting the hybrid content of cells, and the impure
nature of the material does not allow for quantitative com-
parisons in yield (as we do in Supplementary Figure S1G) or
absolute quantification of hybrids in the sequencing experi-
ment (Figure 3). Overall, we believe that there are trade-offs
between these two normalization standards, and that there
may be contexts in which a cell-based spike-in or a synthetic
spike-in might be more appropriate.

While this study provides valuable quantitative insights,
there is still room for improvement in the method as de-
scribed. In particular, our conclusions are based on counts

from only two spike-in sequences, as we found that shorter
spike-ins were not compatible with size selection during li-
brary preparation. Our data suggest that hybrids shorter
than 150 bp are unlikely to be useful for normalization
(Supplementary Figure S2), which is an important consid-
eration in designing additional spike-ins. Two spike-ins were
sufficient to correctly normalize between DMSO and DRB,
but additional spike-ins might provide more statistical cer-
tainty that could help to normalize conditions with more
subtle R-loop perturbations. Additionally, a larger panel of
spike-ins could be used for further characterization of the
size and sequence bias and dynamic range of DRIP. Mak-
ing such a library of RNA–DNA hybrids would require a
substantial concerted and likely collaborative effort, such as
that required for the spike-in library developed for RNA-
seq by the External RNA Controls Consortium (ERCC)
(20). Nevertheless, we have demonstrated in principle the
value of using spike-ins for R-loop mapping genome-wide
and set the stage for further development of a more exten-
sive set of controls.

In summary, qDRIP-seq provides high-resolution,
strand-specific maps of RNA–DNA hybrids, and allows for
quantitative comparisons to be made between conditions
where R-loop levels are perturbed. There is increasing
interest in factors purported to resolve R-loops in cells
(2,6,63), and as many of these factors alter cellular R-loop
content, the use of spike-in standards will be particularly
important for these studies moving forward.
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