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Abstract

A phenocopy is defined as an environmentally induced phenotype of one individual which is identical to the genotype-
determined phenotype of another individual. The phenocopy phenomenon has been translated to the drug discovery
process as phenotypes produced by the treatment of biological systems with new chemical entities (NCE) may resemble
environmentally induced phenotypic modifications. Various new chemical entities exerting inhibition of the kinase activity
of Transforming Growth Factor b Receptor I (TGF-bR1) were qualified by high-throughput RNA expression profiling. This
chemical genomics approach resulted in a precise time-dependent insight to the TGF-b biology and allowed furthermore a
comprehensive analysis of each NCE’s off-target effects. The evaluation of off-target effects by the phenocopy approach
allows a more accurate and integrated view on optimized compounds, supplementing classical biological evaluation
parameters such as potency and selectivity. It has therefore the potential to become a novel method for ranking
compounds during various drug discovery phases.
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Introduction

A phenocopy is defined as an environmental induced, non-

heriditary phenotype of one individual which is identical to the

genotype-determined phenotype of another individual. In other

words, the phenocopy induced by the environmental conditions

mimics the phenotype produced by a gene. For example, a

phenocopy is observed in Himalayan rabbits which have a white

colored coat along with a black tail, nose, and ears when raised in

moderate temperatures. However, when raised in colder climates,

they develop phenotypically similar to genetically different black

coated rabbits. The Himalayan rabbits exhibit black coloration of

their coats, resembling the genetically encoded black rabbits.

Hence in colder climates the Himalayan rabbit is a phenocopy of

the black rabbit [1]. The phenocopy phenomenon can be

translated and used for drug discovery processes through

inhibiting a drug target with different functional modulation

technologies and thereby mimicking a phenotype of interest.

Inhibition can be achieved using RNA interference (RNAi), to

knockdown a target, or by small molecule inhibitors (new chemical

entities – NCEs) to block or inhibit the activity of the target. These

modulators can be used as a particular environmental condition by

treating in vitro cultured cells. Effects of the inhibition can be

monitored by high-throughput RNA expression profiling and

derived gene expression signatures represent either partial or exact

phenocopies. Therefore, phenocopies consist of gene expression

signatures caused by different pathway modulator treatments

(NCE and siRNA). Subsequent analysis of the gene expression

signatures will elucidate two critical issues for drug discovery: First,

getting a deeper insight into a target’s biology by identifying genes

whose expression is transcriptionally altered after interfering with

the target of interest, referred to as the TGF-b signature (on-target

signature). Second, single observations for each modulator used

can identify genes regulated independent of the target inhibition,

referred to as the off-target signature. The TGF-b signature is

independent on the used modulator and defines the biological

mode of action of the target. In contrast, the off-target signature

defines the mode of action for each modulator used, which has to

be not necessarily limited to the inhibition of TGF-bR1 only.

So far, microarray technology has been successfully applied

during the drug development process for target discovery by

profiling disease models [2], for target validation by profiling

alterations caused by disease-related genes [3,4], for elucidating

drug metabolism by measuring transcriptional changes of known

drug metabolizing genes in rat livers or human hepatocytes [5,6],

and to address drug safety in toxicogenomics approaches [7,8].
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However, only few approaches have been tempted to fill the gap

between target validation and drug metabolism and aimed to

support the hit-to-lead or lead optimization processes. In fact gene

expression signatures have been used to functionally annotate and

characterize small molecules in yeast [9–11] and in mammalian

cells [12–14]. However, these approaches mainly focused on the

identification of new NCEs directed against a given target, or to

build novel connections to a disease, but not to obtain an in depth

analysis of the off-target effects. In our study we introduced several

optimized parameters to achieve a comprehensive qualification of

compounds: First, the screening platform was chosen by the use of

a relevant cellular system functionally expressing the drug target

and its downstream signaling. Second, various time points and

concentrations were monitored. Third, siRNAs against TGF-bR1

were used as an additional target modulation technology to

confirm the results obtained with the NCEs. By combining those

data, the off-target signatures were used to identify the most

selective NCE among the compounds tested and to detect

undesirable off-target effects such as impairment of the innate

immune system or of death receptor signaling. The data also allow

to identify the target promiscuity of the NCE e.g. described for the

multiple targeting of the anti-cancer drug Imatinib (Gleevec) or

the schizophrenia drug Clozaril [15]. These polypharmacological

approaches, most notably discussed in fields of cancer treatment

[16,17], cannot be faced with conventional single target-based

assays but need approaches containing multi-parallel readouts for

NCE characterization.

In this proof of concept study the phenocopy approach was

applied during the lead optimization (LO) phase of our

Transforming Growth Factor b Receptor I kinase (TGF-bR1)

research project. 5 advanced NCEs from the project [18] (BI1-

BI5, see Roth et al.) together with two competitor compounds [19]

(Ex1–Ex2) were qualified (Fig. 1). TGF-b is a multifunctional

cytokine with effects on cell growth, migration, adhesion,

differentiation and apoptosis. Thus, malfunctions within the

TGF-b signaling pathway may result in cancer, fibrosis and

diverse hereditary disorders [20–22]. While the primary focus is in

the area of cancer, there are three different therapeutic approaches

under investigation dealing with antisense oligonucleotides,

monoclonal antibodies (NBEs) and small molecular inhibitors

(NCEs) [23].

In the present study, treatment of TGF-b stimulated cells with

NCEs and siRNAs was monitored by high-throughput RNA

expression profiling. The time-dependent TGF-b–dependent

mechanism-of-action was determined and single NCE-specific

and/or lead-structure-specific off-target signatures were identified

(Fig. 2). The phenocopy assessment of the NCEs during the lead

optimization process supplemented classical biological evaluation

parameters such as potency and specificity data. It therefore allows

a more integrated view on the quality of the NCEs. Ideally it can

serve as a tool for ranking compounds classes or even single

compounds, facilitating the decision on follow-up activities such as

further vivo studies (efficacy & toxicology).

Results

Phenocopy Platform
To perform the phenocopy approach HaCaT cells (human

keratinocytes) were cultured to analyze TGF-bR1 modulators.

siRNAs and seven NCEs (Fig. 1) were used to monitor and

characterize mRNA transcriptional changes upon knockdown of

TGF-bR1 mRNA or inhibition of TGF-bR1 kinase activity.

Subsequently, the inhibition of the TGF-b–dependent signal

transduction by the selected candidates was confirmed. To cover

the entire TGF-b signaling process three readouts representing

early, intermediate, and late responses to TGF-b stimulation were

performed. Direct downstream targets of the activated TGF-bR1

kinase are Smad2 and Smad3 proteins. Their phosphorylation

initiates the intracellular signaling cascade (Fig. S1a). Therefore, as

an immediate early readout a phospho-Smad2/3 ELISA was used

to determine the cellular IC50 values for all seven NCEs.

Additionally, to cellular IC50 values the biochemical IC50 values

were obtained from kinase assays. A wide range in the inhibition of

TGF-bR1, from 19 nM (BI3) to 1537nM (Ex2), was observed. A

detailed list of potencies of all NCEs is provided in Fig. 1.

A well characterized downstream target of TGF-b signaling is

PAI-1 (SERPINE-1) [24]. The expression of PAI-1 at mRNA

levels (qRT-PCR) and at protein levels (ELISA) for TGF-b signal

transduction was measured as an intermediate and a late response.

An up to 70-fold up-regulation of PAI-1 mRNA was detected

6 hours after TGF-b stimulation (Fig. S1b). Subsequently, the

supernatants were analyzed for PAI-1 protein expression. The

expression of PAI-1 protein was delayed compared to the mRNA

expression and can therefore be considered as a late response to

TGF-b stimulation. The first significant increase was seen

12 hours post stimulation (Fig. S1c).

To guarantee optimal siRNA-mediated TGF-bR1 knockdown

10 commercially available siRNAs were qualified. First, knock-

down efficacy was determined on mRNA level. Only 5 siRNAs

(A1, D1, D2, Q3 and Q4) which led to a knockdown of more than

90% were selected for off-target profiling (Fig. S2a). Second,

inhibition of downstream signaling of each selected siRNA was

determined by phospho-Smad2/3 (Fig. S2b) and PAI-1 ELISA

(Fig. S2c). Interestingly, although transfection of siRNA D1

resulted in the best mRNA knockdown (98%), this finding was

not represented in the functional readouts. The strongest

functional knockdowns were observed for siRNA A1. Finally,

the off-target effects of all siRNAs were determined by microarray

analysis using Illumina Beadchip technology. All deregulated

genes (p-value ,0.01 and |LR| $1) were identified for the

selected five siRNAs (Fig. S3). To exclude genes from the off-target

list that are relevant for the mechanism of the procedure or

relevant for the TGF-bR1 biology, only those genes were selected

that were uniquely deregulated by the respective siRNA. Due to its

superior functional knockdown abilities (Fig. S2b) and little off-

target effects siRNA A1 (Fig. S3b) was used in all further

experiments.

The profiling of seven NCEs at seven different concentrations

and three time points, including siRNA A1, all appropriate

controls and biological triplicates for each condition resulted in an

overall experimental setup of 621 samples to be submitted to array

profiling.

TGF-b signature
To gain a deeper insight into the TGF-b biology we first

identified genes that are regulated due to TGF-b stimulation

(5 ng/ml). To unravel the time-dependent effects of TGF-b
treatment HaCaT cells were stimulated with TGF-b for 2 h, 4 h

and 12 h. While immediate early genes that are directly regulated

by the TGF-b pathway are detected at 2 h post stimulation, more

and more secondary effects linked to TGF-b signaling are found

after 4 h and/or 12 h. To avoid arbitrary log ratio cut-offs we used

a modulator-based approach to identify TGF-b dependent gene

regulation. We applied two criteria to identify TGF-b regulated

genes: First, genes that were significantly deregulated (p-value

,0.01) in a basic comparison of TGF-b stimulation versus

unstimulated cells were further analyzed. We found 1046, 1949

and 5725 genes (6525 non-redundant genes) to be regulated 2 h,

Phenocopy
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4 h and 12 h after stimulation (Fig. 3a). In a second step, these

genes were proven to be affected dose-dependently by kinase

inhibitor treatment after TGF-b stimulation. The approach

allowed separating these genes from potential compound related

off-target effects. All transcripts identified for each NCE were

merged to a common signature of TGF-b dependent genes. This

strategy allowed the identification of a common on-target

signature minimized for the amount of false positive and false

negative genes. The Venn diagram (Fig. 3b) depicts the number of

genes that were identified after 2 h, 4 h, and 12 h of stimulation:

446 genes (2 h), 772 genes (4 h) and 1932 genes (12 h). All gene

identifier annotations and regulations are listed in Table S1a.

Beyond the inhibition of the kinase activity by chemical

compounds, the TGF-b pathway was also silenced by siRNA

knockdown. All previously selected genes (TGF-b stim. vs.

unstimulated cells, Fig. 2a) were tested to be regulated by

siRNA-mediated knockdown of TGF-bR1. To exclude mechan-

istical effects, genes were only selected when they were regulated

by siRNA A1, and not by a control siRNA (p-value ,0.01). By

siRNA knockdown of TGF-bR1, 303 (2 h), 419 (4 h) and 1112

(12 h) genes are identified as TGF-b dependent (Fig. 3c). Although

fewer genes were identified compared to the NCE approach, the

majority of genes were identified by both approaches. All gene

identifier annotations and regulations are listed in Table S1b.

According to the siRNA transfection procedure, a slightly different

experimental setup was performed regarding cell seeding and

culture conditions. That variation resulted in procedure-specific

changes in gene regulation, which had to be separated from the

TGF-b signature. Addressing the level of TGF-bR1 activity upon

siRNA transfection, we analyzed the expression of PAI-1 as a

surrogate marker for the TGF-b signaling activity. Using NCEs,

we were able to inhibit the PAI-1 expression by more than 95% at

all time points. In contrast, the use of siRNA A1 reduced PAI-1

levels only to 62% after 2 h of TGF-b stimulation (Fig. 3d).

Despite the high efficiency of the siRNAs (A1 showed a mRNA

knockdown efficiency of greater than 90%; Fig. S1a) analyzed at

the time points the siRNA treatment resulted only in a partial

reduction of the TGF-b signaling activity most likely due to the

long half-life of the receptor protein.

Subsequently, the genes of the TGF-b signature were used to

perform gene set enrichment analysis (GSEA) [25,26]. The

annotation of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways delivered gene-sets corresponding to 201

different pathways [27,28]. The GSEA resulted in 16 different

Figure 2. Phenocopy workflow. In vitro cultured HaCaT cells stimulated with TGF-b were treated with NCEs inhibiting the kinase activity of TGF-
bR1 or with a siRNA specific against TGF-bR1. After 2 h, 4 h and 12 h total RNA was isolated for hybridization on Illumina Beadchips and expression
profiles were generated. The concentration and time-dependent on-target- (TGF-b signature) as well as the off-target signatures for every NCE were
obtained by bioinformatic analysis. Compounds were qualified according to their off-target signature by influencing other pathways.
doi:10.1371/journal.pone.0014272.g002

Figure 1. List of profiled TGF-bR1 kinase inhibitors. The chemical structures and characteristics of profiled compounds are listed. The potencies
(IC50) for the inhibition of TGF-bR1 kinase, Smad2/3 phosphorylation (pSmad) and PAI-1 protein are indicated for compounds BI1 to BI5 (indolinones
[INDO]) and Ex1 and Ex2 (pyridopyrimidinones [PyPy]). The PubChem CIDs are indicated. According to the chemical synthesis of the compounds
(Roth et. al), the corresponding compounds identification numbers are indicated in brackets.
doi:10.1371/journal.pone.0014272.g001

Phenocopy
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Figure 3. On-target Signature. The on-target signature was generated based on gene regulations upon treatment with TGF-b, TGF-bR1-kinase
inhibitors (NCEs) or a siRNA. A: Volcano plots of the comparison between TGF-b stimulated and non stimulated cells at 2 h, 4 h & 12 h. Every circle
represent a single transcript. The x-axis shows the log2 ratio (LR) between TGF-b stimulated vs. untreated HaCaT cells. The y-axis is scaled as negative
log10 [p-value] as an indicator of significance. P-values were FDR-corrected according to Benjamini-Hochberg. Blue circled genes are significantly
regulated by the stimulation with TGF-b (p-value ,0.01). B: The list of non-redundant genes was filtered for a dose-dependent regulation upon NCE
treatment and TGF-b stimulation.: 446, 772 and 1932 genes were identified as the NCE-dependent on target TGF-b signature after 2 h, 4 h and 12 h.
C: The siRNA dependent TGF-b signature identified 307, 419 and 1112 genes which were classified as siRNA-dependent on-target TGF-b signature
genes after 2 h, 4 h and 12 h. D: Expression level of PAI-1 mRNA as a surrogate marker for TGF-b signaling pathway activity after treatment with NCE
B1 or siRNA. Treatment with NCE BI1 resulted in a complete knockdown of PAI-1 expression (.95%) for all time points. In contrast the siRNA A1
mediated knockdown of the TGF-b signaling only reduced PAI-1 levels partially to 62%, 65% and 78% after 2 h, 4 h and 12 h of TGF-b stimulation. E:
Gene set enrichment analysis (GSEA) using KEGG gene annotation resulted in 16 significantly affected genesets/signaling pathways. Clustering of -
log10[p-values] using complete linkage and manhattan distance resulted in four major clusters: immediate early affected pathways (cluster 2)
permanently affected pathways with emphases at early (cluster 1) and late time points (cluster 4) or late established events (cluster 3). The color code
defines the significance determined by Fisher’s exact test: blue ,2 – not significant; white = 2 – significant & red .2 – highly significant).
doi:10.1371/journal.pone.0014272.g003
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signaling pathways which were significantly influenced upon TGF-

b stimulation of HaCaT cells. The signaling pathways were

clustered in four groups (Fig. 3e). Not surprisingly, the TGF-b
signaling pathway itself as well as directly affected pathways like

WNT and p53 signaling were significantly regulated by the

treatment of TGF-b (cluster 1). In cluster 2 MAPK, cytokine,

ErbB, Shh, as well as apoptosis signaling pathways are strongly

affected immediately early upon TGF-b stimulation. The

modulation is reduced at later time points (4 h & 12 h), when

more secondary effects, such as DNA polymerase, actin cytoskel-

eton, amino acid metabolism, gap junction and tight junction

signaling become apparent (cluster 3). The activation of these

pathways in combination with the modulation of the cell cycle and

cell communication activity (cluster 4) seem to be the phenotypic

consequences to TGF-b stimulation of HaCaT cells. To proof the

findings obtained from the KEGG analysis, we additionally used

Ingenuity Pathway Analysis (Ingenuity SystemsH, www.ingenuity.

com) to link and group genes from the TGF-b signature. In line

with the KEGG results, the analysis identified the same

connections and networks containing signaling but also WNT

and Erk/MAPK signaling (Fig. S4). In addition, diverse networks

of genes were identified that play a role in embryonic development

of different organs, but also in cellular proliferation and growth

(data not shown). Having identified the TGF-b signature (on-

target signature) as well as the affected pathways by GSEA, we

next screened the seven NCEs for their specific off-target effects

and affected pathways.

Off-target signature
In our study, we define a phenocopy as copy of a phenotype

(measured by gene expressions). Gene expressions are therefore

the first step that defines the phenotype of an organism. Each

compound treatment resulted in a unique gene expression

signature of regulated genes. These signatures are composed of

the cellular response to two different stimuli (TGF-b and NCE)

and are integrated to the corresponding treatment signature. An

off-target effect is defined as observed gene expression change

induced by NCE treatment independent of the previously

determined effects following TGF-b signal inhibition. Examples

for all different types of off-targets are given in Figure S5. Thereby,

elucidating the effects based on NCE treatment is more

demanding since both TGF-b and off-target effects occur. Minor

effects can also be observed for the interaction of the vehicle

(DMSO) and the NCEs. The effects of the different stimuli overlap

and also interfere with each other impeding with a clear signature

dissection. The profile of a given gene may therefore be dependent

on which effect prevails and thus dose-dependency might no

longer be observed. In general, all regulated genes can be grouped

into six classes: Pure TGF-b effects (Fig. S5a) and pure off-target

effects (Fig. S5b), where genes are dose dependently regulated

dependent or independent of TGF-b. Additionally, an integration

of both TGF-b and off-target effects can be detected: an NCE

effect can be additive (Fig. S5c) or inverse (Fig. S5d) to the effect of

TGF-b. Furthermore, opposed bipolar effects for high and low

dosage of the NCE mostly linked with toxicity (Fig. S5e), or

common- and dose independent effects observed for all seven

NCEs can be identified (Fig. S5f).

In a first approximation the NCE treatment phenotypes

(phenocopies) were determined as the total of all regulated genes

(p-value ,0.01 and |LR| $1) comparing NCE treated and TGF-

b stimulated cells to DMSO control treated TGF-b stimulated

cells. This analysis was done separately for each of the tested

compounds at each concentration. Subsequently, the different

phenotypes obtained after 2 h NCE treatment were clustered to

unravel similarities between the different signatures (Fig. S6). The

early time point allowed focusing on primary affected genes that

were altered as direct response to the treatment. Hierarchical

clustering clearly revealed two major clusters separating the group

of indolinones (BI1 to BI5) from the pyridopyrimidinones (Ex1 &

Ex2). The fact that most obviously the specific chemotype has a

major impact on differences in gene expression confirms that the

classical notion of chemotypes determining biological profiles of

NCEs holds true in this case. However, not only the scaffold itself

but also the specific decoration of each chemotype affected gene

expression. The hierarchical cluster analysis demonstrates that

treatment signatures can be used to differentiate even between

analogs of the same chemotype.

However, the identification of a particular off-target based on

this approach is difficult. Further analyses were therefore

performed to extract the compounds’ off-target effects from

treatment signatures. As abovementioned not all off-target effects

can be identified through dose dependence correlation due to

overlapping, inverse and additive effects (Fig. S5). Hence off-

targets can only be identified based on NCE treated samples in

presence and absence of the TGF-b stimulus. All regulated genes

(p-value ,0.01 and |LR| $1) comparing compound treated cells

(either 0.08 mM or 2 mM) to DMSO treated controls were

selected. Genes were considered once the regulation is observed

during compound treatment upon TGF-b stimulation as well as

without TGF-b stimulation. Thus, we ensured to select only drug

target and stimulation-independent alterations. All genes that

match the criteria were allocated to the off-target signature of the

NCE after 2 h, 4 h and 12 h. Based on this analysis, huge

differences in the amount of off-target genes were observed. While

treatment with BI1 deregulated 2752 genes at all time points, BI3,

deregulated only 973 genes. Slightly more off-target genes were

identified for the indolinones BI2, BI4 and BI5 (1050, 1064 and

1100). Both pyridopyrimidinones regulated 1347 (Ex1) and 1306

(Ex2) genes. The largest off-target increase over time was seen for

Ex1 and Ex2 with almost four times more genes being regulated

comparing the 12 h to the 2 h time point. In contrast the amount

of off-targets for the five indolinones is at a maximum doubled

within this period (Fig. 4a). In summary, looking at the off-target

signatures in general, the indolinones appeared more favorable

compared to the pyridopyrimidinones at later points in time.

Among the indolinones, BI2 to BI5 deregulated fewer genes than

BI1 at all points in time which was paralleled by the different

kinome specificities (see Chapter ‘Kinase Profiling’). It also

confirmed the structure-activity relationships described in Roth

et al. [18] demonstrating that indolinones substituted in position 5

(such as BI1) showed a less favorable selectivity profile compared

to indolinones substituted in position 6 (such as BI2-5). Among the

indolinones, BI3 appeared to be the most attractive compound

when merely looking at the off-target analysis.

Pathway Analysis
Ingenuity Pathway Analysis was used to subsequently analyze

the off-target signatures of all NCEs in order to enrich influenced

signaling pathways. We found 39 (2 h), 38 (4 h) and 51 (12 h)

canonical signaling pathways scored with a significant –log10[p-

value] .2 (Fisher’s exact test) for at least one of the NCEs (Fig. 4b).

Pathway analysis again separated the indolinones from the

pyridopyrimidinones indicating that both series share not only a

common mode of action like TGF-b inhibition, but also generate a

distinct affection of other pathways by their specific off-target

function. In accordance with the structure-activity findings

mentioned before, BI1 stands apart from the four other

indolinones with 5 significantly ranked pathways and the smallest

Phenocopy
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overlap with the other indolinones. BI3 affects 15 signaling

pathways and almost exclusively regulates genes involved in

different cancer pathways. The indolinones BI2 and BI4 regulated

genes that are significantly enriched in only four (BI2) and two (BI4)

signaling pathways, respectively. However, pathways such as the

Aryl Hydrocarbon Receptor Signaling and the LPS/IL-1 mediated

inhibition of RXR function are also significantly ranked high for up

to six compounds indicating a more general effect like a xenobiotic

response to NCE treatment rather than a true compound specific

effect. The highest numbers of significantly influenced pathways are

found for the two pyridopyrimidinones with 29 (Ex1) and 24 (Ex2).

Additionally, genes involved in 30 out of the 51 signaling pathways

are exclusively regulated by Ex1 or Ex2 treatment.

Interestingly, 13 out of the 51 identified pathways are known

mediators of toxicity and cell death. These 13 pathways reach

highest significance scores for either Ex1 or Ex2 with eight being

solely affected by the two pyridopyrimidinones indicating a

cytotoxic mode of action for both of them. Besides cytotoxicity

these two NCEs deregulate genes involved in inflammatory

processes like IL-6 signaling, ERK/MAPK signaling, and p38

MAPK signaling (Fig. 4b).

Results from the pathway analysis strongly implied different

induced phenotypes after treatment with specific NCEs. However,

pathway analysis tools only generate hypotheses and their proof of

biological relevance must be verified. To address the accuracy of

the pathway analysis we aimed to confirm the in silico generated

hypotheses by experimental laboratory data.

Cytotoxicity and Cell Death
According to the expression data, both pyridopyrimidinones

(Ex1 & Ex2) are involved in processes such as cell death and

inflammation. To investigate several cytotoxicity parameters, we

performed high content screen analysis using the high-capacity

automated fluorescence imaging platform from Cellomics. HaCaT

cells were incubated with increasing compound concentrations

(3.2 nM – 50 mM) for 24 h. Subsequently the cells were stained

with cytotoxicity cocktails and images were acquired and analyzed

on the Cellomics ArrayScan II. Cells were stained using i) Hoechst

DNA dye to count cell density and investigate nuclear conden-

sation and fragmentation, ii) LysoTracker Red to analyze the

amount of lysosomes per cell as an early marker for cytotoxicity,

iii) Sytox Green as a membrane impermeable dye to detect loss of

membrane integrity as late event for cytotoxicity (Fig. 5a).

According to the aforementioned pathway analysis the highest

toxicity is observed by treatment with Ex1 and Ex2. Cell density is

strongly decreased to less than 10% of control. Nuclear

fragmentation, lysosomal mass per cell and membrane permeabil-

ity are increased by 100% for both pyridopyrimidinones and even

lower concentrations of Ex2 were sufficient to raise the membrane

permeability of more than 50% of the control. Treatment with the

indolinones resulted in mild toxicity effects for the treatment with

BI1, BI2 and BI3 at high concentrations and almost no toxicity for

BI4 and BI5 (Fig. 5b).

To analyze the mode of cell death, we performed Caspase-3

activation assays to distinguish between apoptosis and necrosis,

since activation of this executioner caspase is a clear marker for

apoptotic cell death. Again, HaCaT cells were treated with 2 mM

of each compound for 24 hours and subsequently Caspase-3

activation was detected using a Caspase-3 Detection Kit

(Calbiochem) and quantified by flow cytometry. Among all NCEs

tested, only treatment with Ex1 resulted in an activation of

Caspase-3 with approximately 30% positive cells (Fig. 5c). This is

in line with the results of the pathway analysis in which only the

off-target signature of Ex1 exceeded the significance threshold for

Death Receptor Signaling after 4 h (data not shown) and was

further increased after 12 h (Fig. 5b). This clearly demonstrates

that it was not only possible to predict the compound’s cytotoxicity

based on mRNA profiles but also its apoptotic mode of action.

Pathway analysis labeled the pyridopyrimidinones for cell death

induction, but also for affection of inflammatory mechanisms. To

proof this prediction, HaCaT cells treated with each compound

were analyzed for the induction of pro-inflammatory cytokines

(IL1-b, TNF-a, IL-8 and IL-6). While no significant alteration in

release of IL1-b, TNF-a, and IL-8 was observed, we could

demonstrate that IL-6 levels were dose-dependently increased after

treatment with the pyridopyrimidinones Ex1 and Ex2. Compared

to DMSO treated control cells 10 mM of Ex2 increased IL-6

secretion by factor 5 and Ex1 treatment at the same concentration

even resulted in a 25-fold increase (Fig. 5d). In summary, the

indolinones looked more favorable in this evaluation compared to

the pyridopyrimidinones.

Kinase Profiling
One pivotal issue of kinase inhibitors is cross-reactivity with

other kinases which may contribute one source of off-targets. In

vitro kinase profiling is the state of the art method to examine

selectivity of kinase inhibitors. We used the Ingenuity Pathway

Analysis database to extract the literature described downstream

targets for 239 in HaCaT cells expressed kinases. For 147 kinases

807 non-redundant downstream targets had been described and

annotated. The downstream targets were used as surrogate

markers and overlaid with the NCE’s off-target lists to assign off-

target genes to off-target kinases (Fig. S7). The correlation of the in

vitro predicted kinase inhibition with the off-targets requires some

criteria to be fulfilled: i) the kinase has to be expressed in the

cellular system, ii) the signaling pathway must be functional, which

iii) depends on the availability of appropriate ligands in the in vitro

system. As the cells in our study had been starved for compound

and/or TGF-b profiling, these criteria might have been only

partially met. Finally, iv) surrogate markers had to be described.

The regulation of surrogate markers for kinase inhibition was used

to predict the activity of upstream acting kinases for each of the

tested compounds. To proof the predictivity of our model, we

tested all compounds against 239 kinases available in the

biochemical SelectScreenTM Kinase Profiling (Invitrogen) at

concentrations of 2 mM and 200 nM. All kinases inhibited by at

least 90% at 2 mM conc. and additionally by at least 50% at

200 nM were selected as off-target kinases (Table S3). Most off-

target kinases were identified for BI1 (75) and Ex1 (60). All other

NCEs showed a higher selectivity with only 21 (BI2), 17 (BI3), 12

Figure 4. Off-target Signature. A: Every circle represents one of the seven profiled compounds. The size of each circle corresponds to the number
of off-target genes (in red). On-target genes numbers are shown in blue. B: Ingenuity pathway analysis for the off-target genes of all seven NCEs after
12 hours: Clustering of the -log10[p-values] using complete linkage and manhattan distance depicts the 51 significantly ranked canonical signaling
pathways. Off target genes deregulated by BI3 treatment affect almost exclusively 10 cancer signaling pathways (red arrows). Ex1 & Ex2 off-target
genes play a role in 12 pathways involved in cytotoxicity or cell death (grey arrows) and in five pathways involved in inflammation (green arrows). The
color code defines the significance determined by Fisher’s exact test as –log10[p-value]: blue ,2 – not significant; white = 2 – significant & red .2 –
highly significant.
doi:10.1371/journal.pone.0014272.g004
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(BI4), 15 (BI5) and 14 (Ex2) kinases inhibited by the respective

compound (Fig. 6b). For BI1, 84 (22.9%) of the 366 known

surrogate marker genes were found to be regulated. A comparably

good ratio was also identified for the two pyridopyrimidinones

with 84 (23.2%) out of 361 (Ex1) and 55 (24.7%) out of 223 (Ex2).

A summary of data is shown in Figure 6a and 6b. Integrating all

criteria, the identification of kinase selectivities was limited, as

shown for BI2 in figure S7. Although various annotated surrogate

marker genes were identified as off-targets, a clear association to a

specifically upstream-acting kinase was often not possible since too

many surrogate markers have been redundantly identified to act

downstream of several receptor kinases (Fig. S7). The cellular

system might be optimized in regard to the addition of receptor

ligands, but it will not replace testing NCEs in biochemical assays

for kinase selectivity.

Discussion

Since the approval of Imatinib (Gleevec) in 2001, the first

marketed kinase inhibitor, many additional kinase inhibitors have

been advanced into clinical development. The most advanced

kinase programs in research and development are aimed at the

treatment of various cancers. However, additional therapeutic

applications like immunological, metabolic-, or infectious diseases

and also the treatment of central nervous system disorders by

kinase inhibitors are under investigation [29–31]. During the

optimization of kinase inhibitors one often has to cope with

challenges like the improvement of kinase selectivity [30,32]. In

combination with the overall high attrition rates of new drug

candidates [33] there is a need for new strategies that support and

optimize the drug discovery process.

So far, the in vitro biological evaluation of NCEs was often

based on biochemical and cellular potencies, as well as on the

selectivity of the respective NCE. This limited view may result in

wrong decisions for further time and cost consuming processes,

such as in vivo experiments. In the present study, we have

established a workflow to alleviate the lead identification and

optimization of NCEs in general and kinase inhibitors in particular

by elucidating the mechanism of action of both the target and the

NCE. Thereby, more knowledge about drug candidates is

obtained at an early stage of drug discovery and several new

categories for their qualification are available (Fig. 7).

By evaluating of TGF-bR1 inhibitors, we were able to clearly

differentiate the indolinone chemotype from the pyridopyrimidi-

nones in several parameters. Furthermore, even within the

indolinone cluster differences between compounds with different

decorations were identified. Besides the detection of off-targets and

biomarkers, this strategy can also help to interpret the identified

off-target effects and offers the possibility to assign the regulated

genes to relevant biological processes and networks. This can be

handled in a flexible format by the respective scientist by defining

context relevant processes or just by prioritizing the compounds in

terms of the absolute number of affected processes or pathways. In

terms of TGF-b inhibition for instance one goal is to reduce

inflammation processes triggered by this cytokine [34]. Thus, the

predicted and confirmed pro-inflammatory properties of both

pyridopyrimidinones (Fig. 4b & Fig. 5d) are the opposite of the

desired effect making both NCEs inferior to the indolinones for the

treatment of fibrotic diseases and/or cancer. Furthermore relevant

and unwanted processes are regulation of growth and proliferation

and obviously induction of cell death (Fig. 5b). Finally, the

combination of TGF-b and off-target signatures revealed that

some compounds regulate genes inverse to the desired therapeutic

effect (Fig. S5d). This can potentially affect the efficacy of the

treatment with this NCE. Particularly both pyridopyrimidinones

regulated 217 (Ex1) and 317 (Ex2) TGF-b dependent genes in the

opposite direction to the desirable treatment effect. In contrast the

indolinones only affected a lower number (BI3: 42; BI2: 57, BI1:

70; BI5: 81; BI4: 101) of these genes.

According to the ten introduced phenocopy criteria, a couple of

compounds revealed liabilities through down-stream inhibition of

PAI-1 transcription (BI1, BI5 & Ex2), at the regulation of off-target

genes per se (BI1, Ex1 & Ex2), at the affection of inverse TGF-b
signaling (Ex1 & Ex2), at the induction of cell death (Ex1 & Ex2),

at acting as pro-inflammatory stimuli (Ex1 & Ex2) and as

promoting cellular growth and induction of cancer pathways

(BI3 & BI5) (Fig. 7). An integration of all obtained information

recommends the use of BI4 and BI2 for further optimization due

to superior overall performance of these two drug candidates.

Furthermore, our data strongly indicates that off-target effects

do not only derive from additionally inhibited kinases in line with

the fact that within the human genome over 2000 other

nucleotide-dependent enzymes can be found [35] which poten-

tially may be affected by NCEs blocking an ATP binding site. In

addition, identification of bioactive compounds revealed a high

degree of promiscuity for kinases inhibitors with GPCRs and

phosphodiesterases [36]. Hence an approach using the phenocopy

strategy will deliver a wider view on the NCEs’ selectivity. Such a

strategy will also help to accumulate an iterative knowledge about

both the drug candidates itself and the structural classes. The drug

candidates’ off-target signature can be overlaid with other

databases containing drug-dependent gene signatures like the

Connectivity Map [13]. Integration of additional data sources will

further characterize the NCEs by flagging them for potential side

effects and the identification of desirable pharmacology profiles or

even find a repositioning idea for another indication.

Not only off-target signatures but also on-target signatures can

help to support the drug discovery process. On the one hand, these

signatures can be overlaid with known disease signatures in order

to annotate the targets contribution to the state of disease. On the

other hand, it can be used to identify potent biomarkers for

Figure 5. Wet laboratory validation of in silico results. Functional assays were used to validate the predictions derived from the pathway
analysis. Cellomics high content screens analyzing cytotoxic parameters and Caspase 3 activation assays were performed to test for cytotoxicity and
cell death. IL-6 secretion was analyzed as surrogate marker for pro-inflammatory processes. A: High content screen images of HaCaT cells treated with
increasing concentrations (3.2 nM – 50 mM) of Ex1 and BI5 including DMSO (negative control) or 100 mM Valinomycin and 10 mM Chloroquine
(positive control) for 24 h. Subsequent staining with Hoechst dye, Sytox Green and Lysotracker Red determined cell density, nuclear fragmentation,
permeability and lysosomal mass per cell illustrated a strong decrease of cell density and an increase of nuclear fragmentation and lysosomal mass for
Ex1 but not for BI5 treated cells. B: Results of concentration response experiments for all seven NCEs for cell density (black) nuclear fragmentation
(grey), permeability (blue) and lysosomal mass (red) obtained from Cellomics high content screen analysis. Values of NCE treated cells are compared
to DMSO treated cells and shown as percent of control (POC). Outlier data point are shown as filled red circles C: HaCaT cells were treated with 2 mM
of each NCE and incubated for 24 h. Caspase-3 activation was analyzed. A significant signal was identified only after treatment with Ex1 (30%) or with
Valinomycin (15%) and Chloroquine (100%). D: HaCaT cells were treated with increasing NCE concentrations and DMSO for 12 h. IL-6 levels were app.
25-fold increased after Ex1 treatment and 5-fold increased after Ex2 treatment compared to DMSO treated cells. Student t-test was used to calculate
the significance compared to DMSO treated cells (*,0.01 & **,0.001). All error bars indicate the standard deviation of n = 3.
doi:10.1371/journal.pone.0014272.g005
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efficacy of the treatment and to support the clinical biomarker

assay development process. This is especially important if the

target’s biology is not as well characterized as for TGF-bR1.

However, using the phenocopy strategy we were able to

significantly increase the amount of known TGF-b regulated

genes by several hundred compared to earlier studies [37–41].

Neither the complexity of a living organism nor a disease state

can be entirely represented by profiling of a single cell line.

Nevertheless, the phenocopy strategy demonstrates one possibility

to significantly alleviate the drug discovery process at an early

stage. Comparing such an approach to classical toxicology testing

or toxicogenomics studies, the phenocopy strategy offers a couple

of advantages: it addresses on- and off-target effects and is able to

differentiate between target-related vs. compound-related events.

This differentiation is only possible when a couple of compounds

of different compound classes will be investigated. Due to costs and

capacities, the analysis of a certain number of compounds can only

be run in vitro. Although cellular systems cannot replace in vivo

studies, they show less variability, guarantee the expression and

signaling of the target protein and are less cost and time

consuming.

The phenocopy approach offers an opportunity to qualify and

rank compound classes and single compounds early during hit-to-

lead and lead optimization processes, which will subsequently

reduce the attrition rates later on, e.g. during toxicological

assessment of the development candidates. However, the addition

of new technologies and checkpoints like phenocopy is contribut-

ing to the ever-rising costs of getting innovative medicine to the

Figure 6. Kinase Selectivity. A: Each compound was profiled against a panel of 239 protein kinases and the number of kinases inhibited by each
compound is shown (Table S3). No surrogate marker (e.g. literature known downstream target of a given kinase) were identified for 92 enzymes,
whereas 807 surrogate markers were identified for 147 of the enzymes. Based on the kinases inhibition profile of each compound, the expression of
these kinase in HaCaT cells and the availability of surrogate markers the number of potentially effected surrogate marker genes was predicted. B:
Kinome dendrograms used for visualization were shown with permission from Cell Signaling Technology, Inc. (http://www.cellsignal.com). Human
kinome dendrograms showing the NCEs’ kinase specificity profiles. Circle size corresponds to the percentages of inhibition of the kinase at 200 nM
concentration. AGC – Containing PKA, PKG, PKC families; CAMK – Calcium/calmodulin-dependent protein kinase; CK1 – Casein kinase 1; CMGC –
Containing CDK, MAPK, GSK3, CLK families; STE – Homologs of yeast Sterile 7, Sterile 11, Sterile 20 kinases; TK – Tyrosine kinase; TKL – Tyrosine kinase-
like.
doi:10.1371/journal.pone.0014272.g006
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market. But nevertheless, the assembly of workflows of successfully

used tools during early lead generation processes will become

crucial for the discovery of novel quality of entities in a changing

pharmaceutical industry. One useful tool is the phenocopy

principle, where external stimuli like the climate of the

environment for the Himalayan Rabbit or like NCEs, siRNAs,

antibodies or aptameres for the inhibition of a cellular process is

committing a certain phenotype. By investing in qualification of

NCEs during the early drug discovery process, later on the

attrition rate during development phases will be reduced.

Indirectly, this investment will reduce the overall cost for

developing innovative medicine.

Methods

Cell culture, NCE treatment and siRNA transfection
HaCaT cells were cultured under standard conditions [42].

Cells were seeded in 96-well (ELISA) or in 24-well (RNA

expression profiling) plates and grown overnight to a confluence

of approximately 70%. Cells were starved for 3 h in DMEM

containing no FCS. Cells were pre-incubated with increasing NCE

concentrations (0.0032, 0.016, 0.08, 0.4, 2, 10, 50 mM) for 15 min

and subsequently stimulated with 5 ng/ml of TGF-b1 (R&D

Systems) and incubated for the indicated time points.

10 TGFbR1-specific siRNAs were purchased from Ambion,

Dharmacon or Qiagen and a nonsense control siRNA was

purchased from Dharmacon. All siRNAs were prepared according

to manufacturer’s instructions. For transfection experiments cells

were seeded in 24-well plates and grown overnight to a confluency

of 50–70%. siRNAs were transfected at a final medium

concentration of 20 nM. Cells were transfected using Dharma-

con’s DharmaFECT1 reagent. 24 h post transfection, the medium

was replaced. 48 h after transfection cells were washed with PBS

and lysed using RLT buffer (Qiagen).

RNA extraction
RNA isolation was carried out using a MagMAXTM Express-96

Magnetic Particle Processor (Ambio) and the MagMAXTM-96

Total RNA Isolation Kit (Ambio) according to the manufacturer’s

protocol. Total RNA concentration was quantified by fluorescence

measurement using SYBR Green II (Invitrogen) and a Synergy

HT reader (BioTek) as previously described [43]. The RNA

quality was characterized by the quotient of the 28S to 18S

ribosomal RNA electropherogram peak using an Agilent 2100

bioanalyzer and the RNA Nano Chip (Agilent).

Amplification, labeling and Beadchip hybridization of
RNA samples

Illumina TotalPrep RNA Amplification Kit (Ambion) was used

to transcribe 200 ng toRNA according to the manufacture’s

recommendation. A total of 700 ng of cRNA was hybridized at

58uC for 16 h to the Illumina HumanHT-12 Expression

Beadchips (Illumina). Beadchips were scanned using an Illumina

BeadArray Reader and the Bead Scan Software (Illumina).

Data processing
Data has been processed with BeadStudio version 3.0 and the R

Language and Environment for Statistical Computing (R) 2.7.0

[44,45] in combination with Bioconductor 2.2. [46]. The

Bioconductor lumi package [47] has been used for quality control

and normalization. The data has been log2 transformed and

normalized using robust spline normalization (rsn). Linear models

(Bioconductor package limma) [48] were used to calculate log2

ratios, the resulting p-values were FDR-corrected [49]. The raw

data of 640 Illumina beadchips are accessible as MAIME-

compliant entry at Array Express (E-MTAB-265). A fully detailed

description of the normalization methods was recently published

by Schmid et al [50].

TGF-b signature
To define genes deregulated by TGF-b signaling, three

sequential filtering steps were applied for each time point

separately: 1) significant difference between TGF-b stimulated

and unstimulated cells, 2) significant deregulation by at least one

compound concentration, 3) dose dependent deregulation (R

package IsoGene [51]). For each time point the probes that passed

all three filters are pooled to the final TGF-b signature.

Figure 7. NCE ranking. Quality parameters used to gauge the seven NCEs. The phenocopy strategy introduces ten additional parameters dealing
with potency, off-target numbers and affected pathways. NCEs are ranked from blue (good) to red (bad). Integration of all parameter scores identifies
BI4 and BI2 as superior to all other NCEs.
doi:10.1371/journal.pone.0014272.g007
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Off-target signature
To detect transcripts that are deregulated due to off-target effects

of the compounds unstimulated cells (wotgf class) as well as TGF-b
stimulated cells (tgf class) were considered for compound

concentrations 0.08 and 2 mM and the respective controls.

Transcripts that are up/down regulated by either compound

treatment (wotgfup/wotgfdown) or by TGF-b stimulation together

with compound treatment (tgfup/ tgfdown) were detected based on

all pair wise comparisons. The off-target signature is
composed of transcripts for which (tgfup

‘ wotgfup) ~

(tgfdown
‘ wotgfdown) ~ (tgfup

‘ wotgfdown) ~ (tgfdown
‘

wotgfup). For a more detailed explanation, see Methods
S1. All off-target genes are listed as supplemental data in Table S2.

Ingenuity Pathway Analysis (IPA) and Gene Set
Enrichment Analysis (GSEA)

Based on the on- and off-target signatures, standard IPAs were

used to generate networks and perform GSEA using Fisher’s exact

test for canonical pathways defined by the Ingenuity Knowledge

Base.

Additionally, GSEA for the on-target signatures was conducted

using Fisher’s exact test based on gene sets defined by KEGG

pathways as annotated by the Bioconductor package KEGG.db

version 2.2.0.

The p-values calculated based on Fisher’s exact test were

clustered using manhattan distance and complete linkage.

High content screen Cellomics
The high-content cytotoxicity assay 1 was performed according

to the manufacturer’s instructions (ThermoFisher Cellomics).

Briefly, HaCaT cells were cultured overnight in black 96-well

plates, incubated for 24h with each NCE at the indicated

concentrations and stained with cytotoxicity cocktail. Cells were

fixed, washed and scanned on the Cellomics ArrayScan II

platform. Images were analyzed with the Cell Health image

analysis algorithm. Cytotoxicity indices were calculated for each of

the four parameters to indicate the percentage of cells outside of

the normal range which was defined using a vehicle-treated

reference cell population.

Caspase-3 Assay
Cells were seeded in 6-well plates and grown overnight to a

confluence of approximately 70% before they were treated with

2 mM of each NCE and incubated for 24 hours. Caspase-3 activity

was quantified using Facs Canto (BD Biosciences) and the

Caspase-3 Detection Kit (Calbiochem) according to the manufac-

turer’s instruction.

ELISA analysis of IL1-b, TNF-a, IL-8 and IL-6
To analyze the expression of these four cytokines cells were

treated with NCEs at the indicated concentrations and incubated

at 37uC for 12 h. Supernatants were analyzed using a Mesoscale

Discovery muliplex ELISA System (MSD) for detection according

to the manufacturer’s instruction.

In vitro kinase profiling
The SelectScreenTM kinase Profiling Service was performed

(Invitrogen) to indentify the compound selectivity against 239

kinases. Single-point kinase inhibitory activities of each compound

at 2 mM and 0.2 mM were measured at 100 mM or Km ATP

concentration. Downstream targets of the identified off-target

kinases were manually extracted from Ingenuity’s Knowledge Base

and overlaid with the NCE off-targets for comparisons.

Supporting Information

Figure S1 Phenocopy platform. Three readouts representing

early (Smad2/3 phosphorylation), intermediate (PAI-1 mRNA)

and late (PAI-1 protein) responses to TGF-b stimulation were

performed. a: phospho-Smad2/3 ELISA. This assay showed a

significant increase of Smad2/3 phosphorylation 15 minutes after

stimulation with TGF-b. Phosphorylation is further enhanced after

30 and 60 minutes and remains stable for further 60 minutes. b:

PAI-1 mRNA. Elevated PAI-1 expression was demonstrated by

qRT-PCR after TGF-b stimulation in a dose- and time-dependent

manner. c: PAI-protein. The supernatants were analyzed with a

PAI-1 ELISA for protein expression. The first significant increase

was observed 12 hours post stimulation. Subsequently, PAI-1

further accumulated in a concentration-dependent manner. All

results are representative of three independent experiments.

Student t-test was used to calculate the significance compared to

unstimulated cells (*, 0.01 & **,0.001). All error bars indicate

the standard deviation of n = 3.

Found at: doi:10.1371/journal.pone.0014272.s001 (0.08 MB

PDF)

Figure S2 siRNA validation and qualification. A: siRNA knock-

down efficiency was measured by Taqman RT-PCR 48h post

transfection. 10 different commercially available siRNAs (A -

Ambion, D - Dharmacon & Q - Qiagen) were used. B and C:

siRNAs with the best knockdown efficacy (A1, D1, D2, Q3 & Q4),

as well as the untreated control (UT) were analyzed for functional

blockade of TGF-b signaling determined by inhibition of p-

Smad2/3 (b, p-Smad2/3 ELISA) or PAI-1 protein (c: PAI-1

ELISA). All error bars indicate the standard deviation of n = 3.

Found at: doi:10.1371/journal.pone.0014272.s002 (0.08 MB

PDF)

Figure S3 siRNA off-target effects. Volcano plots for siRNAs

A1, D1, D2, Q3 & Q4. Total RNAs of biological triplicates were

isolated post siRNA transfection and were hybridized to Illumina

Beadchips. The off-target effects were analyzed by volcano plots.

Each circle represents a single gene of the human genome. The x-

axis depicts the log2 ratio (LR) between each siRNA and untreated

cells. The y-axis is scaled as -log10[p-value] (Student t-test) as a

indicator of significance. An off-target is defined to have a

|LR|$1 and a -log10 [p-value] . 2. a: CTRL siRNA vs.

untreated CTRL revealed no off-target effects. The siRNAs A1

revealed 22 genes to be deregulated (b), the siRNA D1 - 8 genes

(c), the siRNA D2 - 25 genes (d), the siRNA Q3 - 58 genes (e) & the

siRNA Q4 - 42 genes (f).

Found at: doi:10.1371/journal.pone.0014272.s003 (1.20 MB

PDF)

Figure S4 Ingenuity on-target Analysis. Networks of interacting

and regulated molecules from the on-target signature as generated

by Ingenuity Pathway Analysis. Molecules are represented as

nodes and the biological relationship between two nodes is

represented as an edge (line). All edges are supported by at least 1

literature reference. The intensity of the node color indicates the

degree of up- (red) or down- (green) regulation. Nodes are

displayed using various shapes that represent the functional class of

the gene product. a: A network of molecules directly related to the

canonical TGF- b signaling pathway containing genes involved in

cell signaling, connective tissue development and function and in

skeletal tissue development and function. b: A network of

molecules of the WNT and the Erk/MAPK signaling pathways

containing genes responsible for organ-, tissue and cellulare

development.
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Found at: doi:10.1371/journal.pone.0014272.s004 (0.48 MB

PDF)

Figure S5 Case profile definition. NCE treatment and TGF-b
stimulation resulted in six different cases profiles of gene

regulation: representative examples for on-target effects triggered

by TGF-b (a); Off-target effects triggered by a NCE (b); Integrated

effects for on and off-targets in an additive (c), inverse (d) and

bipolar (e) manner; common off-target effects induced by all 7

NCEs in a dose-independent manner (f).

Found at: doi:10.1371/journal.pone.0014272.s005 (0.12 MB

PDF)

Figure S6 Hierarchical Clustering. Hierarchical clustering of

4314 significant deregulated genes (|LR| $ 1 & p-value , 0.01)

after NCE treatment and TGF-b stimulation for 2h in HaCaT

cells. The expression patterns of the different NCE treated cells

reveal several intersections in gene regulation. The five indoli-

nones (BI1-BI5) are grouped and separated from the pyridopyr-

imidinones (Ex1 & Ex2). Expression patterns are grouped in high

vs. low dose fractions. The indolinone BI1 separates from the

other class members, which can be further divided into two

subgroups containing BI2 and BI3 and BI4 and BI5, respectively.

Blue indicates decreased expression relative to untreated cells, red

indicates increased expression.

Found at: doi:10.1371/journal.pone.0014272.s006 (1.50 MB

PDF)

Figure S7 In silico prediction of kinase hits. Projections of BI2-

specifically regulated kinase surrogate marker genes. Indicated are

all 21 inhibited kinases: 3 kinases with no affection of known

surrogate marker genes (c’), 4 kinases of which no surrogate

markers are described (c’) and 14 kinases with de-regulated

surrogate markers genes (blue line = transcriptional down-

regulation, red line = transcriptional up-regulation, red box =

in silico predicted and biochemically confirmed BI2-specific kinase

hits).

Found at: doi:10.1371/journal.pone.0014272.s007 (0.43 MB

PDF)

Table S1 TGF-b Signature. Listed are genes significantly

regulated upon TGF-b stimulation: (a) NCE treatment, (b) siRNA

treatment.

Found at: doi:10.1371/journal.pone.0014272.s008 (1.02 MB

XLS)

Table S2 Off-target Signatures. NCE dependent Off-target

Signatures identified upon 2h, 4h and 12h stimulation

Found at: doi:10.1371/journal.pone.0014272.s009 (2.33 MB

XLS)

Table S3 Each compound was profiled against a panel of 239

kinases. The kinases inhibited by each compound at 2mM and 200

nM are listed.

Found at: doi:10.1371/journal.pone.0014272.s010 (0.07 MB

PDF)

Methods S1

Found at: doi:10.1371/journal.pone.0014272.s011 (0.08 MB

DOC)
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