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Abstract Alzheimer’s disease (AD) is characterized by senile plaques (SP) composed of b-am-
yloid protein (Ab) and neurofibrillary tangles (NFTs) composed of intracellular hyperphosphory-
lated tau. Recently, nuclear receptor subfamily 4 group A member 1 (NR4A1) was implicated in
synaptic plasticity, long-term memory formation, suggesting that it may play a role in the path-
ophysiology of AD. Here, we showed that the expression of NR4A1 was significantly increased in
the hippocampus of APP/PS1 transgenic mice. In addition, NR4A1 overexpression in HT22 cells
up-regulated APP and BACE1 levels, down-regulated ADAM10 expression, and promoted amy-
loidogenesis as indicated by decreased a-CTF levels and elevated b-CTF levels. Furthermore,
a raised level of phospho-tau (p-tau, S396) was accompanied by p-GSK3b (S9) expression
reducing, but total tau, p-tau (S262 and T231), CDK5 and ERK remained unchanged in
NR4A1-overexpressing cells. Collectively, our results suggest that NR4A1 promotes the amyloi-
dogenic processing of APP by regulating ADAM10 and BACE1 expression in HT22 cells; as well as
NR4A1 accelerates tau hyperphosphorylation by GSK3b signal. Therefore, NR4A1 may play an
important role in the pathogenesis of AD.
Copyright ª 2018, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease, with memory defect, cognitive impairment and
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behavioral changes as the main clinical manifestations.1,2

The hallmarks of AD pathology are the senile plaques (SP)
composed of b-amyloid protein (Ab), neurofibrillary tangles
(NFTs) composed of intracellular hyperphosphorylated
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microtubule-associated protein tau.3,4 Ab peptides derive
from degradation of b-amyloid precursor protein (APP) by
b-secretase (also known as the b-site APP-cleaving enzyme,
BACE1) and g-secretase via the amyloidogenic pathway.5,6

APP also undergoes a non-amyloidogenic pathway by a-
secretase and g-secretase. ADAM10 (a disintegrinand met-
alloproteinase domain-containing protein 10) is the physi-
ologically relevant, constitutive a-secretase of APP.7

Moreover, the phosphorylation of tau in NFTs is complex
on account of a multitude of phosphorylation sites of tau.8,9

Both kinases and phosphatases have been implicated in the
appearance of abnormally phosphorylated tau. Among the
best studied are the proline-directed kinases glycogen
synthase kinase-3 beta (GSK3b), cyclin-dependent kinases
(CDK5), extracellular signal-regulated kinase (ERK), c-Jun
N-terminal kinases (JNK), and p388.

NR4A1 (also called NGFI-B/NUR77/TR3) belongs to the
nuclear receptor subfamily 4, group A subfamily (NR4As)
which also comprises NR4A2 (NURR1), and NR4A3 (Nor-
1).10,11 NR4A1 is implicated in regulating key cellular pro-
cesses, including inflammation, proliferation, differentia-
tion, and survival.10e12 Recent work has shown that NR4A1
plays an important role in the synaptic plasticity, L-LTP,
long-term memory formation and neuroprotection.13e15

Previous study on RNA-sequencing base identified NR4A1
as a differentially expressed gene by nicotine,16 indicating
NR4A1 may play a key role in cognitive enhancement after
nicotine. These results suggest that NR4A1 is closely related
to the pathophysiology of AD.

Materials and methods

Antibodies

The anti-APP C-terminal (A8717) antibody was from Sigma
(Sigma, St. Louis, USA) and anti-APP (6E10) antibody was
from Covance (Princeton, NJ, USA). The anti-total tau, anti-
tau-pS396, anti-tau-pT231, anti-ADAM10, anti-BACE1, anti-
p-ERK1/2, anti-ERK1/2, anti-GSK3b, anti-GSK3b (S9) and
anti-CDK5 antibodies were purchased from Abcam (Abcam,
Cambridge, UK). The anti-tau-pS262 antibody was obtained
from Santa Cruz (Santa Cruz Biotechnology, California,
USA). The anti-NR4A1 and GAPDH antibodies were ordered
from Proteintech (Proteintech, Wuhan, China). The horse-
radish peroxidase (HRP)-conjugated secondary antibodies
were from Proteintech (Proteintech). The biotinylated
secondary goat anti-rabbit antibody was purchased from
ZsBio (Zhongshan Golden Bridge Biotechnology Co., Ltd,
Beijing, China).

Experimental animals

All protocols were approved by the Commission of
Chongqing Medical University for ethics of experiments on
animals and were conducted in accordance with interna-
tional standards. APPswe/PSEN1dE9 transgenic mice (APP/
PS1, n Z 10) were purchased from the Model Animal
Research Center of Nanjing University (Nanjing, Jiangsu,
China). Wild-type (WT) mice (n Z 10) in the C57BL/6
background were obtained from Chongqing Medical Uni-
versity and used as controls. All animals were provided with
a standard diet and housed in an approved facility with
climate control and a 12-h light/12-h dark cycle. Six month-
old mice were used for all experiments. Mice were hu-
manely killed with an overdose of anesthetics and perfused
transcardially with saline, and the brains were collected for
Western blot and immunohistochemistry analysis.

Plasmid construction

To construct pCMV6-NR4A1, the mouse nr4a1 gene was PCR-
amplified from mouse hippocampus cDNA with gene-
specific primers and sub-cloned into the multiple cloning
site (SgfI and MluI) of pCMV6 (Origene, Rockville, USA)
(Supplementary Fig. 2). The construct was verified by
sequencing.

Cell culture and transfection

Hippocampal neuronal cell line, HT22, was purchased from
Shanghai Institute of Biological Sciences (Chinese Academy
of Sciences, China) and cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Carlsbad, CA, USA) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS,
Gibco), 100 U/ml penicillin, and 100 mg/ml streptomycin.
Cells were maintained in a humidified 5% CO2 atmosphere
at 37 �C and were transfected with pCMV6-NR4A1 plasmid
and pCMV6 (vector) using Lipofectamine 3000 (Invitrogen)
for 48 h according to the protocol described previously in
our laboratory.17

Western blot

The cells and tissue samples were lysed in RIPA buffer that
included protease inhibitors (Roche, Indianapolis, USA).
Protein concentrations were measured using a BCA assay
(Dingguo, Beijing, China). Samples were separated on a 12%
SDS-PAGE gel, transferred to a PVDF membrane (Millipore,
Billerica, MA, USA) and probed with indicated antibodies
overnight at 4 �C. The blots were washed and incubated for
1 h with HRP-conjugated anti-rabbit or anti-mouse sec-
ondary antibodies. The bands were visualized using an ECL
reagent (Thermo, Marina, USA) and a Fusion FX5 image
analysis system (Vilber Lourmat, Marne-la-Vallée, France).
Relative protein expression levels were calculated using
Quantity One software (Bio-Rad) with normalization to the
GAPDH signal.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from tissue samples or cells using
Trizol reagent (Takara, Dalian, China) according to the
manufacturer’s protocol. cDNA synthesis was performed
using a PrimeScript RT reagent kit (Vazyme, Nanjing, China).
The mRNA expression levels of genes of interest were
detected by quantitative real-time PCR (qPCR). Reactions
were performed on a Bio-Rad IQ5 detection system (Bio-Rad,
Hercules, CA, USA)with SYBR greenmastermix (Takara). The
reaction mixture (20 ml total) consisted of 10 ml of 2 � SYBR
mix, 7.2 ml of nuclease-free water, 0.4 ml of each primer
(mouse nr4a1: forward primer 50-GGGGCCGGCTACCTTCAAA
ACC-30, reverse primer 50-TGCTAGGCC CGGAGTCCAAGTGT-
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3’; mouse adam10: forward primer 50-ATGGTGTTGCCGA-
CAGTGTTA-30, reverse primer 50-GTTTGGCACGCTGGTGTT
TTT-3’; mouse bace1: forward primer 50-ACATATC
GAGACCTCCGAAAGG-30, reverse primer 50-AACTTGTCC-
GATTCAGTGATGG-3’; mouse tau: forward primer 50-
GATCTTAGCAACGTCCAGTCCA-30, reverse primer 50-TTGCTC
AGGTCCACC GGCTTGTAG-3’; or mouse gapdh: forward
primer 50-CACGATGGAGGGGCCGGACTCATC-30, reverse
primer 50-TAAAGA CCTCTATGCCAACACAGT-30) and 2 ml of
diluted cDNA. The reactions were performed using the
following steps: 95 �C for 30 s, followed by 40 cycles of 95 �C
for 5 s, 60 �C for 10 s and 72 �C for 15 s. A melting curve was
run following each assay. The threshold cycle (Ct) value of
each samplewas calculated, and the relativemRNA levelwas
normalized to the gapdhmRNA value. The fold changes were
quantified using the 2�DDCt method.

Immunohistochemistry (IHC)

The brain tissue from WT and APP/PS1 mice was formalin-
fixed and embedded in paraffin. For IHC, the paraffin-
embedded sections were deparaffinized in xylene and
rehydrated in a graded series of ethanol before staining.
After antigen retrieval and blocking, the sections were then
incubated with anti-NR4A1 antibody at 4 �C overnight. The
second day, sections were washed in PBS and incubated
with a biotinylated secondary goat anti-rabbit antibody
(ZsBio) for 30 min at 37 �C, and then incubated with an
avidin-biotin peroxidase complex (ZsBio) for 30 min at
37 �C. The sections were washed in PBS and incubated with
3,30-diaminobenzidine (DAB, ZsBio) for 3 min. Hematoxylin
was used to counterstain nuclei. A LEICA DM6000B
Figure 1 NR4A1 expression in the hippocampus of APP/PS1 mi
protein expression in the hippocampus of 6-month-old APP/PS1 m
indicated the number of brain sample from mice. (B) Quantificatio
WT mice. (C) The relative mRNA expression of nr4a1 gene measure
mice and WT mice. (D) Immunohistochemistry of NR4A1 expressio
sented as means � SEM. *P < 0.05, **P < 0.01 vs control.
automatic microscope (Leica, Germany) was used to collect
images.

Statistical analyses

All data are presented as the mean � SEM from three in-
dependent experiments and were analyzed using GraphPad
Prism software by the independent-samples t-test or one-
way ANOVA with a Dunnett’s multiple comparison test.
Differences were considered to be significant when
P < 0.05.

Results

Increased NR4A1 expression in the hippocampus of
APP/PS1 mice

To determine whether the expression of NR4A1 differed in
APP/PS1 mice compared with control, hippocampal sam-
ples obtained from 6-month-old APP/PS1 mice and age-
matched non-transgenic C57BL/6 controls (WT) were
compared. Western blot showed that the levels of APP
protein were dramatically increased in the hippocampus of
APP/PS1 mice compared with WT control (Fig. 1A).
Furthermore, the level of NR4A1 were significantly upre-
gulated 2.11-fold in APP/PS1 mice hippocampus compared
with WT (Fig. 1A and B, P < 0.01). Accordingly, qPCR
analysis showed that nr4a1 mRNA level was significantly
increased in APP/PS1 mice compared with WT (Fig. 1C,
P < 0.05). As shown in Fig. 1D, in the sections from APP/PS1
mice, strong NR4A1 immunoreactivity was observed,
ce. (A) Representative Western blot showing APP and NR4A1
ice, as compared with age-matched wild-type mice (WT). 1e4
n of protein level of NR4A1 in the hippocampus of APP/PS1 and
d by quantitative real-time PCR in the hippocampus of APP/PS1
n in the hippocampus of APP/PS1 and WT mice. Data are pre-
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whereas only a faint distribution of NR4A1 immunoreac-
tivity was observed in sections from WT. These results
suggested that NR4A1 expression was upregulated in the
hippocampus of APP/PS1 mice.

NR4A1 overexpression promotes the amyloidogenic
processing of APP

To examine the effect of NR4A1 on the APP metabolism,
HT22 cells were transfected with mouse pCMV6-NR4A1
plasmid or pCMV6 (vector control). The expression of NR4A1
protein was significantly upregulated in NR4A1-transfected
cells compared with control (Fig. 2A). The overexpression
of NR4A1 induced a significant increase in the levels of APP
protein with A8717 and 6E10 antibodies (Fig. 2A and B). In
addition, NR4A1 shifted APP processing from a-to b-
Figure 2 NR4A1 overexpression promotes APP amyloidogenic proc
APP, a-CTF and b-CTF expression in HT22 cells transfected with ve
sample. (B) Quantification of protein levels of APP, a-CTF and b-CT
and ADAM10 expression in HT22 cells transfected with NR4A1 or vec
NR4A1 overexpressing cells compared with control. (E) The relativ
qRT-PCR. Data are presented as means � SEM. *P < 0.05, **P < 0.
cleavage after transfection, as indicated by decreased a-
CTF levels and clearly elevated b-CTF levels (Fig. 2A and B).

We speculated that the decreased a-CTF and elevated b-
CTF levels might be caused by the dysregulated expression
of APP-relevant enzymes. To test this hypothesis, the pro-
tein expression of ADAM10 (a-secretase) and BACE1 (b-
secretase) was detected. Quantification revealed a 73%
decrease in ADAM10 levels (P < 0.01) and 2.30-fold increase
in BACE1 levels (P < 0.05) in NR4A1-transfected cells
(Fig. 2C and D). As shown in Fig. 2E, in NR4A1-
overexpressing cells, adam10 mRNA expression was signifi-
cantly reduced by 27.5% and bace1 mRNA level was
increased 1.29-fold compared with control (P < 0.05).
Taken together, these results demonstrated that NR4A1
promoted the amyloidogenic processing of APP in HT22 cells
by regulating APP-relevant secretases.
essing in HT22 cells. (A) Representative western blot of NR4A1,
ctor or NR4A1. The “two bands” represented for two different
F in NR4A1-transfected cells compared with control. (C) BACE1
tor. (D) Quantification of protein levels of ADAM10 and BACE1 in
e mRNA expression of nr4a1, adam10 and bace1 measured by
01 vs control.
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NR4A1 increased the levels of phosphorylated tau
(S396) in HT22 cells

To determine the effects of NR4A1 on the clearance of
endogenous total and phosphorylated tau, HT22 cells were
transfected with pCMV6-NR4A1 plasmid or pCMV6 (vector
control, Ctrl) for 48 h. The levels of total tau and different
phosphorylated tau species were determined by immuno-
blotting. We examined three phosphorylated tau species
(pS262, pS396 and pT231), which are all increased in the AD
mice brains and are found in NFTs.9 As shown in Fig. 3,
NR4A1 overexpression significantly increased the levels of
p-tau (S396) compared with control (3.97-fold, P < 0.01),
but the levels of total tau (t-tau), p-tau (S262 and T231)
were not changed. Furthermore, NR4A1 over-expression did
not affect tau mRNA levels (Supplementary Fig. 1), indi-
cating that the reduction in p-tau (S396) levels was due to
degradation, rather than transcriptional inhibition.

NR4A1 regulated the activity of GS3Kb

GSK3b, CDK5 and ERK are the major kinases that involved in
tau hyperphosphorylation.18,19 Therefore, we analyzed the
effect of NR4A1 over-expression on the levels of these ki-
nases. Western blot results showed that levels of phos-
phorylated forms of GSK3b (S9) was reduced after NR4A1
transfection (Fig. 4, P < 0.01), indicating enhanced activity
of GSK3b. Subsequently, we also tested whether NR4A1
affected the levels of phosphorylated tau by regulating the
function of CDK5 and ERK, another kinase that had been
implicated in tau hyperphosphorylation. The level of CDK5
and the activity of ERK (p-ERK/ERK) remained unchanged
after NR4A1 transfection (Fig. 4). These findings suggested
that GSK3bmight contribute to NR4A1-induced increased of
phosphorylated tau.

Discussion

Despite emerging evidence of NR4A1 functional roles in
learning and memory, there have been no study of NR4A1
Figure 3 NR4A1 increases the level of phosphorylated tau (S39
phosphorylated (S396, S262 and T231) tau expression. (B) Quantific
NR4A1 overexpressing cells compared with control. Data are prese
expression and regulation in brain with direct relevance to
AD during disease progression. Evidences showed that
NR4A1 expression was decreased in peripheral blood of AD
patients compared to healthy controls.20 Strikingly, our
results demonstrated that NR4A1 was highly expressed in
the hippocampus of the APP/PS1 mice. These implied that
NR4A1 may be directly or indirectly involved in the patho-
logical process of APP/PS1 mice.

Although the exact mechanisms of AD pathogenesis are
not fully understood, Ab and tau are considered to have
critical roles in AD-related pathology.21 BACE1 and ADAM10
are enzymes involved in Ab generation.5,7 Experimental
studies had shown that BACE1 protein was significantly
increased and ADAM10 expression was decreased in AD
brains of patients and experimental mice.22e24 Extensive
evidences have focused on the development of secretase
modulators as a therapeutic approach for AD5,7,25,26. Thus,
identifying novel molecules that regulate BACE1 and/or
ADAM10 activity remains critical. In present study, we
found that NR4A1 overexpression shifted APP processing
from a-to b-cleavage, as indicated by decreased a-CTF
levels and elevated b-CTF levels (Fig. 2A and B). The
mechanism research of APP metabolism suggested that
BACE1 protein and mRNA levels were highly expressed,
whereas ADAM10 was reduced in NR4A1-overexpressing
cells (Fig. 2). Taken together, we demonstrated that
NR4A1 may promote the amyloidogenic processing of APP
by down-regulating the expression of ADAM10 and/or up-
regulating the expression of BACE1.

Recently, the accumulation and aggregation of tau has
been reported to be involved in the pathogenesis of AD and
other tauopathies.8,9,27 Deficiency or inhibition of tau
clearance has been proposed to be a risk factor in AD.
Abundant evidence indicated that abnormal tau phosphor-
ylation was closely associated with dementia and cognitive
disorder.9 Western blot results of this study showed that
NR4A1 over-expression significantly increased the levels of
endogenous phosphorylated (S396) tau in HT22 cells
(Fig. 3). However, the levels of endogenous total and
phosphorylated (S262 and T231) tau remained unchanged.
Besides, NR4A1 did not affect tau mRNA levels
6). (A) Representative western blot of endogenous total and
ation of protein levels of t-tau, p-tau (S396, S262 and T231) in
nted as means � SEM. **P < 0.01 vs control.



Figure 4 NR4A1 regulates the activity of GS3Kb. (A) Representative western blot of GSK3b, CDK5 and ERK expression in HT22 cells
transfected with pCMV6-NR4A1 or pCMV6 vector. (B) Quantification of protein levels of GSK3b, CDK5 and ERK. Data are presented as
means � SEM. **P < 0.01 vs control.
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(Supplementary Fig. 1), suggesting the reduction in tau
occurred via degradation. In cells, tau S396 was mainly
mediated by GS3Kb, while tau S262 was mainly regulated by
protein kinase A (PKA).28 So, we tested the possibility that
NR4A1 facilitated the clearance of phosphorylated tau by
modulating the activity of tau kinases. The levels of phos-
phorylated GSK3b (S9) reduced and the levels of total
GSK3b, CDK5 and the activity of ERK remained unchanged
after NR4A1 transfection (Fig. 4). The differences in the
phosphorylation level of tau protein on varying sites are
noticeable. The regulation mechanism of tau phosphoryla-
tion is rather complicated because each of the phosphory-
lation site of tau was regulated by several protein kinases.
Giving that S396 is the best phosphorylation site of tau
catalyze by p-GSK3b, our results demonstrate that the
phosphorylation of tau in NR4A1-overexpressing cells was
mainly mediated by p-GSK3b.
Conclusions

In summary, our data indicated that NR4A1 was involved in
the pathological process of AD, including APP metabolism
and tau phosphorylation. NR4A1 overexpression promoted
the amyloidogenic pathway of APP by down-regulating the
expression of ADAM10 and/or up-regulating BACE1 expres-
sion. In addition, NR4A1 enhanced the level of tau phos-
phorylation through p-GSK3b signal. The current findings
suggested that the upregulation of NR4A1 may represent a
novel risk factor for the onset and progression of AD. We
propose that targeting NR4A1 may provide an alternative
strategy in the therapeutic intervention for AD or other
tauopathies.
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