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Persistent immune activation in virologically suppressed HIV-1 patients, which may be

the consequence of various factors including microbial translocation, is a major cause of

comorbidities. We have previously shown that different profiles of immune activation may

be distinguished in virological responders. Here, we tested the hypothesis that a particular

profile might be the consequence of microbial translocation. To this aim, we measured

64 soluble and cell surface markers of inflammation and CD4+ and CD8+ T-cell, B cell,

monocyte, NK cell, and endothelial activation in 140 adults under efficient antiretroviral

therapy, and classified patients and markers using a double hierarchical clustering

analysis. We also measured the plasma levels of the microbial translocation markers

bacterial DNA, lipopolysaccharide binding protein (LBP), intestinal-fatty acid binding

protein, and soluble CD14. We identified five different immune activation profiles. Patients

with an immune activation profile characterized by a high percentage of CD38+CD8+

T-cells and a high level of the endothelial activation marker soluble Thrombomodulin,

presented with higher LBP mean (± SEM) concentrations (33.3 ± 1.7 vs. 28.7 ±

0.9µg/mL, p = 0.025) than patients with other profiles. Our data are consistent with

the hypothesis that the immune activation profiles we described are the result of different

etiological factors. We propose a model, where particular causes of immune activation,

as microbial translocation, drive particular immune activation profiles responsible for

particular comorbidities.
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INTRODUCTION

Immune activation plays a major role during HIV-1 infection.
In the short term, it is the main driver of CD4 T-cell loss
(1). In the long term, it fuels non-AIDS-linked morbidities
such as atherothrombosis, osteoporosis, metabolic syndrome,
neurocognitive disorders, liver steatosis, kidney failure, frailty,
and certain types of cancer, even under antiretroviral therapy
(ART) (2). These diseases are responsible for over 80% of deaths
among virologic responders (3). It is therefore of major interest
to better understand the causes and the phenotypes of this
immune activation, as well as the pathophysiological mechanisms
resulting in its consequences.

Via cell-surface and soluble markers, we recently analyzed the
state of activation of the immune system in 120 efficiently treated
HIV-1 patients. Using two independent hierarchical clustering
analyses, we identified five patient groups characterized by
very different immune activation profiles (4). This observation
highlights the fact that virological responders do not all present
with the same types of immune activation. It is notable that
one of these five immune activation profiles was strongly
linked to insulin resistance (Odds Ratio 17.06 [95% CI 2.14–
135.60], p = 0.007). These findings provoke the interesting
possibility that certain immune activation profiles might lead
to specific comorbidities. It is also logical to hypothesize that
these immune activation profiles might be the consequences of
specific causes. Various causes of immune activation have been
unveiled, including residual viral production, coinfections, CD4
T-cell lymphopenia, immune senescence, metabolism disorders,
CD4 T-cell subset deregulation, and microbial translocation
(5). In a given virologic responder, some of these causes may
prevail. For instance, microbial translocation is present in some
individuals but not in others (6). Likewise, some patients have
restored their CD4 count, whereas others have not. In addition,
the level of persistent HIV production is also variable among
virologic responders.

Microbial translocation is the passage of microbes and/or
microbial products from the gut lumen into the organism in
absence of bacteremia. It has been recognized as a potential
source of immune activation in HIV infection (7). It is caused by
the conjunction of physical destruction (8) and loose junctions
(9) of the epithelium and immunological (CD4 T-cell, and
particularly Th17 lymphopenia (10), neutrophil accumulation)
(11) lesions of the gut mucosa. It may be noted that some
degree of mucosa alteration and microbial translocation may
persist under efficient ART (6). Various biomarkers are used
to evaluate microbial translocation. Lipopolysaccharide (LPS)
and bacterial DNA peripheral blood concentrations are direct
markers. LPS-binding protein (LBP) (12) and soluble CD14
(sCD14), the production of which is induced by the presence of
LPS, are indirect markers. Intestinal fatty acid binding protein
(I-FABP), released by damaged gut epithelial cells, is a marker
of epithelium destruction (13). More recently, dysbiosis, an
imbalance in bacterial taxa, has been described in the microbiota
of HIV patients, linked to microbial translocation and immune
activation (14–16). Yet, this dysbiosis might be more linked to
sexual preference than to HIV infection (17), and its role as a

cause and/or a consequence of immune dysregulation remains
yet to be clarified.

In the present study, to test the hypothesis that some
causes of immune activation might specifically fuel certain
profiles of immune activation, we looked for a link between
microbial translocation and the immune activation profiles that
we identified in virologic responders.

MATERIALS AND METHODS

Study Design
In the previous ACTIVIH trial, we had analyzed 120 HIV-
1 patients over 45 years of age with pre-therapeutic CD4 cell
counts below 350 cells per µL. In order to diversify our study
population, we recruited 20 additional adults infected by HIV-
1 without age or CD4 nadir limitations. All individuals were
aviremic (<50 copies per mL) for at least 6 months while under
stable antiretroviral regimen. Pregnant or breastfeeding women,
persons under immunomodulatory treatment or presenting with
diseases likely to modify their immune system were not included.
Fourty-seven HIV-negative control subjects matched for age
were also recruited. This study was approved by the Ethics
Committee of Montpellier University Hospital. All patients had
provided written informed consent. The trial was registered on
ClinicalTrials.gov under the reference NCT02334943.

Quantification of Cell Surface and Soluble
Markers
Cell surface markers were analyzed by flow cytometry as
previously described (4). Soluble markers of immune,
endothelial, and coagulation activation were analyzed as
in the ACTIVIH study (4). The 64 markers are listed in
Supplementary Table 1 (4). 16s ribosomal DNA (rDNA) was
quantified by PCR (18). LBP (Enzo Life Sciences) and I-FABP
(Hycult Biotech) were measured in plasma using commercial
ELISA kits.

TABLE 1 | Bioclinical characteristics of the study populations.

Characteristic Variable Patients Controls

Number of individuals 140 47

Age (years) Mean (± SD) 56 (± 9) 56 (± 13)

% CD4+ T cell Mean (± SD) 49.3 (± 11.4) NA

CD4 Count (cell/mm3) Mean (± SD) 733 (± 375) NA

CD4/CD8 Ratio Mean (± SD) 1.24 (± 0.88) NA

Pre-therapeutic nadir

CD4 count (cells/µL)

Mean (± SD) 199 (± 119) NA

Pre-therapeutic viremia

(RNA copies/ml)

Mean (± SD) 1437216

(± 9602969)

NA

Years of HIV infection Mean (± SD) 16 (± 8) NA

Months of viral

suppression

Mean (± SD) 95 (± 49) NA

Male sex (%) N (%) 113 (81) 23 (50)
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Statistical Analysis
Weused the squared Euclidean distance of scaled data tomeasure
dissimilarities between patients and the square of (1-(pearson
correlation coefficient)∧2) to measure dissimilarities between
markers. The classifications used the Ward method (on the
squared distance) as a metric. The heatmap was generated using
R software. We tested different criteria to choose the number of
clusters, and finally chose five clusters as it was consistent with
the dendrogram structure and gave homogenous and distinct
profiles. We used the Mann-Whitney test to compare patients
and controls, and Profile D with other profiles. The links between
biomarkers were determined by Spearman rank correlations.

RESULTS

Study Subjects
Compared with the first 120 patients we recruited for the
ACTIVIH study, the 20 new patients were younger (50.4 ± 12.9
vs. 56.5± 8.1 years of mean± SD age, p= 0.054), and presented
with shorter durations of HIV infection (8.9 ± 7.1 vs. 17.2 ± 7.4
years, p = 0.004), shorter durations of aviremia (56 ± 40 vs. 102
± 47 months, p < 0.001), and a mean pre-therapeutic CD4 cell

count tending to be higher (239± 169 vs. 192± 108 cells per µL,
p = 0.112). The bioclinical characteristics of all 140 patients and
of HIV-negative controls are given in Table 1.

Immune Activation Profiling
As previously performed, for the 20 additional patients living
with HIV-1, we determined the proportions of CD4+ and CD8+
T-cells, naïve, central memory, and effector memory T-cells,
based on CD45RA and CD27 expression, activated (HLA-DR+
and/or CD38+), exhausted (PD-1+), and senescent (CD57+,
eventually CD27– and CD28–) T-cells. The percentages of
activated (HLA-DR+), dysfunctional (CD56–), and senescent
(CD57+) NK cells were also measured. Immunoglobulin (Ig)G,
IgA, IgM, and soluble CD163 (sCD163) peripheral blood levels
were used as markers of B-cell and monocyte activation,
respectively. It should be noted that sCD14 was not used
as an activation marker, but as a microbial translocation
marker. Inflammation was evaluated via soluble Tumor Necrosis
Factor receptor type I (sTNFRI-1) and C-reactive protein
(CRP) concentrations, and endothelium activation was evaluated
via soluble Endothelial Protein C Receptor (sEPCR), soluble

FIGURE 1 | Identification of the patient’s immune activation profiles. Heatmap showing the hierarchical clustering of the activation markers (vertical) and of

the patients (horizontal). The five profiles of immune activation issued from the patients clustering (A–E) are indicated.
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Thrombomodulin (sThrombomodulin), and tissue Plasminogen
Activator (tPA) concentrations in peripheral blood.

In the ACTIVIH study, two independent hierarchical
clustering analyses of the activation markers and of the 120
patients had identified five groups of individuals presenting with
very different profiles of immune activation. We carried out
the same analysis on all 140 patients (Figure 1). Interestingly,
although the 20 additional patients presented with divergent
bioclinical characteristics, this new analysis again identified
five different immune activation profiles. The bioclinical
characteristics of the patients are given according to their
immune activation profile in Table 2. Each profile may be
characterized by a specific marker. As compared with the other
patients, patients with Profile A present with a high percentage
of central memory CD8+ T-cells (31 ± 13 vs. 22 ± 9%,
p < 0.001, Figure 2A), and patients with Profile B present with
the lowest CD4:CD8 ratio (0.64 ± 0.30 vs. 1.29 ± 0.90, p <

0.001, Figure 2B). Profile C patients have the higher percentage
of HLA-DR+ CD4+ T-cells (32 ± 15 vs. 19 ± 10%, p <

0.001, Figure 2C), whereas Profile D patients have the higher
percentage of CD8+ T-cells expressing CD38 (53 ± 3 vs. 43 ±

1%, p= 0.001, Figure 2D). Finally, Profile E is remarkable for its
elevated proportion of CD38-positive CD4+ T-cells (73 ± 11 vs.
56± 12%, p < 0.001, Figure 2E).

Microbial Translocation Markers
Next, for these 140 patients we measured peripheral blood
mean (±SEM) levels of rDNA, LBP, sCD14, and I-FABP. Plasma
concentrations of rDNA (16.6 ± 2.0 vs. 9.9 ± 0.9 copies/µL,
p < 0.001, Figure 2F), LBP (29.2 ± 0.8 vs. 16.0 ± 1.0µg/mL,
p < 0.001, Figure 2G), and sCD14 (3.41 ± 0.09 vs. 1.65 ±

0.02µg/mL, p < 0.001, Figure 2H) were significantly higher,
whereas I-FABP concentrations (470 ± 39 vs. 333 ± 46 pg/mL,
p = 0.557, Figure 2I) were non-significantly higher in HIV
patients than in HIV-negative controls matched for age. In our
search for correlations between microbial translocation markers,
we observed a link between rDNA and LBP (r= 0.279, p< 0.001,
Figure 2J), and an almost significant link between sCD14 and
I-FABP (r = 0.153, p= 0.071, Figure 2K).

Relationships Between Microbial
Translocation and Immune Activation
Markers
Asmicrobial translocation has been linked to immune activation,
we looked for correlations between the microbial translocation
and the immune activation markers we had quantified. This
analysis revealed that the directmarker ofmicrobial translocation
rDNA was linked to CD8+ T-cell exhaustion (r = 0.253,
p = 0.003, Figure 2L) and to the endothelium activation marker
sThrombomodulin (r = 0.239, p = 0.004, Figure 2M). The
indirect marker of microbial translocation LBP was not only
linked to CD8+ T-cell exhaustion (r = 0.226, p = 0.008,
Figure 2N), but also to sThrombomodulin (r = 0.278, p =

0.002, Figure 2O), the inflammation marker CRP (r = 0.204,
p = 0.017, Figure 2P) as well. The other indirect marker of
microbial translocation, sCD14, correlated with the expression of
the immune activation marker HLA-DR on CD4+ T-cells (r =
0.187, p= 0.028, Figure 2Q).

Microbial Translocation Is Linked to a
Specific Immune Activation Profile
Next, we analyzed whether the levels of microbial translocation
were similar among the five immune activation profiles
identified. Compared with the other patients, we observed that
patients with Profile D presented a non-significant higher mean
(±SEM) rDNA levels (29 ± 10 vs. 14 ± 1 copies/µL, p = 0.589).
Their sCD14 (3.7 ± 0.2 vs. 3.3 ± 0.1µg/mL, p = 0.102) and I-
FABP (564 ± 85 vs. 410 ± 36 pg/mL, p = 0.067, Figure 3A)
concentrations also tended to be higher. Moreover, their LBP
levels were significantly higher (33.3 ± 1.7 vs. 28.7 ± 0.9µg/mL,
p = 0.025, Figure 3B), with an odds ratio (OR) per unit increase
in LBP of 1.05 (95% CI, 1.01–1.11, p= 0.034).

Patients with Profile D were younger than the other patients
(52 ± 7 vs. 57 ± 9 years, p = 0.003). A multivariate analysis,
adjusted with age as a covariate, still revealed their risk of higher
LBP (OR per unit increase in LBP of 1.06, 95% CI, 1.01–1.11, p
= 0.030). Their CD4 nadir (148 ± 108 vs. 163 ± 104 cells/µL,
p = 0.501) and duration of aviremia (85 ± 45 vs. 100 ± 49
months, p = 0.188) were not different. Although their CD8+

TABLE 2 | Bioclinical characteristics of the participants according to their immune activation profile.

Characteristic Variable Profile A Profile B Profile C Profile D Profile E

Number of individuals 56 13 37 25 9

Age (years) Mean (± SD) 57 (± 9) 57 (± 5) 59 (± 11) 52 (± 7) 54 (± 4)

% CD4+ T cell Mean (± SD) 48.8 (± 11.7) 36.5 (± 10.7) 47.3 (± 10.8) 53.2 (± 9.6) 63.4 (± 11.6)

CD4 Count (cell/mm3 ) Mean (± SD) 606 (± 279) 800 (± 344) 678 (± 280) 731 (± 301) 1567 (± 451)

CD4/CD8 Ratio Mean (± SD) 1.17 (± 0.57) 0.64 (± 0.30) 1.08 (± 0.53) 1.38 (± 0.61) 2.64 (± 2.37)

Pre-therapeutic nadir CD4

count (cells/µL)

Mean (± SD) 148 (± 112) 147 (± 83) 180 (± 98) 148 (± 108) 201 (± 93)

Pre-therapeutic viremia

(RNA copies/ml)

Mean (± SD) 2,774,841

(±15,256,275)

148,346

(± 151,297)

492,278

(± 1,835,761)

1,130,295

(± 2,941,405)

447,255

(± 503,358)

Years of HIV infection Mean (± SD) 15 (± 7) 20 (± 6) 17 (± 8) 14 (± 9) 16 (± 7)

Months of viral suppression Mean (± SD) 96 (± 44) 81 (± 43) 114 (± 58) 85 (± 45) 99 (± 44)

Male sex N (%) 48 (85) 12 (92) 31 (83) 18 (71) 5 (55)

Frontiers in Immunology | www.frontiersin.org 4 September 2019 | Volume 10 | Article 2185

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Younas et al. Immune Activation and Microbial Translocation

T-cells expressed higher levels of the activation marker CD38
(Figure 2D) they expressed lower levels of the senescence marker
CD57 (23± 3 vs. 34± 1%, p < 0.001, Figure 3C) than the rest of
the patients. Profile D was also remarkable because of a high level
of mean (±SEM) sThrombomodulin (117± 13 vs. 89± 5 ng/mL,
p= 0.030, Figure 3D).

DISCUSSION

We had previously described five different immune activation
profiles in 120 patients with a mean age of 58 years, a mean pre-
therapeutic CD4 count of 192 cells per µL, and a mean duration
of infection of 17 years. It was important to assess whether

FIGURE 2 | Characterization of the immune activation profiles (A–E). Differences in the level of various activation markers between each cluster of patients and the

other clusters are shown. Microbial translocation in patients and healthy donors (F–K). Plasma levels of rDNA (F), LBP (G), sCD14 (H), and I-FABP (I) are presented

as mean values and standard deviation; p-values are shown. Correlations between rDNA and LBP (J), and between sCD14 and I-FABP (K) in patients are shown.

Correlations between microbial translocation and immune activation markers in patients (L–Q).
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FIGURE 3 | Microbial translocation markers are elevated in patients with immune activation profile D. I-FABP (A) and LBP (B) mean values and standard deviations in

patients according to their immune activation profile. p-value of the difference for each microbial translocation marker between Profile D and the other immune

activation profiles is indicated. Characterization of the immune activation profile D (C,D). Differences in the percentage of CD8+ T-cells expressing CD57 (C) and in the

level of sThrombomodulin (D) between profile D and the other profiles are shown.

the same kind of profiles could be found after having added a
divergent group of patients. Here we show that adding to this
cohort 20 younger individuals with a shorter period of infection
and aviremia and a higher CD4 count before ART, did not disrupt
the hierarchical clustering. This observation argues for the fact
that our classification is robust rather than specific for a particular
set of patients. Yet, this remains to be confirmed with a greater
number of patients with a higher diversity.

In the present study, we found elevated microbial
translocation markers in some of the virological responders
we analyzed. Globally, the peripheral blood concentrations of
bacterial DNA and indirect translocation markers (LBP and
sCD14) were higher in infected than in non-infected individuals.
It is important to note that we observed a correlation between
rDNA and LBP. In contrast, we did not establish any relationship
between either rDNA, LBP, sCD14, or I-FABP, and sCD163, an
alternative marker for monocyte activation. This is in line with
a fact we had already unraveled in the ACTIVIH study, that
sCD14 and sCD163 are clustered far apart from each other in the
hierarchical clustering of the activation markers (Figure 1). This
further emphasizes the fact that sCD14 and sCD163 correspond
to different forms of monocyte activation.

We also unveiled links between microbial translocation
markers and some of the immune activation markers we
measured. We noticed a link between the level of circulating
bacterial DNA as well as LBP and CD8+ T-cell exhaustion and

sThrombomodulin. Thrombomodulin is released from activated
endothelial cells, in the course of sepsis for example (19).
Therefore, sThrombomodulin is considered as an endothelial
activation marker (20). Vascular endothelial cells have been
reported to express the LPS receptor TLR4, particularly under
proatherogenic stimuli (21). Consequently, under LPS exposure,
these cells release the inflammatory cytokines IL-6 and IL-8,
produce TNFα and IL-1β mRNA and express the adhesion
molecules ICAM-1, VCAM, and E-selectin (21, 22). In line
with the hypothesis that microbial translocation might directly
activate endothelial cells, sCD14 has been shown to correlate
with the markers of endovascular dysfunction, symmetric, and
asymmetric dimethylarginine (23).

The main result of our work is the report of a correlation
between the markers of microbial translocation LBP and I-
FABP, and one profile of immune activation. Although our
data do not allow to state that this link is causative, it is
noteworthy that patients with Profile D present high levels of
sThrombomodulin, since microbial translocation is known to
induce endothelial activation (22). This argues for a causative
relationship between microbial translocation and Profile D
immune activation. The link between LBP and Profile D that
we established strengthens the hypothesis that the immune
activation profiles we observedmight be fueled by specific causes.
Yet we cannot exclude the possibility that, inversely, Profile D
immune activation favors microbial translocation. For instance,
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we discovered a link between LBP and CRP, as previously
observed (24). On the one hand, microbial translocation may
cause inflammation, but on the other hand, inflammation may
increase gut epithelium permeability and thereby microbial
translocation. So theremay be a bidirectional link between Profile
D and microbial translocation.

As we have previously shown that a specific immune
activation profile is strongly linked to a pathogenic process,
insulin resistance, the present data have important consequences.
Microbial translocation has been reported to be a driver of
morbi-mortality, including insulin resistance (25), hypertension
(26), cardiovascular disease (27), neurocognitive disorders (28),
depression (29), liver disease progression (30), and non-Hodgkin
lymphoma (31). Linkingmicrobial translocation to Profile D and,
in the future, eventually linking Profile D to specific morbidities,
will help to specify which comorbidity microbial translocation
may fuel. Early diagnosis of microbial translocation may
then orientate the prevention and screening toward particular
morbidities. Moreover, our observation opens the possibility
to identify the pathophysiological pathways between microbial
translocation and phenotypes of immune activation specific to
Profile D and these phenotypes to comorbidities driven by Profile
D. It will also be of interest to monitor the effect of probiotics and
prebiotics tested inHIV infection (32) on Profile D. Furthermore,
the influence of the dysbiosis described in HIV patients on Profile
D will also have to be tested.

From a more general point of view, our observations
may benefit other situations where microbial translocation
occurs, including inflammatory bowel disease, pancreatitis, non-
alcoholic steato-hepatitis, hepatitis B and C virus infection, graft
vs. host disease, alcoholism, and aging. It would be of interest to
study whether the same immune activation phenotype may be
observed in these situations.
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