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ABSTRACT: Formation and growth of atmospheric molecular clusters
into aerosol particles impact the global climate and contribute to the high
uncertainty in modern climate models. Cluster formation is usually studied
using quantum chemical methods, which quickly becomes computationally
expensive when system sizes grow. In this work, we present a large
database of ∼250k atmospheric relevant cluster structures, which can be
applied for developing machine learning (ML) models. The database is
used to train the ML model kernel ridge regression (KRR) with the
FCHL19 representation. We test the ability of the model to extrapolate
from smaller clusters to larger clusters, between different molecules,
between equilibrium structures and out-of-equilibrium structures, and the
transferability onto systems with new interactions. We show that KRR
models can extrapolate to larger sizes and transfer acid and base
interactions with mean absolute errors below 1 kcal/mol. We suggest introducing an iterative ML step in configurational sampling
processes, which can reduce the computational expense. Such an approach would allow us to study significantly more cluster systems
at higher accuracy than previously possible and thereby allow us to cover a much larger part of relevant atmospheric compounds.

1. INTRODUCTION
Aerosols are suspensions of solid and liquid particles in the air.
They are the main contributors to uncertainties in modern
climate models, as confirmed by the recent IPCC report.1

Aerosols affect the climate by scattering and absorbing
sunlight, which changes the global radiation balance,2 and
they act as seeds for cloud droplet formation, termed cloud
condensation nuclei (CCN).3 About half of the global CCN
originate from atmospheric new particle formation (NPF4),
i.e., gas-to-particle formation. NPF can be initialized via various
gas-phase precursors bonding noncovalently into molecular
clusters, which grow with further uptake of different vapors.5

Hence, most climate-modeling uncertainty arises from the
ambiguities of which specific compounds are involved in the
initial clustering and the further growth into aerosol particles.6

Sulfuric acid has been shown to play a major part in
NPF,5,7−9 and atmospherically relevant acids such as
methanesulfonic acid, nitric acid, and formic acid are capable
of enhancing the cluster formation potential of sulfuric acid
(SA)-based clusters.10−14 However, the acids alone are not
capable of forming strongly bound clusters under realistic
atmospheric conditions. Instead, SA clusters are stabilized by
highly abundant bases such as ammonia or bases with high
basicity such as methylamine, dimethylamine, trimethylamine,
and ethylenediamine.8,15−25

Recently, several quantum chemical studies have given
insight into cluster thermodynamics and formation.26,27 The
cluster structures are usually examined using a funneling

approach to efficiently explore the vast configurational space.
In this approach, a multitude of structures are initially
examined at a low level of theory, and only a few are taken
for re-examination at higher levels of theory. Performing high-
level (e.g., density functional theory (DFT)) calculations for
numerous candidate structure candidates in order to find the
global (free) energy minimum is currently an enormous
bottleneck in atmospheric cluster calculations. Large clusters
are especially problematic, as the number of minima in the
configurational space scales exponentially with system size and
the high-level DFT methods scale quarticly.28 As machine
learning (ML) methods can be faster than DFT calculations,
we examine how ML models could help to filter out high-
energy structures and thus reduce the number of potential
structures needed to be calculated using the computationally
demanding quantum chemical methods.
Using ML models, one can train a property of interest, such

as electronic energy, on a training set of molecular
representations and then predict the same properties for a
new structure.29−31 However, several studies showed that the

Received: April 2, 2023
Accepted: June 16, 2023
Published: June 30, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

25155
https://doi.org/10.1021/acsomega.3c02203

ACS Omega 2023, 8, 25155−25164

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yosef+Knattrup"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jakub+Kubec%CC%8Cka"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Ayoubi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonas+Elm"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c02203&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/28?ref=pdf
https://pubs.acs.org/toc/acsodf/8/28?ref=pdf
https://pubs.acs.org/toc/acsodf/8/28?ref=pdf
https://pubs.acs.org/toc/acsodf/8/28?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c02203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


performance of Δ-ML models where the training and
prediction are done on the difference between two methods
consistently outperforms the ‘direct-ML’ models in predicting
the property of interest.32−34 For instance, Kubecǩa et al.34

used Δ-ML between the GFN1-xTB and ωB97X-D/6-31+
+G(d,p) methods to predict sulfuric acid−water cluster
binding energies with mean absolute errors down to 0.5
kcal/mol. To train a proper ML model, a representative
database is required. In the Clusteromics series of papers,10−14

our group has gathered a database of unique atmospheric
acid−base cluster structures containing acids such as sulfuric
acid (SA), methanesulfonic acid (MSA), formic acid (FA), and
nitric acid (NA), and with bases such as ammonia (AM),
methylamine (MA), dimethylamine (DMA), trimethylamine
(TMA), and ethylenediamine (EDA). The acids and bases and
their distribution in the Clusteromics series are depicted in
Figure 1. This large data set consists of 22,870 equilibrium
cluster structures at the ωB97X-D/6-31++G(d,p) level of
theory.
In this work, we generate a massive data set of atmospheric

molecular clusters based on the Clusteromics I−V data sets to
test the applicability of ML methods on various multi-
component cluster systems.

2. METHODOLOGY
2.1. Computational Details. The stability and binding

strength of atmospheric molecular clusters is typically
evaluated at the ωB97X-D/6-31++G(d,p) level of theory,
followed by high-level DLPNO−CCSD(T0)/aug-cc-pVTZ
single-point electronic energy corrections.26,35 Recent bench-
mark work by Jensen et al.33 revealed that empirically
corrected DFT methods such as r2SCAN-3c36 are significantly
faster than other DFT methods while performing with the
same or better accuracy. In this work, we also examined the
semiempirical methods AM1,37 PM3,38 GFN1-xTB,39 and
GFN2-xTB40 for out-of-equilibrium structure generation using
molecular dynamics (MD) simulations. The MD simulations
were performed in ORCA 5.0.0.41,42

2.2. Machine Learning Model. In this work, we use the
KRR method and the FCHL19 molecular representation,43

which showed excellent results for water clusters43 and
atmospherically relevant clusters.33,34,44 All mathematical
scripts can be found within the quantum machine learning
(QML) program,45 which we interfaced with our own Jammy
Key for Machine Learning (JKML[part of JKCS]) scripts that
handle file management and automatizes the procedure. For
kernel ridge regression with a local representation, it is
assumed that a molecular property i( ) (energy in our case)
of a molecular system target i can be written as a sum of atomic
contributions.

= =i q q q( ) ( ) ( , )
B i

B
B i j A j

A B jlocal
(1)

where A and B are atoms in the target i and the trained system
j, respectively, q is the molecular representation of the system,
αj is the regression coefficients for the training system j, and

q q( , )A B are the pairwise kernels between the atoms in the
two molecules. We use a Gaussian kernel with the L2-norm.
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where σ is the kernel width and ZA and ZB are the nuclear
charges of atoms A and B, respectively. These equations can be
written in matrix notation as

= ·E K (3)

where α⃗ is the collection of regression coefficients αj and the
elements of the kernel matrix K are given as a sum over
pairwise kernels between atoms of two molecules A and B

=K q q( , )ij
B i A j

A B
(4)

The α coefficients, which can be obtained by minimizing the
cost function, have the following analytical solution:

= +K I M( ) 1 (5)

Here, λ is a small constant added to the diagonal of the matrix
to ensure numerical stability when inverting the kernel matrix.

Figure 1. Monomers contained in the Clusteromics data sets. The Roman numerals refer to which Clusteromics data set the monomer is present
in.
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Since the (K + λI) is Hermitian and positive-definite, Cholesky
decomposition is used to solve for the coefficients.46

In this work, the r2SCAN-3c level of theory was chosen as
the target level for the ML model. Although r2SCAN-3c is fast
and its substitution with ML is perhaps unnecessary, we use it
as a proof of concept, and the trends should be applicable to
any quantum chemical method. The model is based on Δ-ML
and is thus trained on the difference of electronic binding
energies between GFN1-xTB (XTB) and r2SCAN-3c (DFT)

= ( )
( )

E E E

E E

binding
DFT XTB

DFT
cluster

DFT
monomers

XTB
cluster

XTB
monomers

(6)

where each bracket corresponds to cluster electronic binding
energy at the level of theory given by the subscripts. Such a Δ-
ML model could be applicable in the funneling configurational
sampling approach commonly used for atmospheric clusters, as
it could identify energetically high-lying structures and thus
reduce the number of calculations at a DFT step. We used the
hyperparameters σ = 1 and λ = 10−4 found by Kubecǩa et al.34

for the KRR model, as these seem to work well for acid−water
and acid−base clusters.

2.2.1. Model Scaling. A disadvantage of KRR is that the
inversion of the kernel matrix scales as N( )3 , where N is the
number of structures. However, for small data sets with less
than ∼105 structures, the pre-factor is quite small, and thus the
training and evaluation procedure scales as N( )2 hindered by
the kernel matrix construction. The matrix construction can be
computationally demanding, and using the “normal” approach
for QML, we were only able to train on ∼30,000 structures in a
reasonable timeframe (∼3 days/48 CPU). Therefore, we
implemented kernel matrix construction per part. Since the
kernel matrix is symmetric, only the upper half of the matrix
has to be calculated, and since the elements in the matrix are
independent of each other, the calculation of the matrix
elements can be split into an arbitrary number of smaller
calculations. With the matrix split on a grid of N-times smaller
matrices (follow Figure 2), the (N2 − N)/2 asymmetric and N
symmetric sub-matrices can be calculated within parallel
independent jobs.

Afterward, the kernel matrix is reconstructed. Nevertheless,
the N( )3 -scaling Cholesky decomposition must still be
performed and becomes the main bottleneck for large
databases. This procedure allowed us to train on databases
with up to 150k structures. The kernel−split procedure is
implemented in JKML (use the -split <int> keyword). If the
model is applied to a smaller data set, the computational times
for model tests/evaluations, which would otherwise scale
similarly to the training, are not demanding and the kernel
matrix split will not be required.

3. RESULTS AND DISCUSSION
3.1. ML Model Validation. To show that the KRR

method with FCHL19 works well for our systems, we did 5-
fold cross-validation of each of the Clusteromics I−V data sets.
We used the Δ-ML model to train on the difference in binding
energies of the GFN1-xTB and r2SCAN-3c methods. Finally,
we predicted the r2SCAN-3c binding energies achieving mean
absolute errors (MAEs) lower than 0.5 kcal/mol even with a
small training database of 125 structures as seen in Figure 3.

The learning curves are almost linearly decreasing in this figure
(note the logarithmic axes), validating the choice of hyper-
parameters and the suitability of the applied Δ-ML model for
these systems. The predictions for Clusteromics III−V have
slightly higher MAEs than the Clusteromics I−II predictions.
The III−V databases contain more compounds, and thus the
chemistry of the database is more diverse, leading to ∼10%
worse results. However, when applying the full data sets very
low errors of ∼0.1 kcal/mol are achieved. These results show
the direct applicability of the Clusteromics I−V data sets for
Δ-ML modeling.

3.2. Expansion of Clusteromics. Kubecǩa et al.34 showed
that if ML models need to extrapolate outside of the training
database such as to larger clusters, the addition of out-of-
equilibrium structures to the training database is needed.
These out-of-equilibrium structures can be generated through
3 main procedures: (1) normal mode sampling,47−50 (2)
extraction from geometry optimization, where the intermediate
structures saved in the quantum chemistry output file during
optimization are used, and (3) using molecular dynamics
(MD) simulations around each/some structure(s) within the
initial database.51,52 The Clusteromics databases are equili-
brium structures at the ωB97X-D/6-31++G(d,p) level of
theory. Here, we examine which method and how many out-
of-equilibrium structures are required to expand the
Clusteromics database. We validate our choice on the
(SA)1(AM/DMA)1 and (SA)2(AM/DMA)2 clusters (the ‘/’

Figure 2. Illustration of kernel matrix being divided N = 4 times
yielding 10 sub-calculations.

Figure 3. Mean absolute error (MAE) for 5-fold cross-validation of
the Clusteromics data sets using increasing training set sizes. The
error bars correspond to the standard deviation of the sample mean.
Note the logarithmic axis.
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sign refers to only AM or only DMA molecules), all within the
Clusteromics I database, giving an equilibrium data set of 106
structures. Further, we define a new test set by generating 20
new distinct out-of-equilibrium configurations for each
equilibrium structure (using MD simulation, see below).
When only equilibrium structures are used as the training
database, the Δ-ML validated on the test set achieves MAEs of
16.5 kcal/mol as seen in Figure 4, which illustrates the need for
out-of-equilibrium structures.

3.2.1. Pre-Equilibrium Extraction Method. From the QC
output files in the Clusteromics data sets, we extracted all of
the intermediate structures and energies from the ωB97X-D/6-
31++G(d,p) geometry optimization. The extraction is limited
to the number of steps during the geometry optimization.
These optimizations typically require from a few to hundred(s)
optimization steps, while the first few steps correspond to the
largest change in geometry. Thus, we take up to the 4 or 8 first
optimization structures, which are essentially out-of-equili-
brium, to enlarge the Clusteromics database. Figure 4 shows
that the Δ-ML MAE drops down to 3.04 or even to 2.44 kcal/
mol when the first 4 or 8 pre-equilibrium structures,
respectively, are also included in the training of the ML
model. The new out-of-equilibrium structures improved our
model, but clearly, its improvement is only limited to a few
structures because there is no/minor gain when similar
structures are added to the training database.

3.2.2. MD Simulation Method. The AM1 and PM3
methods do not accurately describe the interaction for simple
systems such as the (SA)1(AM)1 cluster (see also the results in
Jensen et al.33) and MD simulations with these methods lead
to dissociation within a few nanoseconds for these clusters (see
Figure S1). Hence, we discarded the AM1 and PM3 methods
from further examination.
Figure 5 shows the MD simulation for the (SA)2(DMA)2

cluster. The other (SA)1−2(AM/DMA)1−2 clusters are shown
in Section S5 together with the technical details in Section S3.

The simulations are performed at three levels of theory:
GFN1-xTB, GFN2-xTB, and r2SCAN-3c. However, all single-
point energies are calculated at r2SCAN-3c. The correlations
between the GFNi-xTB and r2SCAN-3c//GFNi-xTB are also
shown in Figure 5b,c. The GFN1-xTB and r2SCAN-3c
trajectories appear to have similar features in terms of a visual
examination of the geometry evolution and the span of the
trajectory energies. The GFN2-xTB method yields an erratic
trajectory and a larger span of energies than the r2SCAN-3c
simulation. Additionally, when inspecting the cluster struc-
tures, the GFN2-xTB clusters are much more tightly bound,
i.e., the equilibrium bond lengths and average cluster radius of
GFN2-xTB geometries significantly differ from the r2SCAN-3c
geometries. The correlation of GFN2-xTB with r2SCAN-3c//
GFN2-xTB is also worse than in the case of GFN1-xTB. The
poor performance of GFN2-xTB for clusters containing sulfur-
based acids is consistent with the benchmark by Jensen et al.33

and is attributed to the decrease in the number of d-functions
for sulfur for the basis set compared to GFN1-xTB. Although
r2SCAN-3c is extremely fast compared to other DFT methods,
using it for MD simulations for all clusters, which contain up to
42 atoms, is still computationally expensive and slow.
Therefore, in this work, we use GFN1-xTB for further MD
simulations, and we define the r2SCAN-3c method as the high
level of theory, as suggested by Jensen et al.33

We performed MD simulations, at the GFN1-xTB level,
around each (SA)1(AM/DMA)1 and (SA)2(AM/DMA)2
equilibrium structure to generate up to 30 out-of-equilibrium
structures for each cluster. For technical details, see Section S4.
Figure 4 also shows the MAEs of the Δ-ML model when the
equilibrium structure training database is expanded with up to
10, 20, and 30 out-of-equilibrium structures from the MD
simulations. Already, the addition of 10 structures leads to an
MAE of 0.75 kcal/mol. Adding more structures lowers the
MAE but also increases the computational time for the ML
training and evaluation (see Section 2.2.1).
Based on the comparison of the expansion methods, we

chose the MD-(10) expansion scheme as a good compromise
between the ML model accuracy and computational time.
Subsequently, all Clusteromics databases were expanded with
up to 10 out-of-equilibrium structures using the MD
simulations at the GFN1-xTB level of theory. The simulations
were run for 2 ps, with a 0.5 fs timestep, and saving the
geometry at 0.2 ps intervals. After the expansion, the full
Clusteromics data set contained ∼250k structures. For all
structures, we calculated the single-point energies at the
GFN1-xTB and r2SCAN-3c levels. We furthermore define the
‘standardized Clusteromics’ term, where all monomers and
homo-/hetero-dimers from the full Clustermics I−V data sets
are added to the individual data set. All of the generated data
sets are freely available in the Atmospheric Cluster DataBase
(ACDB).53

3.3. ML Model Extrapolation. An ML model can easily
fail when tested on structures different from those in the
training data set. In the previous section, we demonstrated that
training on the binding energies of equilibrium configurations
yields large errors when predicting binding energies for out-of-
equilibrium structures. In Figure 6, we show how an ML model
can be tested on its transferability and extrapolation,54 and we
further examine these options in the following sections.

3.3.1. Transferability of Interactions. Even if all tested
clusters contain molecules that are in the training data set, a
specific type of intermolecular interaction might be missing.

Figure 4. Mean absolute error (MAE) of the Δ-ML model for
predicting binding energies of the random out-of-equilibrium
structures of (SA)1(AM/DMA)1 and (SA)2(AM/DMA)2. The
training database is composed of the equilibrium structures and:
nothing else (red), up to 4 and 8 pre-equilibrium structures per
equilibrium structures (green), and using 10, 20, and 30 MD
generated structures per equilibrium structures (orange).
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Here, we train the ML model on the equilibrium and out-of-
equilibrium (SA)0−2(base)0−2 and (SA)0−2(base′)0−2 clusters
and test on the mixed (SA)1−2(base)1(base′)1 equilibrium and
out-of-equilibrium clusters. Figure 7 shows the results for all
base/base′ combinations. The MAEs are below 1 kcal/mol for
all of the systems, and they all have a similar span of errors
(3.1−6.5 kcal/mol), which indicates that there are some
outliers. The systems containing EDA have the largest span of

errors (3.8−6.5 kcal/mol). This is most likely due to EDA
being a too “flexible” molecule with more complex configura-
tional space compared to the other bases (see Figure 1).
Overall, we use 1903−8459 training structures, and the MAEs
are only slightly worse than in Figure 3, even though we also
include out-of-equilibrium structures and extrapolate the ML
model out of the training set. In general, we only tested what
happens if indirect base−base’ interactions are missing in the

Figure 5. (a) Energy evolution of the (SA)2(DMA)2 cluster at r2SCAN-3c//GFN1-xTB (red), r2SCAN-3c//GFN2-xTB (green), and r2SCAN-3c
(orange) level of theory relative to the energy of the initial (t = 0) structure. (b, c) Correlation of the relative energies ΔEt=0

Method calculated with the
GFNi-xTB and r2SCAN-3c//GFNi-xTB methods. PCC = Pearson correlation coefficient, MAE = mean absolute error [kcal/mol], RMSD = root-
mean-squared displacement [kcal/mol].

Figure 6. Different types of ML extrapolations tested in this work, as suggested by Kubecǩa et al.54

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02203
ACS Omega 2023, 8, 25155−25164

25159

https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


training set. However, the MAEs would most likely rise if a
direct SA−base interaction was missing.
We performed a similar test for the acid interactions by

training the ML model on the standardized Clusteromics I
(only SA−base clusters) and standardized Clusteromics II
(only MSA−base clusters) databases. The test is performed on
Clusteromics III, which contains the mixed SA−MSA−base
clusters. Figure 7 shows that we reach a low MAE of 0.3 kcal/
mol for the equilibrium test data sets and 0.5 kcal/mol for the
equilibrium and out-of-equilibrium data sets. Low MAEs are

achieved as the SA−MSA interactions are similar to the SA−
SA interactions because the MSA-methyl group does not play a
significant role in the cluster binding energy. Most of the
outliers outside the main distribution are again EDA-based
clusters, and the ones with the largest error are the (EDA)2-
based clusters. Fortunately, these outliers are all high-energy
conformers, and the model is capable of predicting the
energetically lowest structures, which are the ones sought after
during configurational sampling. In general, the MAE is
approximately only twice as large compared to the test on the

Figure 7. ML model error distribution for electronic binding energy prediction (y-axis) of systems with the indirect base−base’ (x-axis) interaction
missing in the training data set. The right part of the graph shows the same for both equilibrium (eq.) and also nonequilibrium (neq.) clusters with
SA−MSA interaction missing in the training data set. MAE = mean absolute error [kcal/mol], RMSD = root-mean-squared deviation [kcal/mol].

Figure 8. Mean absolute errors (MAEs) of ML modeled binding energies when extrapolating to different types of base molecules.
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full equilibrium data sets shown in Figure 3. This shows that
the model is easily capable of extrapolating the acid
interactions with a low loss in accuracy and that the model
is capable of handling out-of-equilibrium mixed acid clusters.
To show that not accounting for the direct interactions can
lead to larger errors, we trained on out-of-equilibrium and
equilibrium (SA)1−2(DMA)1−2 and (NA)1−2(AM)1−2 clusters
and monomers and predicted on the out-of-equilibrium and
equilibrium (SA)1−2(AM)1−2 and (NA)1−2(DMA)1−2 clusters
separately. This yielded MAEs of 1.1 kcal/mol for the SA-AM
system and 3 kcal/mol for the NA-DMA system, both of which
are several times larger than the errors given in Figure 3.

3.3.2. Transferability to Other Molecules. The ML model
trains and predicts the sum of atomic energy contributions to
the overall cluster binding energy (see eq 1). Here, we examine
the model transferability to systems with the same type of
atoms but with different types of molecules. Although the
acid−base interaction is in nature ‘similar,’ the binding energy
differs, and this might give rise to high errors. Using the
databases expanded by out-of-equilibrium structures, we
trained our ML model on the (SA)0−2(base)0−2 clusters but
also include all monomers and all base dimer clusters and
predicted the binding energies of the other (SA)1−2(base’)1−2
clusters. Figure 8 shows five graphs, where each is for a
different base used in the training set and the MAEs of the
modeled binding energies of other systems (see Figure S9 for
the span of energies). Note that the inclusion of monomers in
the training data set lowers the MAEs but essentially does not
have an effect on the span of energies. The extrapolation from
the SA−DMA clusters to the other SA−base clusters might be
viable as the MAEs are the lowest with values below 2 kcal/
mol. However, the span of errors ranges from 10 kcal/mol up
to 25 kcal/mol. The rest of the systems are even worse.
Unsurprisingly, the extrapolation from the weak base AM,
which does not contain any methyl group, to the TMA
monomer leads to the largest errors. For a larger system size
test, we trained on the standardized Clusteromics I data set

with all MA-containing clusters removed (except the monomer
and homodimer) and predicted on the removed MA clusters.
This test yielded a low MAE of 0.52 kcal/mol, showing that
significantly lower errors can be reached if several similar
molecules are added; however, the error is still a few times
greater than if the MA-containing clusters were included, as
seen in Figure 3. Based on these results, we do not recommend
prediction on molecules outside the training set, as the models
could yield large errors.

3.3.3. Extrapolation to Larger Cluster Sizes. Kubecǩa et
al.34 previously presented that training on equilibrium and out-
of-equilibrium (SA)0−2(W)0−5 clusters allowed prediction on
larger (SA)4−7(W)0−10 clusters. To test the capabilities of the
model to extrapolate to larger cluster sizes, we trained on the
standardized Clusteromics I set (i.e., (SA)0−2(base)0−2, where
base refers to all possible base combinations) and the predicted
binding energies of the 5119 equilibrium (SA)3(base)3 clusters
from Xie et al.55 and the 315 equilibrium (SA)4(base)3 and
(SA)4(base)4 clusters from Kubecǩa et al.44

Figure 9 shows the ML binding energy errors for the
(SA)3(base)3 and (SA)4(base)3,4 clusters. The prediction on
(SA)3(base)3 clusters gives a low MAE of 0.8 kcal/mol with an
acceptable span of errors. We found that the configurations
with errors above 5 kcal/mol are high-energy conformers, and
thus they are less relevant. However, extrapolation to larger
(SA)4(base)3,4 clusters gives an MAE of 3.3 kcal/mol and
errors up to 23 kcal/mol. Furthermore, the distribution shows
a tail extending upward, showing that there is a type of
interaction/structure the model cannot describe. By inspection
of the structures with the highest error, we find that most of
the structures contain EDA, and in several structures, EDA is
double protonated and SA appears completely deprotonated
(i.e., forming a sulfate ion). Furthermore, some of the
(SA)4(base)3,4 clusters also contain direct EDA−EDA
interactions, which are not described in the smaller
Clusteromics I data set. This suggests that the model is not
capable of extrapolating beyond one additional acid−base pair

Figure 9. Error distribution for ML modeling of binding energies for large cluster sizes.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02203
ACS Omega 2023, 8, 25155−25164

25161

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c02203/suppl_file/ao3c02203_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02203?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


for mixed-base clusters and that an iterative procedure where
the clusters with one additional acid−base pair are predicted
and calculated, expanded with MD, and included in the
database might be needed, as suggested by Elm.56 Unfortu-
nately, such a procedure will quickly lead to large databases,
which are slow or even impossible to train and predict with.
Furthermore, testing such a procedure, though without
expanding the (SA)3(base)3 with MD, barely decreases the
span, as seen in Figure 9; however, it manages to almost halve
the MAE from 3.2 to 1.8 kcal/mol. Another approach is to
include only monomers/dimers and structures with one less
acid−base pair below the current size without expanding with
MD. To test this approach, we trained on all of the monomers/
dimers and the (SA)3(base)3 equilibrium structures and
predicted on the equilibrium (SA)4(base)3,4 clusters. This
step-wise approach leads to a low MAE of 0.5 kcal/mol with
the maximal error of 2 kcal/mol (see Figure 9). Such an
approach would work as long as the equilibrium structures
from the smaller sizes do not differ drastically from the target
structures. In addition, for application in cluster configurational
sampling, expansion with nonequilibrium structures will be
required where pre-equilibrium extraction can be utilized to
minimize the number of calculations necessary.

3.4. ML-Based Configurational Sampling. Based on the
findings in the previous sections, we suggest inserting an ML
step in the funneling workflow as

ABCluster GFN1 xTB filter
ML(GFN1 xTB to DFT) DFT opt

This case is only applicable when the DFT method is slow or
there is no available method with well-correlated energies and
low computation cost. Based on Section 3.3.3, we suggest the
iterative process illustrated in Figure 10, where the training

data are structures with one acid−base pair less (SA)n(base)n,
monomers, and dimers and prediction is on (SA)n+1(base)n+1.
The disadvantage of this method is the necessity to use the
building-up approach for the clusters, i.e., sequentially building
from smaller to larger clusters. Such an approach would,
however, have a lower ML error, and computation-wise, the
same amount of resources would be used. We expect that for
larger clusters, the iterative step can go beyond one additional
acid−base pair as the clusters become more similar at larger
sizes.

4. CONCLUSIONS
We have created a large database of ∼250k atmospheric
relevant structures for machine learning purposes. The

database is based on the Clusteromics I−V (acid)0−2(base)0−2
equilibrium ωB97X-D/6-31++G(d,p) structures containing
acids such as sulfuric acid, methanesulfonic acid, formic acid,
and nitric acid, and with the bases ammonia, methylamine,
dimethylamine, trimethylamine, and ethylenediamine. The
equilibrium data was expanded with up to 10 out-of-
equilibrium structures per equilibrium structure using GFN1-
xTB MD trajectories, and all structures had their single-point
energies calculated with r2SCAN-3c. By testing the machine
learning model kernel ridge regression with the FCHL19
representations, we find that the model can extrapolate to
larger cluster sizes of one additional acid−base pair and
transfer acid−acid and base−base interactions with mean
absolute errors below 1 kcal/mol. Kernel ridge regression
cannot extrapolate between different molecules even if they
contain the same molecules as such an extrapolation yields a
span of errors of ∼10−25 kcal/mol. We find that by
parallelizing the kernel matrix construction, we can train on
databases with up to ∼150k structures. We suggest introducing
an iterative Δ-machine learning step in configurational
sampling trained on the difference between the DFT level
and the semiempirical level. The model should be trained on
the monomers/dimers and structures with one less acid−base
pair relative to the target size to yield the lowest mean absolute
error.
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(54) Kubecǩa, J.; Knattrup, Y.; Engsvang, M.; Jensen, A. B.; Ayoubi,
D.; Wu, H.; Christiansen, O.; Elm, J. Current and Future Machine
Learning Approaches for Modelling Atmospheric Cluster Formation.
Nat. Comput. Sci. 2023, 3, 495−503.
(55) Xie, H. B.; Elm, J. Tri-Base Synergy in Sulfuric Acid-Base
Clusters. Atmosphere 2021, 12, No. 1260.
(56) Elm, J. Toward a Holistic Understanding of the Formation and
Growth of Atmospheric Molecular Clusters: A Quantum Machine
Learning Perspective. J. Phys. Chem. A 2021, 125, 895−902.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02203
ACS Omega 2023, 8, 25155−25164

25164

https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540100209
https://doi.org/10.1002/jcc.540100209
https://doi.org/10.1021/acs.jctc.7b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.1606
https://doi.org/10.1002/wcms.1606
https://doi.org/10.1063/1.5126701
https://doi.org/10.1063/1.5126701
https://doi.org/10.1021/acs.jpca.3c00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/qmlcode/qml
https://github.com/qmlcode/qml
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1038/sdata.2017.193
https://doi.org/10.1038/sdata.2017.193
https://doi.org/10.1038/sdata.2017.193
https://doi.org/10.1038/s41597-020-0473-z
https://doi.org/10.1038/s41597-020-0473-z
https://doi.org/10.1038/s41597-020-0473-z
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.abg9551
https://doi.org/10.1126/sciadv.abg9551
https://doi.org/10.1126/sciadv.abg9551
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1021/acsomega.9b00860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b00860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s43588-023-00435-0
https://doi.org/10.1038/s43588-023-00435-0
https://doi.org/10.3390/atmos12101260
https://doi.org/10.3390/atmos12101260
https://doi.org/10.1021/acs.jpca.0c09762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c09762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c09762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

