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Abstract

Markov state models (MSMs) have proven valuable in studying dynamics of protein conformational changes
via statistical analysis of molecular dynamics (MD) simulations. In MSMs, the complex configuration space is
coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among
these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defin-
ing states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within
the lag time. This process effectively coarse-grains time and space, integrating out rapid motions within
metastable states. Thus, MSMs possess a multi-resolution nature, where the granularity of states can be ad-
justed according to the time-resolution, offering flexibility in capturing system dynamics. This work introduces
a continuous embedding approach for molecular conformations using the state predictive information bottle-
neck (SPIB), a framework that unifies dimensionality reduction and state space partitioning via a continuous,
machine learned basis set. Without explicit optimization of the VAMP-based scores, SPIB demonstrates state-
of-the-art performance in identifying slow dynamical processes and constructing predictive multi-resolution
Markovian models. Through applications to well-validated mini-proteins, SPIB showcases unique advantages
compared to competing methods. It autonomously and self-consistently adjusts the number of metastable
states based on specified minimal time resolution, eliminating the need for manual tuning. While maintaining
efficacy in dynamical properties, SPIB excels in accurately distinguishing metastable states and capturing
numerous well-populated macrostates. This contrasts with existing VAMP-based methods, which often em-
phasize slow dynamics at the expense of incorporating numerous sparsely populated states. Furthermore,
SPIB’s ability to learn a low-dimensional continuous embedding of the underlying MSMs enhances the inter-
pretation of dynamic pathways. With these benefits, we propose SPIB as an easy-to-implement methodology
for end-to-end MSMs construction.

I. INTRODUCTION

Rapid advances in computational power have made
molecular dynamics (MD) a powerful tool for studying
molecular systems1. By implementing physical laws in
a simulation, MD enables us to track the time evolu-
tion of generic molecular systems in an all-atom, fem-
tosecond resolution2. However, all-atom MD simula-
tions commonly face challenges in capturing the long-
timescale dynamics of molecular processes. MD tra-
jectories are typically complex, high-dimensional time-
sequence data, making comprehension challenging. Con-
sequently, how to accurately model the long-timescale
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dynamics, and how to make the deluge of data generated
from MD simulations understandable to humans are still
open questions.3,4

A powerful and popular analysis method to study the
dynamical behavior of any molecular system displaying
a sufficient level of complexity is through Markov state
models (MSMs)5–7. MSMs can not only predict long-
timescale dynamics using multiple short MD trajectories
but also serve as a bridge between high-resolution MD
simulations and a more macroscopic description of the
dynamics.3,8,9 This makes them a powerful tool for un-
derstanding kinetic processes in complex molecular sys-
tems.

The conventional pipeline for constructing MSMs in-
volves several intricate steps, such as featurization, di-
mension reduction, clustering, and kinetic lumping.3,8–14

During featurization, MD conformations are typically
aligned or transformed into internal coordinate features
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to eliminate the translation and rotation of the en-
tire molecules. Subsequently, dimensionality reduction
is usually performed based on these features to iden-
tify low-dimensional, information-dense collective vari-
ables (CVs). The MD conformations are then pro-
jected onto the CV space and further grouped into hun-
dreds or thousands of microstates. For better interpre-
tation, microstates can be lumped into a few metastable
macrostates based on their kinetic similarities, and the
MD trajectories can be coarse-grained into time-series
sequences of state indexes. By choosing an appropriate
lag time, the transitions between states can be modeled
using Markovian jump processes.

With the development of various algorithms advanc-
ing the field of MSMs, it is worth noting that the specific
construction of MSMs and selection of hyperparameters
can substantially impact the quality of the final kinetic
model. To quantitatively evaluate the performance of
different MSMs and thereby facilitate their construction,
a number of metrics have been developed. These metrics
encompass various model aspects, including enhancing
the metastability of macrostates in the kinetic model7,15,
optimizing approximations of the principle eigenmodes
of dynamics16, and maximizing the model’s capability to
capture the leading slowest dynamics10,17. The third ap-
proach, known as the variational approach for Markov
processes (VAMP), has now become the most popular.
It offers a variational score to measure the difference be-
tween the eigenmodes approximated by the model and
those of the true dynamical propagator, serving as an
objective function to optimize the models.

A number of approaches leveraging artificial neural
networks have demonstrated efficacy within the context
of variational optimization workflows. Recently, VAMP-
nets, which employ the VAMP and Koopman theory as
their guiding principle, have been developed as a single
end-to-end data-driven model to directly map molecu-
lar coordinates to coarse-grained macrostates.10 Later, a
state-free reversible VAMPnets (SRVs) is specifically in-
troduced to learn nonlinear approximates to the leading
slow eigenfunctions18 and has also been generalized to bi-
ased simulations19,20. Time-lagged autoencoders utilize
auto-associative neural networks to reconstruct a time-
lagged signal, and embedded variables extracted from
the bottleneck layer can serve as the CVs.21 Another ap-
proach, variational dynamics encoders (VDEs), combine
time-lagged reconstruction loss and autocorrelation max-
imization within a variational autoencoder to approxi-
mate the dynamical propagator.22

In this work, we demonstrate a robust protocol for
MSMs construction through the use of an informa-
tion bottleneck approach called State Predictive Infor-
mation Bottleneck (SPIB).23 In previous studies, SPIB
learns useful low dimensional CVs for enhanced sam-
pling in molecular simulations to speed up the diverse
processes ranging from permeation24 and dissociation30?

of medically relevant ligands, conformational changes in
proteins28,29 to nucleation of crystal polymorphs26,27.

Here, we focus on demonstrating SPIB as a state-of-
the-art approach for automatic construction of multi-
resolution MSMs. Different from the existing meth-
ods, such as VAMP-based methodologies, which maxi-
mizes the Rayleigh coefficient or VAMP score, SPIB inte-
grates the information bottleneck framework with a sim-
ple heuristic of the state metastability at a pre-specified
lag time to achieve feature extraction and state division
in a unified approach. By leveraging this lag time param-
eter, SPIB facilitates adaptive adjustment of the num-
ber of metastable states within the final kinetic model,
enabling the automatic generation of MSMs at different
resolutions. As a result, SPIB facilitates the automatic
clustering and projection of the MD simulation data into
a few macrostates and learns directly from MD trajec-
tories a low dimensional latent space where these states
are cleanly separated into metastable states, providing
a single end-to-end framework that integrates dimension
reduction, clustering, and lumping tasks.
As tests for implementation, we utilize long folding-

unfolding MD trajectories of three small proteins (Trp-
cage31, villin headpiece [HP35]32, and WW domain31)
from D. E. Shaw Research (DESRES). Specifically,
we compare SPIB to other state-of-the-art meth-
ods including VAMPnets10, traditional MSMs coarse-
grained with robust Perron cluster-cluster analysis
(PCCA+) algorithm33 or the most probable path (MPP)
algorithm34 on a set of principal components (PCs), and
traditional MSMs coarse-grained with PCCA+ or MPP
on a set of time-lagged independent components (tICs).35

We evaluate the MSMs constructed from different meth-
ods using a set of metrics that quantify both the dynamic
and static performances of the models. Through this ex-
tensive evaluation, we find that SPIB is competitive with
or superior to other state-of-the-art methods for creation
of MSMs while offering, in addition, a continuous latent
space for interpretation of the kinetics and dynamics.
Moreover, SPIB exhibits robustness in hyperparameter
value selection and demonstrates reduced susceptibility
to overfitting, further solidifying its efficacy and reliabil-
ity in modeling complex systems.

II. METHODS

A. Markov State Model (MSM)

Markov state models (MSMs) are discrete-state and
discrete-time kinetic models that enable the approxima-
tion of the Markovian dynamical propagator governing
the molecular kinetics across the full configuration space.
MSMs can be used to coarse grain MD configurations into
easily comprehensible states. They can also be used to
integrate a large ensemble of short trajectories to pre-
dict long-term kinetic and equilibrium thermodynamic
properties.3,8,9,12,14,36–41 Popularized for biological sys-
tems in the mid-2000s5,6,41,42, the use of MSMs has ex-
ploded in the last decade due to publication of easy-to-
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use code43,44 and further developments in the implemen-
tation to increase modeling accuracy36,45–47. Here we
summarize the key ideas underlying MSMs.

Let X ⊆ R3N denote a high-dimensional signal charac-
terizing the configuration of a generic molecular system.
Then a MSM is constructed by clustering X into a set
of states y = {1, 2, 3, . . . , S}. For the folding of mini-
proteins, X could be expressed in terms of internal co-
ordinates, such as the minimal residue-residue distances.
The states y could comprise the folded state, unfolded
state, misfolded state and some important intermediate
states. Let the values measured at time t be denoted
by Xt and yt respectively. In this way, the trajectory
{Xt}Tt=0 is coarse-grained to a discrete trajectory {yt}Tt=0

that indicates which state the system visits at time t. Us-
ing statistics from yt, we can calculate the conditional
probabilities of moving between each of the discrete
states between a user-defined lag time τ and store the
conditional probabilities in a transition probability ma-
trix (TPM) T(τ). If the model is validated as Markovian,
the long-timescale dynamics could be modeled through
the first-order master equation: T(nτ) = Tn(τ). Both
thermodynamic properties (e.g. stationary state popula-
tions) and kinetic (e.g mean first passage time (MFPT),
transition pathways and implied timescales (ITS)) can
then be calculated from the TPM. Specifically, if the
TPM is diagonalized with the left and right eigenvectors
and eigenvalues: Tij(τ) = ϕTi (τ)λi(τ)ψj(τ), the station-
ary populations can be directly obtained from the left
eigenvector ϕ1(τ) (if the TPM is row-normalized) with
eigenvalues equal to 1. The remaining eigenvectors can
be utilized to infer the transition mechanisms between
the states. And the ITS for different eigenmodes can be
defined as ti(τ) =

−τ
ln(λi(τ))

. We refer to Refs. 3, 8, 13 for

an excellent recent technical review of MSMs.

B. Variational approach for Markov processes (VAMP)

The variational approach for Markov processes
(VAMP), developed by Wu and Noé48,49, provides a vari-
ational framework to approximate the dynamical propa-
gator of general Markovian dynamical processes, whether
reversible or irreversible, stationary or non-stationary.
The VAMP theory introduces the VAMP-r score, de-
fined as the sum of the singular values raised to the
power r of the approximated propagator, to quantify
the difference between the approximated leading singular
functions of the dynamical propagator and the ground
truth. A higher score indicates a superior approxima-
tion of the singular functions which represent the lead-
ing slowest dynamical modes of the system. Based on
this, VAMPnets have been developed10, emerging as an
end-to-end, neural-network-based, unsupervised method
for constructing MSMs. VAMPnets can directly map
internal coordinate features to macrostate assignments
probabilities, thereby replacing the intricate intermedi-
ate pipeline. Additionally, if the studied dynamics are

time-reversible and detailed balanced, a specialized vari-
ational approach for conformational dynamics (VAC) can
be derived.17,50

C. State Predictive Information Bottleneck (SPIB)

Existing VAMP-based methods typically specialize in
either direct state space partitioning, as in VAMPnets10,
or in identifying low-dimensional continuous CVs of the
input data, as in the case of SRVs18. In contrast, we
utilize an information bottleneck approach for the MSM
construction, called State Predictive Information Bottle-
neck (SPIB).23 This method offers a unified framework
that seamlessly integrates both state partitioning and di-
mension reduction.
To learn both the number and location of the po-

tential metastable states in the system for constructing
MSMs, SPIB is based on a simple heuristic that quanti-
fies metastability. Namely, the central idea is that if one
configuration was located at state i at a certain time,
then after a short lag time ∆t, it should still have the
largest probability to be found at state i. This is be-
cause if state i is metastable, then its escape time should
be much larger than ∆t. Based on this heuristic, in Ref.
23 we introduced an iterative scheme to learn the number
and location of states on-the-fly.
We start with an arbitrary set of state labels for the

system {yt}Tt=0, where both the number and location of
labels are some initial guess. The probability that the
system starting from X will be found in state y∆t = i
after a lag time ∆t can be estimated by the following,
assuming a stationary distribution:

p(y∆t = i|X) =
1

ρ(X)
lim

T→+∞

1

T

∫ T

0

1yt+∆t=iδ(X−Xt)dt

where ρ(X) = lim
T→+∞

1

T

∫ T

0

δ(X−Xt)dt.

(1)
Here ρ(X) represents the equilibrium density of X and
1yt+∆t=i is the indicator function for state i, which is
equal to 1 if the trajectory is within state i at time t+∆t
and equal to 0 otherwise. As it is a function of the
input configuration X and represents a state-transition
probability, we call the function p(y∆t|X) as the state-
transition density. If the system initiated from a certain
high-dimensional configuration X has the largest proba-
bility to be found after lag time ∆t in some state i from
these initial labels, then the label of the configuration X
will be refined and updated to state i. Thus, a set of new
state labels can be generated by:

ŷt = argmax
i

p(yt+∆t = i|Xt). (2)

Based on the new refined state labels, the state-transition
density p(y∆t|X) can be re-estimated and the process can
be repeated until state labels converge. This refinement
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FIG. 1: Network architecture employed for SPIB consists of
both the encoder and decoder as nonlinear neural networks
with two hidden layers. SPIB is designed to take features
such as pairwise distances, denoted as input Xt, enabling
the learning of a low-dimensional latent representation z for
predicting its future state yt+∆t after a lag time ∆t. In this
modified architecture, the encoder only outputs the mean µ,
from which the latent representation z is then sampled
utilizing a position-independent trainable standard deviation
σ. For visualization, the left panel illustrates some minimal
residue-residue distances of the Trp-cage system. In the
middle, an example of the free energy surface of the learned
latent space is displayed. The right panel presents a network
plot of the output Markov state model.

in labeling may result in null assignments for certain ini-
tial labels, consequently reducing the overall number of
states. In this way, starting from arbitrary states, SPIB
can learn both the number and location of the potential
metastable states in the system dynamically.

Direct estimation of the state-transition density using
Eq. 1 suffers from the curse of dimensionality as the in-
put feature X is typically high dimensional for complex
systems. To alleviate this problem, SPIB aims to un-
cover a low dimensional manifold on which the dynamics
of the system can be projected for more robust estimation
of the state-transition density p(y∆t|X). This provides a
unified pipeline for both dimension reduction and state
decomposition. Such a low dimensional representation zt
is assumed to use minimal information from the past sig-
nal Xt to predict its future state label yt+∆t accurately.
Such a learning process can be facilitated through the
deep variational information bottleneck framework.23,51

Several modifications have been implemented since the
initial publications23,52 to enhance the algorithm’s ro-
bustness, as summarized below.

The network architecture used for SPIB is shown in
Fig. 1. For a given trajectory {X1, · · · ,XM} and its cor-
responding state labels {y1, · · · ,yM}, where the length
M is sufficiently large, the objective function of SPIB can
be formulated as:

argmax
θ

L(θ) =

1

M − s

M−s∑
n=1

[
log qθ(y

n+s|zn)− β log
pθ(z

n|Xn)

rθ(zn)

] (3)

where the encoder pθ(z|X), the decoder qθ(y|z), and the

prior rθ(z) are probability distributions parameterized
by deep neural networks θ. zn is sampled from pθ(z|Xn)
and the time interval between Xn and Xn+s is the lag
time ∆t, or how far into the future SPIB should pre-
dict. The first term log qθ(y

n+s|zn) measures the ability
of our representation to predict the desired target, while

the second term log pθ(z
n|Xn)

rθ(zn) can be interpreted as the

complexity penalty that acts as a regulariser. This reg-
ularization term encourages the latent space z to retain
less information from the input X, thereby promoting
a more compact representation. Such a trade-off be-
tween the prediction capacity and model complexity is
then controlled by a hyperparameter β ∈ [0,∞).
For simplicity, we opt to employ a Gaussian encoder

with a constant variance:

log pθ(z
n|Xn) = logN (zn;µ, σI) (4)

where only the mean µ = µθ(X
n) is the output of a

neural network whose input is Xn, while the variance σ2

is a trainable parameter independent of the input X. I
is the identity matrix. We fix the variance of pθ(z

n|Xn)
to be constant for all X. This enables the learning of a
latent space with enhanced homogeneity.
A deep feed forward neural network with softmax out-

puts is used in the decoder qθ(y|z):

log qθ(y
n+s|zn) =

S∑
i=1

yn+s
i logDi(z

n; θ) (5)

where the state label y is a one-hot vector of S dimensions
and the decoder function D is the S-dimensional softmax
output of a neural network. This use of the softmax
output in the decoder allows for fuzzy assignments to
the SPIB-predicted states y.
Given that we expect the latent representation z

should demarcate between different metastable states, it
is natural to assume a multi-modal distribution for the
prior rθ(z). Thus, we modify the variational mixture of
posteriors prior algorithm53 to obtain such a multi-modal
prior distribution. Here, the approximate prior rθ(z) is
a weighted mixture of different posteriors pθ(z|X) with
some representative-inputs {Xk

rep}Kk=1 in lieu of X:

rθ(z) =

K∑
k=1

ωk pθ(z|Xk
rep), (6)

where K is the number of representative-inputs, and ωk

represents the weight of pθ(z|Xk
rep) under the constraint∑

k ωk = 1. The algorithm to determine the represen-
tative inputs {Xk

rep}Kk=1 operates as follows: Initially,
one sample is randomly selected for each initial state to
form our initial set of representative inputs {Xk

rep}Kk=1,
where K corresponds to the number of initial states. Af-
ter each iteration of model training and state label re-
finement, all input samples are mapped to the learned
latent space. We compute the center of each newly
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refined, non-empty metastable state in the learned la-
tent space and identify the nearest sample for each cen-
ter using Euclidean distance in the latent space. These
selected samples then serve as the new representative
inputs {Xk

rep}Kk=1 in the subsequent iteration. Conse-
quently, our algorithm automatically adjusts the repre-
sentative inputs {Xk

rep}Kk=1, and the number of represen-
tative inputs K always matches the number of states in
y. Moreover, by incorporating the mixture of Gaussians
prior to Eq. 3, the regularization term is able to encour-
age spatial separation among the state centers within the
latent space.

After obtaining the optimal θ∗ by maximizing the
SPIB objective function (Eq. 3), we can revisit Eq. 2.
Utilizing the deterministic output of SPIB denoted as
p̂(yt+∆t|Xt) ≡ D(µ(X);∆t, θ∗), we can effectively ap-
proximate the state-transition density p(yt+∆t|Xt). The
rule of state label update can be formulated as:

ŷt = argmax
i

Di(µ(Xt);∆t, θ
∗). (7)

The workflow of SPIB is summarized as follows: To ini-
tiate the training process, in addition to trajectory data
expressed in terms of input features, SPIB requires an
initial set of state labels as input. Thus, the initial state
labels are generated as the first step. The choice of initial
state labels acts as a form of prior information, effectively
guiding and shaping the learning process within SPIB.
One straightforward approach to generate these initial
state labels is to discretize some input order parameters
(OPs) based on expert intuition, a method commonly
employed in many previous works.23–30,54 However, for
more intricate systems, especially those lacking intuitive
guidance, such as the protein folding systems explored in
this study, the initial assignment of states can be carried
out in similar manner as traditional MSM construction.
This involves the use of dimension reduction techniques
such as PCA or tICA to identify the subset of linearly
optimal combination of a large set of input features and
commonly used clustering algorithms such as K-means
or K-centers to produce the discrete states. Following
the generation of initial state labels, the trajectory data
X and state labels y are input into SPIB. The objec-
tive is to find the optimum latent representation which
captures the most important features of the past con-
figuration Xt to predict the future state yt+∆t. After
this learning process, we can refine the state labels based
on Eq. 7, and the new refined state labels are then fed
back into SPIB. The processes will be repeated until the
converged latent representation and state labels are gen-
erated for further analyses. For a clearer understanding
of the training process, a pseudo-code outlining the SPIB
training procedure is presented in the Supplementary In-
formation (SI).

D. Baseline models and Quantitative Metrics

SPIB’s capability to autonomously discern metastable
states within systems suggests it could be a promising
tool for MSM construction. To evaluate the quality of
the resultant MSM from SPIB, we applied various quan-
titative metrics and conducted a systematic comparison
with MSMs built through different pipelines. Generally,
we followed the traditional order of dimensionality reduc-
tion, clustering, and lumping, but applied different algo-
rithms for each step. For dimensionality reduction, we
used tICA and PCA algorithms; for the clustering step,
we keep employing the k-means algorithm; and for the
lumping step, we utilized PCCA+33 and MPP11,34 algo-
rithms. This resulted in four different combinations of
pipelines for constructing MSMs. Additionally, to com-
pare with other deep neural network-based methods, we
also implemented the commonly used VAMPnets10 as an-
other reference. We note that for both SPIB and VAMP-
net, we crisply assign state labels to MD conformations
based on the highest output probability of the neural net-
works. Detailed setups of different methods are outlined
in SI.
For quantitative metrics, in line with the benchmark

work conducted on the same HP35 trajectory in Refs.
11 and 55, and considering traditional score functions,
we choose to utilize the generalized matrix Rayleigh
quotient (GMRQ)56, metastability score7, the Shannon
entropy55, the Davies-Boldin index (DBI)55 and the im-
plied timescales (ITS). We define these as follows:

1. GMRQ score57: defined as the sum of the top n
eigenvalues, λi, of the transition probability matrix
(TPM):

GMRQ =

n∑
i=1

λi, (8)

where n is the total number of eigenvalues scored.
Based on VAC theory50, in cases where the studied
dynamics are reversible and detailed-balanced (e.g.
protein conformational changes), the sum of the
eigenvalues of the approximated propagator (i.e.,
GMRQ score) can function as a variational score,
serving as a lower bound to the ground truth.56,57

In these cases, maximizing the VAMP based scores
lead to larger eigenvalues for reversible propagators
and, consequently, higher GMRQ scores. Notably,
the GMRQ score also functions as a commonly used
criterion in cross-validation for determining the op-
timal hyperparameters of the models while avoiding
overfitting.57

2. Metastability Q: defined as the mean of the trace
of the TPM, which measures how probable it is
for the system to remain in the same state after
a lag time τ parametrizing the TPM. Metastabil-
ity is a useful metric for evaluating the model, and
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high metastability typically indicates effective sep-
aration of slow inter-state dynamics from fast intra-
state dynamics.7 Explicitly, we define the metasta-
bility Q as

Q =
1

S
tr (T(τ)) , (9)

where S is, as previously defined, the number of
metastable states spanned by T(τ).

3. Shannon entropy H of the learned metastable
states: defined in the usual information theoretic
manner as

H = −
∑
i

πi log(πi), (10)

with πi the stationary or marginal probability of oc-
cupying metastable state i. Precisely,

(
πTT(τ)

)
i
=

πi (the TPM is row-normalized). Hence, a higher
value of H indicates that a significant portion of
states is adequately populated, a preference we pri-
oritize over partitionings characterized by a few
highly populated states and numerous sparsely
populated ones.

4. Additionally, the DBI is the ratio of the average
intra-state distance between data points clustered
to a single state and the interstate distance between
the centers-of-mass of these states and describes
how well separated the metastable states are:

DBI =
1

N

∑
i

max
j

si + sj
rij

, (11)

with si average distance of a point in state i from
the centroid of metastable state i and rij is the
distance between centroids of states i and j. A
small DBI value indicates well-separated, struc-
turally distinct states. Practically, the DBI is
calculated using the implementation in the Scipy
python library.58

5. Implied timescales (ITS): which monitors the
timescales, ti, of eigenmode i across different lag
time, were calculated for TPMs with different lag
time5,42:

ti(τ) = − τ

ln |λi|
. (12)

where τ is the lag time used to estimate the TPM,
and λi is the i-th eigenvalue for the TPM. Typi-
cally, if the ITS converge and are independent of
the lag time τ , it implies that the dynamics of
the model satisfy the first-order master equation:
λ(nτ) = λi(τ)

n. This property could be used to
determine the shortest Markovian lag time. The
Chapman-Kolmogorov (CK) test can serve as an
additional validation tool to examine the Marko-
vian properties of the model.59

FIG. 2: Protein systems investigated in this study. Data
for all simulations is obtained from the DESRES protein
folding trajectories. The duration of the MD simulation and
the number of residues are specified for each case.

Based on the ITS analysis, two crucial factors can
be used to assess the qualities of the MSMs: Marko-
vian lag time and values of converged timescales.
The Markovian lag time is the shortest lag time
where all the ITS converge and represents the time-
resolution for the MSMs. A shorter Markovian
lag time indicates better separation of slow inter-
state dynamics from fast intra-state dynamics. Ad-
ditionally, as the lag time is constrained by the
trajectory length, constructing an MSM with a
shorter Markovian lag time can reduce the demand
for simulation length. Furthermore, according to
the VAC theory, a model with larger converged
timescales demonstrates greater capability to cap-
ture the leading slowest dynamics.

E. Systems, MSM Construction and Validation

All analyses in this study are performed on the long
equilibrium molecular dynamics trajectories of three
mini-proteins from the DESRES group, namely Trp-cage
(PDB:2JOF)31, HP35 (PDB:2F4K)32, and WW domain
(PDB:2F21)31 (Fig. 2).
All three datasets are featurized with all minimal

residue-residue distances (calculated as the closest dis-
tance between the heavy atoms of two residues sepa-
rated in sequence by at least two neighboring residues),
resulting in 153 features for Trp-cage, 528 features for
both HP35 and WW-domain. The features constructed
from distances between the closest heavy atoms offer
the advantage of accurately depicting the formation and
breaking of local residue contacts, thereby facilitating the
identification of structurally well-defined conformational
states. But we note that these embedded features may
result in non-differentiable CVs due to the switching of
closest atom pairs. Therefore, utilizing distances between
Cα atoms or mass centers may yield CVs more appropri-
ate for enhanced sampling. For computational feasibility,
we analyze the HP35 and WW-domain at a resolution 1
ns per frame, but for the smaller Trp-cage system we
retain the 0.2 ns per frame resolution of the original tra-
jectory.
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For all the algorithms employed in this study, we iden-
tified an optimal set of hyperparameters through ten-fold
cross-validation using the GMRQ score as the scoring
metric (see SI). A more complex model typically pos-
sesses greater capacity to capture significant slow dynam-
ics (indicated by a larger GMRQ score). However, due to
limited data, a trade-off is necessary between model ca-
pacities and generalization abilities. The VAMP-2 score
serves as an alternative criterion, similar to the GMRQ
score when the dynamics are reversible.

To prepare the data, we first divide the long equilib-
rium DESRES trajectory into 100 equal-length short seg-
ments. These segments are treated as independent tra-
jectories, mimicking the practical scenario of MSM con-
struction where multiple short trajectories are collected.
For 10-fold cross-validation, the 100 segments are then
shuffled and randomly subsampled as part of the train-
test split procedure for each fold. This straightforward
data processing method has been employed in the previ-
ous study60. Given the sufficiently long protein folding
trajectories provided by DESRES, we anticipate that this
simple train-test split procedure will adequately ensure
that each split represents the dynamics of interest. All
parameters are then scored by considering only the top
3 eigenvalues at a 100 ns MSM lag time for all three sys-
tems. The 100ns lag time is validated as Markovian lag
time for all three systems based on the ITS analysis and
CK test (see SI). All GRMQ scores and metastability
values reported in this paper are calculated using MSMs
with 100 ns lag time.

III. RESULTS

A. Effect of lag time ∆t on SPIB

SPIB can be conceptualized as a “fast mode filter”,
where the hyperparameter ∆t, representing how far into
the future the model should predict, acts as a tool to fil-
ter out states with short lifetimes and control the level
of dynamic coarse-graining. The choice of the lag time
∆t plays a crucial role in shaping the simplification of
the learning process. When ∆t = 0, SPIB disregards dy-
namics entirely and focuses solely on clustering the input
configuration into distinct states. Conversely, for ∆t > 0,
SPIB functions as an effective filter, identifying and ex-
cluding dynamics occurring on a timescale faster than
∆t from consideration. This capability enables the ne-
glect of unnecessary details in the dynamical processes,
providing a dynamics-based, coarse-grained understand-
ing. Furthermore, as illustrated in Fig. 3, the increase
in lag time ∆t leads directly to a decrease in the number
of metastable states one expects to find after a delay of
∆t. This highlights an advantage of SPIB, as it auto-
matically adjusts the number of metastable states in the
system based on the specified ∆t. As ∆t→ ∞, the num-
ber of states will gradually decrease to 1 corresponding
to the most stable state of the system.

As Fig. 3 shows, varying ∆t for SPIB yields differ-
ent converged numbers of metastable states. This ab-
sence of a distinct plateau in the selection of the ∆t at
shorter timescales provides evidence for a rugged free-
energy landscape of protein folding. Nevertheless, each
choice of different ∆t and the resulting states are mean-
ingful, adeptly capturing the system’s relevant dynamics
at the selected temporal resolution and important con-
formations, as detailed in subsequent subsections, and
demonstrating the SPIB method’s ability to give detailed
insights regarding the hierarchical energy landscapes of
simple proteins.
To comprehensively assess the performance of SPIB

in both qualitative and quantitative terms, we strategi-
cally select two values of ∆t, denoted as “large ∆t” and
“moderate ∆t”. This selection yields two distinct sets of
MSMs comprising 4 or 5 states for large ∆t and approxi-
mately 10 states for moderate ∆t. To obtain fewer states
for better interpretability, we avoid using ∆t that is any
smaller. Furthermore, as depicted in Fig. 3, it is evident
that a smaller value of ∆t generally results in a higher
variance in the number of states. This variability can be
attributed to the presence of states with relatively small
populations at short lag times, which may occasionally
be overlooked by SPIB. Additionally, the limited sam-
pling and cross-validation procedures further exacerbate
the variability observed in the results.

B. Quantitative assessment

To achieve a more coarse-grained representation of the
SPIB states, we tune ∆t value to yield, on average, 4
or 5 metastable states. Specifically, for Trp-cage, we se-
lect ∆t = 100 ns which yielded 4 metastable states using
SPIB. For HP35, we use ∆t = 110 ns, which generates
models with an average of 5 metastable states. Finally,
for the WW-domain, we use ∆t = 70 ns which led to
5 metastable states with SPIB. We note that, given the
results presented in Figure 3, different lag times within
a small range of the selected values for each protein will
yield qualitatively similar SPIB models. In this section,
we show how these coarse SPIB models can be used as
kinetic models competitive or superior to other state-
of-the-art methods for MSM construction. These high-
performance kinetic models constructed using SPIB are
generated without explicitly optimizing along the mea-
sured performance metrics and are robust across a wide
range of hyperparameter space, as shown in gruesome
detail in the SI.

For a fair and meaningful comparison, we ensure that
all baseline methods yield the same number of states as
obtained by SPIB. This is achieved by adjusting the rel-
evant hyperparameters: the metastability criterion Qmin

for MPP, the number of clusters m for PCCA+, and the
number of output states for VAMPnets. Other hyper-
parameters are fine-tuned through cross-validation using
the GMRQ score to ensure that the comparison is con-
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(a) Trp-cage

(b) HP35

(c) WW-domain

FIG. 3: Impact of different lag time ∆t choices on the
number of converged SPIB states in 10-fold cross-validation
for all three systems.

ducted among equivalently optimized MSMs constructed
by different methods (see details in the SI). The compre-
hensive results are summarized in Table I, where we see
how the performance of SPIB compares to the state-of-
the-art methods of PCA or tICA plus PCCA+ or MPP
and VAMPnet.

For the SPIB models examined, the dimensionality of
the SPIB latent space used to construct MSMs is always
two-dimensional. For the PCA and tICA approaches, the
GMRQ is maximized when using a higher dimensional-
ity. For PCA, we utilized the 10, 10, and 20 PCs with
the highest variances for constructing MSMs for Trp-
cage, HP35, and WW-domain, respectively. For Trp-
cage, HP35, and WW-domain, we use 3, 4, and 6 tICA
components for MSM construction, respectively. The
GMRQ scores for MSMs constructed on PCA, tICA, and
SPIB spaces of varying dimensionality are given in the SI.

Upon analyzing the results, it becomes evident that
VAMPnet consistently produces the highest GMRQ

scores and metastability in the training data across all
three systems since maximizing the VAMP-2 score for re-
versible dynamics will, in turn, maximize the eigenvalues
of the TPM, resulting in larger GMRQ scores and gener-
ally higher metastabilities. However, without employing
the VAMP-based score as the objective function, which
excels in maximizing the GMRQ score, SPIB demon-
strates comparable performance to tICA-PCCA+ and
VAMPnet regarding the GMRQ score and metastability
in the validation data. Beyond exhibiting similar profi-
ciency to these state-of-the-art methods in capturing slow
dynamics, SPIB also consistently attains well-populated
and structurally distinct states, leading to comparable
entropy and DBI across all three systems when compared
to tICA-PCCA+ and VAMPnet.

It’s worth noting that other methods occasionally
achieve even higher entropy, as observed with PCA-
PCCA+ in Trp-cage and PCA-MPP in WW-domain, or
lower DBI, such as PCA-PCCA+ in WW-domain. Nev-
ertheless, these gains in entropy or reductions in DBI
often come at the cost of sacrificing dynamical prop-
erties, resulting in notably poor performance in terms
of GMRQ scores and metastability compared to SPIB.
Thus, one conclusion from the quantitative analysis pre-
sented in Table I is that SPIB generates state-of-the-art
performance across four diverse quantitative scoring met-
rics measuring the quality of the generated kinetic model
for all three protein folding systems.

In pursuit of a deeper understanding of the under-
lying dynamics with higher temporal and spatial res-
olution, we opt for a moderate ∆t to identify addi-
tional metastable states using SPIB. Specifically, to ob-
tain about 10 metastable states through SPIB, we set
∆t = 10 ns for Trp-cage and WW-domain, and ∆t = 20
ns for HP35. All quantitative comparison results are con-
solidated in Table II. Similar to the case of large ∆t,
compared to tICA-PCCA+ and VAMPnet, SPIB demon-
strates competitive or slightly superior performance in
validation GMRQ scores and metastability across all
three systems. More notably, SPIB excels in learning
a greater number of well-populated states, leading to
higher entropy scores on both the train and validation
sets for all three proteins. In contrast, tICA-PCCA+
and VAMPnets tend to result in lower entropy, suggest-
ing the capture of numerous sparsely populated states
which is a consequence of an excessive emphasis on slow
dynamics. Additionally, PCA-PCCA+ consistently ex-
hibits the lowest DBI, indicating the presence of the most
structurally distinct states.

To comprehensively compare the Markovian properties
among the MSMs constructed by PCA-PCCA+, tICA-
PCCA+, VAMPnets, and SPIB, we provide a detailed
analysis in Fig. 4, which provides a close-up view of
the ITS convergence as a function of lag time. The
ITS are visualized using the mean value of 10 rounds
of bootstrapping, with data randomly sampled with re-
placement. SPIB consistently achieves short Markovian
lag times and large converged timescales especially for
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the slowest process, rendering its performance compet-
itive with VAMPnet. However, in Trp-cage and HP35,
VAMPnet outperforms SPIB for the other slow processes.
It’s worth noting that this superiority could be attributed
to potential overfitting in VAMPnets, as SPIB consis-
tently demonstrates comparable GMRQ scores in the val-
idation set (Table. I and II). This suggests one poten-
tial advantage of SPIB: VAMP-based methods can have
a higher likelihood of overfitting, particularly when em-
ploying a large number of states, as singular functions are
estimated with inherent statistical uncertainty. In con-
trast, SPIB is trained in a self-consistent manner, which
tends to be more robust and stable.

Across all three systems, SPIB outperforms tICA-
PCCA+ and PCA-PCCA+ methods in the ITS, as the
latter two fail to converge at the same lag times, and
the converged timescales are slightly smaller. This ob-
served trend is attributed to the capacity of SPIB to learn
nonlinear transformations of input coordinates, provid-
ing enhanced resolution of slower processes, and the use
of a continuous basis set for MSM macrostates construc-
tion. These enhanced capabilities yield a reduction of
discretization errors compared to the Galerkin method
when approximating the dynamical propagator. This re-
sults in higher converged timescales and the generation
of state models with clearer time separations, leading to
shorter relaxation times within states and, consequently,
a reduced Markovian lag time.

C. Elucidating biophysical mechanisms

Having established quantitatively the SPIB method
as a viable state-of-the-art method for the construc-
tion of kinetic models whose performance is on par with
other established MSM-construction methodologies, we
now analyze the protein folding dynamics based on the
macrostates constructed and validated from SPIB in the
previous subsection. This qualitative analysis provides
insights regarding the macrostates predicted by SPIB and
compares these states with those obtained using other
methods.

We show how SPIB is able to learn the important
folded, misfolded, and unfolded states of each mini-
protein at both the coarse (large ∆t) and fine (moderate
∆t) levels, while other state-of-the-art methods some-
times erroneously lump these conformationally distinct
states together. We show the learned SPIB latent spaces
and metastable states at both coarse and fine resolutions
as well as the flux network for the fine SPIB models. This
transition from coarse to fine SPIB models demonstrates
a refined understanding of folding and unfolding mech-
anisms. Finally, we provide a brief summary comparing
SPIB states with those predicted by other methods, with
further details available in the SI.

(a) Trp-cage (b)

(c) HP35
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FIG. 4: Implied timescales as a function of lag time for the
MSMs of all systems. The left panels illustrate the results
for 4-state MSMs in Trp-cage and 5-state MSMs in HP35
and WW-domain, while the right panels showcase the
outcomes for 10-state MSMs. For clarity in presentation,
only the mean values from 10 bootstrapping samples are
plotted, with details available in the SI. The shaded gray
area represents the region where timescales become equal to
or smaller than the lag time and can no longer be resolved.

1. Trp-Cage

The Trp-cage protein, comprising 20 residues, stands
as one of the well-known examples of small-sized folding
proteins. It folds to a native state characterized by an
N-terminal α-helix, followed by a short 310-helix, a C-
terminal polyproline II region, and a hydrophobic core
stabilized by interactions of the Trp6 side chain with
Pro12, Pro18, and Pro19, as illustrated in Fig. 2. Fig. 5
illustrates how SPIB adeptly identifies metastable states
in the system across different levels of coarse-graining.
When employing a large lag time ∆t, SPIB discerns and
represents the system with 4 states, as illustrated in Fig.
5(a,c). Meanwhile, with a moderate lag time, SPIB cap-
tures a more detailed picture by learning 10 states, as
showcased in Fig. 5(b, d). The relationship between
the 4-state and 10-state models is effectively elucidated
through a Sankey plot presented in Fig. 5(e). This
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TABLE I: Quantitative comparison of different methods for large ∆t in terms of GMRQ (scoring based on
the top 3 eigenvalues), metastability Q, Shannon entropy, and DBI across three systems. The arrows indicate
whether larger or smaller values are better for each metric. The reported values represent the mean along

with the standard error of the mean derived from 10-fold cross-validation results.

Model
Trp-cage Train Trp-cage Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.00± 0.02 0.749± 0.004 0.895± 0.006 1.807± 0.006 2.72± 0.08 0.68± 0.02 0.86± 0.04 1.85± 0.03
tICA-PCCA+ 3.42± 0.01 0.855± 0.002 0.837± 0.005 1.748± 0.003 2.9± 0.2 0.76± 0.03 0.79± 0.05 1.81± 0.07
PCA-MPP 2.46± 0.03 0.56± 0.02 0.71± 0.02 2.0± 0.1 2.17± 0.09 0.50± 0.03 0.68± 0.05 2.1± 0.1
tICA-MPP 2.79± 0.08 0.67± 0.02 0.51± 0.01 2.14± 0.05 2.06± 0.09 0.50± 0.04 0.47± 0.05 2.1± 0.2
VAMPnet 3.55± 0.01 0.888± 0.002 0.807± 0.006 1.822± 0.003 3.0± 0.1 0.76± 0.03 0.76± 0.05 1.82± 0.04

SPIB 3.51± 0.01 0.878± 0.002 0.797± 0.006 1.810± 0.003 3.0± 0.1 0.75± 0.03 0.75± 0.05 1.76± 0.02

Model
HP35 Train HP35 Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.00± 0.02 0.73± 0.01 0.65± 0.08 3.5± 0.2 2.3± 0.2 0.62± 0.08 0.8± 0.1 3.5± 0.2
tICA-PCCA+ 3.57± 0.02 0.80± 0.02 0.92± 0.05 5.3± 0.3 3.0± 0.1 0.69± 0.04 0.87± 0.06 4.6± 0.6
PCA-MPP 3.12± 0.02 0.64± 0.03 0.91± 0.08 2.5± 0.1 2.5± 0.2 0.28± 0.02 0.89± 0.08 2.69± 0.08
tICA-MPP 3.52± 0.02 0.76± 0.02 1.21± 0.05 3.6± 0.3 3.1± 0.1 0.69± 0.03 1.18± 0.04 3.1± 0.3
VAMPnet 3.65± 0.04 0.83± 0.03 0.8± 0.2 3.5± 0.2 2.9± 0.1 0.65± 0.02 0.77± 0.07 3.1± 0.2

SPIB 3.51± 0.02 0.83± 0.01 1.26± 0.01 3.74± 0.04 3.0± 0.1 0.67± 0.03 1.19± 0.03 3.4± 0.1

Model
WW-domain Train WW-domain Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.02± 0.01 0.652± 0.006 0.587± 0.006 1.83± 0.03 2.4± 0.1 0.49± 0.03 0.57± 0.04 1.76± 0.05
tICA-PCCA+ 3.48± 0.01 0.788± 0.006 0.591± 0.006 2.27± 0.02 2.7± 0.2 0.58± 0.04 0.56± 0.04 2.19± 0.09
PCA-MPP 2.35± 0.06 0.46± 0.03 0.9± 0.1 8.5± 0.8 2.05± 0.07 0.41± 0.03 0.91± 0.09 7.9± 0.6
tICA-MPP 3.39± 0.05 0.79± 0.02 0.592± 0.006 1.99± 0.05 2.6± 0.2 0.60± 0.05 0.56± 0.03 1.8± 0.1
VAMPnet 3.64± 0.01 0.841± 0.003 0.592± 0.003 2.22± 0.02 2.8± 0.2 0.58± 0.04 0.56± 0.04 2.0± 0.1

SPIB 3.59± 0.01 0.823± 0.003 0.627± 0.003 2.29± 0.07 2.8± 0.2 0.67± 0.03 0.61± 0.05 2.28± 0.09

TABLE II: Quantitative comparison of different methods for moderate ∆t in terms of GMRQ (scoring based
on the top 5 eigenvalues), metastability Q, Shannon entropy, and DBI across three systems. The reported
values represent the mean along with the standard error of the mean derived from 10-fold cross-validation

results.

Model
Trp-cage Train Trp-cage Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.42± 0.02 0.401± 0.002 1.33± 0.02 2.10± 0.05 2.9± 0.1 0.31± 0.01 1.27± 0.04 2.17± 0.06
tICA-PCCA+ 4.22± 0.02 0.506± 0.005 1.00± 0.03 2.55± 0.09 3.1± 0.1 0.32± 0.02 0.92± 0.05 3.0± 0.1
PCA-MPP 2.96± 0.03 0.323± 0.008 1.16± 0.04 2.3± 0.1 2.39± 0.08 0.25± 0.01 1.12± 0.07 2.3± 0.1
tICA-MPP 3.52± 0.07 0.39± 0.01 0.66± 0.05 4.3± 0.4 2.3± 0.1 0.26± 0.01 0.61± 0.07 4.5± 0.3
VAMPnet 5.05± 0.02 0.735± 0.006 1.00± 0.01 3.0± 0.3 3.0± 0.1 0.37± 0.05 0.86± 0.06 2.5± 0.2

SPIB 4.48± 0.03 0.538± 0.009 1.35± 0.05 3.03± 0.08 3.5± 0.1 0.40± 0.02 1.25± 0.08 2.8± 0.1

Model
HP35 Train HP35 Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.27± 0.08 0.38± 0.01 1.53± 0.02 2.8± 0.1 2.6± 0.2 0.29± 0.02 1.50± 0.05 2.91± 0.08
tICA-PCCA+ 4.816±0.008 0.619± 0.004 1.45± 0.02 5.2± 0.2 4.0± 0.1 0.49± 0.02 1.40± 0.05 4.6± 0.2
PCA-MPP 3.83± 0.02 0.34± 0.02 1.2± 0.1 3.4± 0.1 2.8± 0.2 0.22± 0.02 1.1± 0.1 3.5± 0.1
tICA-MPP 4.47± 0.06 0.50± 0.03 1.27± 0.03 5.8± 0.8 4.1± 0.8 0.47± 0.03 1.24± 0.04 3.9± 0.4
VAMPnet 5.21± 0.08 0.61± 0.02 1.41± 0.04 4.1± 0.3 3.4± 0.3 0.37± 0.02 1.37± 0.05 4.3± 0.2

SPIB 5.02± 0.04 0.65± 0.02 1.511± 0.009 4.7± 0.1 3.8± 0.2 0.46± 0.03 1.44± 0.05 3.8± 0.1

Model
WW-domain Train WW-domain Validation

GMRQ ↑ Q ↑ H ↑ DBI ↓ GMRQ ↑ Q ↑ H ↑ DBI ↓
PCA-PCCA+ 3.72± 0.01 0.44± 0.02 0.67± 0.01 2.13± 0.04 2.9± 0.1 0.32± 0.02 0.65± 0.04 2.11± 0.06
tICA-PCCA+ 4.65± 0.01 0.622± 0.004 0.773± 0.005 4.72± 0.03 3.7± 0.2 0.43± 0.02 0.75± 0.06 4.30± 0.08
PCA-MPP 2.37± 0.05 0.221± 0.007 1.2± 0.1 7.9± 0.5 2.06± 0.07 0.19± 0.01 1.1± 0.1 7.7± 0.5
tICA-MPP 3.51± 0.01 0.54± 0.01 0.67± 0.01 5.0± 0.4 2.9± 0.2 0.39± 0.02 0.65± 0.04 4.2± 0.4
VAMPnet 4.91± 0.02 0.669± 0.006 0.75± 0.01 4.18± 0.07 3.4± 0.2 0.44± 0.03 0.72± 0.05 3.7± 0.1

SPIB 4.75± 0.02 0.57± 0.01 0.95± 0.02 6.5± 0.4 3.6± 0.1 0.42± 0.02 0.92± 0.05 5.4± 0.3
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Sankey plot visually illustrates the relationship between
two sets of states by mapping one set of states to another
set of states, revealing the hierarchical arrangement of
metastable states.11

Under large ∆t, SPIB yields a minimal MSM for anal-
ysis. The salient features of the landscape include a
folded state represented by state 3, intricately linked to
the molten globule state (state 0) through a narrow bot-
tleneck. State 0, in turn, connects to the unfolded state
(state 1), characterized by multiple turns in the struc-
ture, via a small energy barrier, and to a hairpin state
(state 2) through a significant energy barrier.

As the lag time ∆t is reduced, the initial 4-state
model undergoes further refinement, evolving into a
more detailed 10-state model, as depicted in Fig. 5(e).
The metastable conformational ensembles and associ-
ated transitions for the 10 macrostates are visually rep-
resented in Fig. 5(f). Notably, S8 corresponds to the
folded state, while S0 and S5 represent intermediate
states bridging the folded and unfolded states, featuring
a partially folded N-terminus. Additionally, S9 embodies
a crossed conformation with a minor central hairpin, and
S6 comprises a blend of molten globule structures and an
extended conformation. S4 signifies a partially unfolded
state. Furthermore, S1 and S2 adopt a braided hairpin-
like structure, S7 manifests as a partially compact con-
figuration with multiple turns, and S3 exhibits a distinct
hairpin conformation. These identified states resemble
those reported in literature, confirming their consistency
and relevance.60 A clear correspondence emerges between
the SPIB-learned latent space, as depicted in Fig. 5(b,d),
and the constructed MSM network shown in Fig. 5(f).
This observation suggests that SPIB actually learns a
continuous embedding of the MD conformations, serving
as an information bottleneck that maximally preserves
information about state-to-state transitions.

A comprehensive examination of the consequences of
utilizing alternative methods for macrostate construction
is provided in the SI. Here, we highlight the key find-
ings. For the 4-state model, SPIB aligns closely with
VAMPnets, while tICA-PCCA+ and PCA-PCCA+ iden-
tify states but struggle with precise boundaries. In con-
trast, PCA-MPP and tICA-MPP struggle to correctly
identify or distinguish the unfolded ensemble of states,
often missing one or two important unfolded states. For
the 10-state model, SPIB excels in capturing a more re-
fined model with numerous well-populated macrostates.
This contrasts with other methods, which struggle to fur-
ther subdivide highly populated states, leading to the
emergence of numerous lowly populated states. While
applying MPP and PCCA+ on PCA appears to alleviate
this issue, their overall performance in dynamical metrics
is generally suboptimal.

FIG. 5: Qualitative description of the MSM analysis for
Trp-cage protein. (a) and (b) give the free-energy surfaces in
the two-dimensional SPIB latent space, denoted by IB0 and
IB1, for large and moderate ∆t, respectively. (c) and (d)
give the metastable states learned by SPIB in the case of
large and moderate ∆t, respectively. (e) The Sankey plot
illustrates the corresponding relations between states
learned by SPIB using large (left) and moderate (right) ∆t.
(f) The MSM constructed based on states identified by
SPIB, trained with a moderate ∆t, is visualized using a flux
network. The node size is proportional to the stationary
population of the states, and the arrow width is scaled
according to jump probabilities. Additionally, ten randomly
selected conformations from each state are overlapped and
displayed adjacent to the corresponding node.

2. HP35

Fig. 6 shows the analogous qualitative results for
HP35. Fig. 6(a,b) show the free-energy surfaces in the
SPIB latent space for a large (100 ns) and moderate
(20 ns) values of ∆t, indicating the kinetic model at a
coarse and fine resolution, respectively. Fig. 6(c,d) shows
the learned SPIB metastable partitioning for these free-
energy surfaces; as expected, using the smaller value of
the lag time in the method allows for learning a larger
number of metastable states. Fig. 6(e) shows via a
Sankey plot the topological mapping of the states learned
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at large ∆t to the states learned at moderate ∆t. The
topological changes mostly involve a finer partitioning of
the unfolded state (state 1 in the 5-state model) learned
at large ∆t into a series of substates while the folded
states are left mostly intact.

The connectivity network of the discrete state model
learned by SPIB at moderate ∆t is given in Fig. 6(f),
where state-to-state transition network is diagrammed
schematically. This network shows that the two folded
states S5 and S8 are the most populated, and they dif-
fer by changes in the ϕ3 dihedral angle (Fig. 2, middle),
which has been shown previously to be a sufficient coor-
dinate to distinguish the folded states of HP3511, which
are S5 (ϕ3 > 0 rad) and S8 (ϕ3 < 0 rad) in our 10 state
analysis and states 2 and 4 in the 5 state analysis.

The other 8 states in the 10 state model correspond
to states with various degrees of unfolding or misfolded
states. Unfolded state 1 in the 5 state model is decom-
posed into states S1, S2, S3, S4, and S7 in the 10 state
model. All these unfolded states contain some degree of
secondary structure, but differ in the fraction and loca-
tion of the structure. Specifically, state S1 presents with
alpha helix 1 (α1) folded, α2 unfolded, and α3 misfolded,
S2 with α1 unfolded and the other two helices misfolded,
S3 and S4 with α1 unfolded and the other two helices
folded, and S7 presenting as a completely unfolded state.

State S3 has α1 unfolded and other two helices α2

and α3 folded and serves as a hub on the folding trajec-
tory, demonstrating that the 10-state SPIB model pre-
dicts that α1 folds last. A flux analysis using transition
path theory starting from the unfolded state S2 and end-
ing in folded state S8 tentatively suggests that α3 folds
first, followed by α2, then α1. States S0 and S9, where
helix α1 folds before helix α2 lie off the major folding flux
and serve as misfolded trap states in our analysis.

Generally, S7 appears to be a sink for both the mis-
folded state S1 and the other unfolded states. However,
overall, the qualitative analysis of the 10 state model in-
dicates that there is not a dominant folding-unfolding
pathway for the HP35 protein; it instead indicates that,
even for this simple protein, the folding processes are
multifaceted without a single dominant route.

A comparison of the SPIB metastable states at both
the 5 and 10 state level of resolution and those discov-
ered by the PCCA+, MPP, and VAMPnet approaches
are given in the SI. There we observe that only SPIB
and tICA-MPP are able to distinguish clearly and com-
pletely the two folded states discriminated by the ϕ3 dihe-
dral while all other methodologies tested lump those two
states into one metastable, folded state at the coarser 5
state level. When the clustering is performed at the finer
10 state level, all methods are able to distinguish the two
folded states differing in ϕ3 angle, although the VAMP-
net approach only resolves the two folded states for 40%
of the models built. This result is consistent with VAMP-
net’s occasional failure in predicting the third-slowest
timescale in an alanine dipeptide system10.

FIG. 6: Qualitative description of the MSM analysis for
HP35 protein. (a) and (b) give the free-energy surfaces in
the two-dimensional SPIB latent space for large (100 ns)
and moderate (20 ns) ∆t, respectively. (c) and (d) give the
metastable states learned by SPIB in the case of large and
moderate ∆t, respectively. (e) The Sankey plot illustrates
the corresponding relations between states learned by SPIB
using large (left) and moderate (right) ∆t. (f) The MSM
constructed based on states identified by SPIB, trained with
a moderate ∆t, is visualized using a flux network. The node
size is proportional to the stationary population of the
states, and the arrow width is scaled according to jump
probabilities. Additionally, ten randomly selected
conformations from each state are overlapped and displayed
adjacent to the corresponding node, with the secondary
structure for each frame templated on a single, randomly
selected frame from all ten.

3. WW domain

The WW-domain protein consists of 35 residues which
could form a three-stranded beta-sheet, with residues 8-
23 forming hairpin 1 and residues 17-30 forming hairpin
2 (as shown in Fig. 2). Recent investigations, employ-
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FIG. 7: Qualitative description of the MSM analysis for
WW-domain protein. (a) and (b) give the free-energy
surfaces in the two-dimensional SPIB latent space for large
and moderate ∆t, respectively. (c) and (d) give the
metastable states learned by SPIB in the case of large and
moderate ∆t, respectively. (e) The Sankey plot illustrates
the corresponding relations between states learned by SPIB
using large (left) and moderate (right) ∆t. (f) The MSM
constructed based on states identified by SPIB, trained with
a moderate ∆t, is visualized using a flux network. The node
size is proportional to the stationary population of the
states, and the arrow width is scaled according to jump
probabilities. Additionally, ten randomly selected
conformations from each state are overlapped and displayed
adjacent to the corresponding node.

ing both experimental techniques and MD simulations,
have explored the folding mechanism of the WW-domain.
Two distinct folding mechanisms have been elucidated,
differing in the folding order of hairpin 1 and hairpin
2. Approximately 70% of the WW-domain protein fold-
ing process involves the sequential folding of hairpin 1
followed by hairpin 2, while the remaining 30% under-
goes folding in the opposite order37,61–63. In this study,
adopting SPIB for MSMs analysis, we obtained results
qualitatively consistent with previous studies.

Using SPIB to construct MSMs for the WW-domain
protein folding system, Fig. 7 illustrates the outcomes
produced by two SPIB models trained at ∆t = 70 ns and
10 ns, respectively. Setting ∆t to a large value resulted in
a highly coarse-grained model consisting of 5 states. The
latent space of the trained SPIB and the distributions
of different states are visualized in Fig. 7(a) and (c).
Using a much smaller ∆t of 10 ns, a model with higher
resolution (i.e., 10 states) could be obtained, as depicted
in Fig. 7(b) and (d). The representative conformations
for the 10 states and the transition relationships between
them are elucidated by the network flux plot in Fig. 7(e).
The corresponding relations between the 5 states and the
10 states are illustrated in Fig.7 (f).

Clearly, both the 5-states and 10-states MSMs intro-
duced by SPIB successfully identified the folded, un-
folded, misfolded, and partially folded states.64 In the 5-
states MSM, state 0 corresponds to the mis-folded state,
while states 1 and 3 correspond to the unfolded and
folded states, respectively. State 2 represents the hair-
pin 1 partially folded state, while state 4 is intricately
devised, encompassing both hairpin 1 and hairpin 2 par-
tially folded conformations. The 5-states model effec-
tively connects the unfolded and folding states through
partially folded states and separates the misfolded state.
However, due to the limited model resolution, the dis-
tinctions between the different folding mechanisms are
not very evident.

In the 10-state MSM with higher resolution, the two
folding mechanisms are clearly identified. States S4 and
S5 represent the unfolded states, states S1 and S3 corre-
spond to the folded states, and S0 is identified as mis-
folded. Additionally, two distinct connections between
unfolded and folded states emerge, where states 7-6-8-9
represent the hairpin 1 - hairpin 2 folding sequence, and
states 2 show the hairpin 2 - hairpin 1 folding sequence.
The widths of flux arrows also support the dominance of
the hairpin 1 - hairpin 2 folding sequence. Interestingly,
the folded and unfolded states are further separated into
states with different interactions between the terminal
parts of the protein. This model significantly enhances
our comprehension of the folding process of the WW-
domain protein.

More detailed comparisons between the states iden-
tified by SPIB and other methods can be found in
the SI. In general, for the 5-states model, SPIB re-
sults are consistent with models constructed using tICA-
PCCA+, tICA-MPP, and VAMPnets. Given the ex-
istence of multiple states with relatively low popula-
tions (i.e., < 1%) for the WW-domain, distinguishing
the partially folded states proves challenging for PCA-
based methods. In the 10-state model, while PCA-based
methods still struggle to separate the kinetically stable
states, VAMPnets face difficulties distinguishing differ-
ences within partial-folded and unfolded conformations.
Results from the tICA-PCCA+ method are mostly con-
sistent with SPIB results. Overall, SPIB demonstrates
robust performance and effectively distinguished various
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meaningful metastable states, underscoring its significant
potential for constructing MSMs.

IV. DISCUSSION

In this work, we employ PCA or tICA to identify a sub-
space within the input features and utilize k-means clus-
tering to classify the conformations as the initial state la-
bels for SPIB. For a large lag time ∆t, we observe robust-
ness in the results with respect to the choice of the initial
label schemes. Both tICA+kmeans and PCA+kmeans
initial state labels yield the same states. However, with a
moderate lag time, these two schemes may result in differ-
ent intermediate states and consequently, different out-
comes. As a general recommendation, we suggest using
tICA+kmeans for improved capture of slow dynamics,
leading to better GMRQ and metastability. On the other
hand, PCA+kmeans is preferred for learning more struc-
turally distinct states, enhancing the DBI. As we aim
to achieve superior dynamical properties, all results pre-
sented in the main text are obtained using tICA+kmeans
to generate initial state labels. Detailed results and fur-
ther discussion can be found in the SI.

In terms of SPIB hyperparameters, our observations
indicate robust performance across a broad range of hy-
perparameter values (refer to results in the SI). However,
for achieving an optimal MSMs performance, we recom-
mend employing the GMRQ score and cross-validation
for hyperparameter tuning. The GMRQ measures the
ability of the model to capture the slowest dynamics,
while the cross-validation procedure allows for a robust
quantification of the model’s performance on new data.
Our recommended tuning process begins with fixing a
large lag time ∆t to derive a small number of macrostates
while subsequently tuning the other hyperparameters
in a sequential manner. Once the optimization of all
other hyperparameters is complete, the next step in-
volves scanning the lag time ∆t for SPIB. This step will
generate varying numbers of converged states for differ-
ent ∆t. To finally determine the lag time ∆t, one can
either select the plateau (if there is a clear timescale
separation) or specify ∆t based on the time resolution
that we care about in a dynamical system. Alterna-
tively, one may choose the lag time yielding the de-
sired number of states for MSM construction. For var-
ious conformational changes of biological molecular sys-
tems, previous studies elucidate their free energy land-
scape is hierarchical.65,66 A smaller ∆t may yield higher-
resolution MSMs, identifying numerous free energy min-
ima separated by small barriers as metastable states,
whereas a larger ∆tmay result in lower-resolution MSMs,
detecting fewer metastable states encompassing multiple
local free energy minima. SPIB provides great flexibility
for users to select the most suitable resolution for MSMs
to investigate various biological phenomena.

We note that, while the SPIB models shown here typi-
cally show good performance regarding the GMRQ score,

the SPIB loss function (eq. 3) is not equivalent to the
GMRQ or VAMP-based scores, though Both VAMP-
based scores and SPIB loss aim to approximate the prop-
agator of underlying dynamics. The GMRQ score used
in VAMP-based approaches relies on maximizing the sum
of the top n eigenvalues of transition probability matrix
constructed on the coarse-grained subspace of the rele-
vant, slow dynamics. In contrast, the SPIB loss function
is the evidence lower bound to the maximum likelihood
estimate of the state transition density. It comprises a re-
construction term and a regularization term. In the limit
that the hyper-parameter β governing the regulariza-
tion term in the SPIB loss function approaches zero, the
SPIB loss function focuses solely on minimizing the error
of propagator approximation. Consequently, optimizing
the SPIB loss in this scenario may yield outcomes akin
to those derived from the GMRQ score. However, it’s
worth noting that a key distinction from VAMP-based
methods remains: SPIB focuses on slow transitions with
significant Boltzmann weights, whereas VAMP-based ap-
proaches concentrate solely on the slowest processes with-
out considering their weights. This unique aspect allows
SPIB to consistently learn highly populated metastable
states, resulting in higher entropy scores in the systems
tested in this study.

In this work, to maintain consistency with prevailing
practices in the MSM literature, we chose to conduct hy-
perparameter selection based on the GMRQ rather than
the SPIB loss function. Nevertheless, recognizing both
the connections and distinctions between the SPIB loss
and VAMP-based scores, we acknowledge the potential
of exploring the direct use of the SPIB loss for cross-
validation as a valuable avenue for future research.

The combination of the SPIB loss function, which in-
corporates a heuristic for state metastability, with the
flexible use of lag time ∆t allows for the construction of
multi-resolution MSMs that perform well over the range
of evaluation metrics provided in Tables I and II. Fur-
thermore, the ability of the SPIB to learn adaptively the
number of metastable states on-the-fly and as a function
of lagtime differentiate the SPIB models from the analo-
gous VMAPnet models.

In addition, the SPIB consistently learns a low-
dimensional latent space on-the-fly, effectively embed-
ding the transitions between multiple metastable states
of interest. This contrasts with existing dimension re-
duction methods, such as tICA and PCA, which typi-
cally fall short in capturing transitions between multiple
metastable states within a 2D space (see SI).

Overall, we believe this one-shot nature of the SPIB,
where a latent space for description of the slow dynamics
and kinetic modeling is built simultaneously, provides a
low dimensional embedding of the metastable states of
interest and is useful to analyze metastable dynamics in a
variety of systems, including the protein folding dynamics
analyzed here.
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V. CONCLUSION

In this work, we use the state predictive information
bottleneck (SPIB)23 for constructing multi-resolution
MSMs from MD simulation trajectories of protein con-
formational changes. The framework integrates the vari-
ational information bottleneck principle with a simple
heuristic of the state metastability using a flexible neural
network to simultaneously achieve feature extraction and
state partitioning in a unified approach. By employing
diverse quantitative and qualitative metrics across three
distinct mini-proteins (Trp-cage, villin headpiece [HP35],
and WW-domain), our study elucidates the distinct ad-
vantages of the SPIB approach over competing meth-
ods, all while requiring minimal hyperparameter tuning.
These advantages include its ability to automatically de-
termine the number of metastable states based on the
specified minimum time resolution of interest, achieving
a superior trade-off between capturing slow dynamics and
states with significant population, and providing a direct
visualization of underlying dynamics.

Given the specified lag time ∆t, which quantifies the
minimal time resolution of interest, SPIB automatically
adjusts the number of metastable states in the system.
This eliminates the need to manually tune the number of
output states, a step commonly required in other meth-
ods. Thus, SPIB offers users a straightforward approach
to constructing MSMs for complex systems across diverse
resolutions.

Without explicit optimization of the VAMP-based
score, SPIB consistently demonstrates state-of-the-art
performance in capturing the foremost slow dynamical
processes, achieving comparable or slightly superior per-
formance in validation GMRQ and metastability. Addi-
tionally, the top few slowest ITS of MSMs constructed by
SPIB exhibit rapid convergence to their timescales even
with shorter lag times implying an accurate Markovian
kinetic model.

Beyond its proficiency in capturing slow dynamics,
SPIB presents a distinct advantage when constructing a
more nuanced MSM with 10 states. While VAMP-based
methods optimize the overall kinetic performance of the
model, they can struggle to further subdivide highly pop-
ulated states. In contrast, SPIB excels in learning numer-
ous well-populated macrostates. This capability stems
from SPIB’s optimization of likelihood through the infor-
mation bottleneck principle, where only slow transitions
with significant probabilities contribute. This character-
istic sets SPIB apart from VAMP-based methods, allow-
ing SPIB to excel in capturing intricate structural details.
This efficacy enables effective differentiation among var-
ious metastable states, particularly in discerning subtle
differences within folded or unfolded conformations in the
study of protein folding processes.

Our results also indicates that SPIB learns a low-
dimensional, continuous embedding of MD conforma-
tions that could preserve maximally the information
about the state-to-state transitions. This capability fa-

cilitates direct visualization and provides a more insight-
ful interpretation of the folding and unfolding pathways
in mini-proteins through a 2D space. This stands in
contrast to many existing dimension reduction methods
which directly approximate eigenfunctions.
Upon exploring all three mini-proteins, the findings

from SPIB point towards a hierarchical organization in
the free energy landscape governing their folding pro-
cesses. This organizational structure involves the seg-
mentation of both the native and unfolded basins into
several well-populated metastable states, along with the
existence of a few less populated intermediate or mis-
folded states. Even in the case of these seemingly simple
proteins, the folding processes are multifaceted, encom-
passing multiple folding and unfolding pathways. Over-
all, we believe our algorithm introduces a novel, practical,
and robust approach to construct MSMs, with potential
applications across molecular simulations and the anal-
ysis of complex dynamical systems. We anticipate its
utility across diverse scientific communities.

VI. SUPPORTING INFORMATION

See supporting information for a detailed description
of model hyperparameters, a discussion on the impact of
training hyperparameters and initial state labels, as well
as additional supplementary results.
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17F. Noé and F. Nuske, “A variational approach to modeling slow
processes in stochastic dynamical systems,” Multiscale Modeling
& Simulation 11, 635–655 (2013).

18W. Chen, H. Sidky, and A. L. Ferguson, “Nonlinear
discovery of slow molecular modes using state-free re-
versible VAMPnets,” The Journal of Chemical Physics
150, 214114 (2019), https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/1.5092521/15559948/214114 1 online.pdf.

19L. Bonati, G. Piccini, and M. Parrinello, “Deep learning the slow
modes for rare events sampling,” Proceedings of the National
Academy of Sciences 118, e2113533118 (2021).

20K. Shmilovich and A. L. Ferguson, “Girsanov reweighting en-
hanced sampling technique (grest): On-the-fly data-driven dis-
covery of and enhanced sampling in slow collective variables,”
The Journal of Physical Chemistry A (2023).
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ational koopman models: Slow collective variables and molecular
kinetics from short off-equilibrium simulations,” The Journal of
chemical physics 146 (2017).
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