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Abstract: We introduce a model of interacting singularities of Navier–Stokes equations, named pinçons.
They follow non-equilibrium dynamics, obtained by the condition that the velocity field around these
singularities obeys locally Navier–Stokes equations. This model can be seen as a generalization of
the vorton model of Novikov that was derived for the Euler equations. When immersed in a regular
field, the pinçons are further transported and sheared by the regular field, while applying a stress
onto the regular field that becomes dominant at a scale that is smaller than the Kolmogorov length.
We apply this model to compute the motion of a pair of pinçons. A pinçon dipole is intrinsically
repelling and the pinçons generically run away from each other in the early stage of their interaction.
At a late time, the dissipation takes over, and the dipole dies over a viscous time scale. In the presence
of a stochastic forcing, the dipole tends to orientate itself so that its components are perpendicular
to their separation, and it can then follow during a transient time a near out-of-equilibrium state,
with forcing balancing dissipation. In the general case where the pinçons have arbitrary intensity
and orientation, we observe three generic dynamics in the early stage: one collapse with infinite
dissipation, and two expansion modes, the dipolar anti-aligned runaway and an anisotropic aligned
runaway. The collapse of a pair of pinçons follows several characteristics of the reconnection between
two vortex rings, including the scaling of the distance between the two components, following Leray
scaling

√
tc − t.

Keywords: turbulence; singularity; non-equilibrium dynamics

1. Introduction

Snapshots of dissipation or enstrophy in turbulent fluids show us that small scales
are intermittent, localized and irregular. Mathematical theorems constrain the degree of
irregularity of such structures that are genuine singularities of the incompressible Navier–
Stokes provided their spatial L3-norm is unbounded (for a review of various regularity
criteria, see [1]). On the other hand, dissipation laws of turbulent flows suggest that they
may be at most Hölder continuous with h < 1/3 [2] and of diverging vorticity in the
inviscid limit. This observation has motivated several theoretical construction of turbulent
Navier–Stokes small scale structures or weak solutions of Euler equations, using singular or
quasi-singular entities based e.g., on atomic like structures [3], Beltrami flows [4], Mikado
flows [5], spirals [6,7], vortex filaments [8], or Lagrangian particles [9].

These constructions have fueled a long-standing analytical framework of turbulence,
allowing the modeling of proliferating and numerically greedy small scales by a count-
able (and hopefully numerically reasonable) number of degrees of freedom, provided by
characteristics of the basic entities.

A good example of the possibilities offered by such a singular decomposition is
provided by the 3D vorton description of Novikov [10]. In this model, the vorticity field is
decomposed into N discretized singularities infinitely localized (via a δ function) at points
rα, (α = 1, . . . , N), each characterized by a vector γα providing the intensity and the axis
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of rotation of motions around such singularities. The singularities are not fixed but move
under the action of the velocity field and velocity strain induced by the other singularities,
so as to respect conservation of circulation. Around the singularity, the velocity field
is not of divergence free, so that the vortons are akin to hydrodynamical monopoles
interacting at long-range through a potential decaying like 1/r2. The model was adapted
to enable numerical simulations of interacting vorticity rings or filaments by considering
a divergence-free generalization of the vortons [11]. Quite remarkably, the Vorton model
results in vortex reconnection, even though no viscosity is introduced in the numerical
scheme [12]. Whether the effective viscosity is due to intense vortex stretching [13], or to
properties of vortex alignment during reconnection [12], is still debated.

From a mathematical point of view, the vorton model cannot be considered as a fully
satisfying description of singularities of Navier–Stokes for two reasons. First, the vortons
do not constitute exact weak solutions of the 3D Euler or Navier–Stokes equations [14–16],
which somehow makes them less attractive than point vortices that are weak solutions of
2D Euler equations [14]. Second, vortons do not respect the scaling invariance of Navier–
Stokes, which imposes that the velocity field should scale like 1/r. Indeed, through the
Biot–Savart law, we see that a Dirac vortex field induces a velocity scaling like 1/r2, where
r is the distance to singularity.

Motivated by this observation, we introduce in this paper a modification of the vorton
model that is built upon weak solutions of Navier–Stokes equations, and which respects
scale invariance of the Navier–Stokes equations, and allows simple dynamical description
of the evolution of the basic entities, hereafter named pinçons.

After useful generalities (Section 2.1), we introduce the pinçon model (Section 2.2)
and describe their properties in Section 2.3. We introduce the non-equilibrium dynamics
of pinçons in Sections 2.4 and 2.5. We then solve the equations in Section 3, starting with
the special case of a dipole in Sections 3.2 and 3.3, and concluding with the general case in
Section 3.4. A discussion follows in Section 4.

2. Pinçon Model
2.1. Generalities and Ideas behind the Pinçon Model

Consider a velocity field U obeying the Navier–Stokes equations. Then, it is well
known that the coarse-grained field U` obeys the Navier–Stokes equations forced by the
“turbulent force” due to the Reynolds stress∇ ·

(
U`U` −UU`

)
. Numerical and experimen-

tal observations also show that, as ` → 0, this turbulent force becomes more and more
intermittent, made of isolated patches of finite values, in a sea of zero values. The size
of the isolated patches shrinks with decaying `. In our experiment, we have observed
that such patches do persist even when ` is of the order of the Kolmogorov scale ηK,
and have correlated such patches with the existence of nonzero local energy transfers at
such location.

This means that numerical simulations of Navier–Stokes must have a resolution much
smaller than ηK in order to fully resolve not only velocity gradients [17] but also local
energy transfers and dissipation [18]. The numerical price to pay is high, especially at large
Reynolds number, and a lot of computing time is wasted in the tracking of increasingly
thinner regions of space.

To avoid this, a natural idea is to split the fluid in two component: one, continuous,
representing the coarse-grained fluid U`, for a scale ` = `c to be determined later, and one,
discrete, representing the isolated patches of unresolved fluid that are fed by the turbulent
force, then carry and dissipate the corresponding energy with dynamics to be determined
later. In this view, the small scales must therefore be represented by modes that are
representative of the small scale behaviour of Navier–Stokes. Given that the aim is to be able
to describe the whole range of scales ` < `c, it is natural to consider self-similar solutions
of Navier–Stokes, i.e., solutions that are invariant by the (Leray) rescaling U(x, t) →
λ−1U

(
x/λ, t/λ2) for any λ [19]. Moreover, to be able to describe the small scales by modes
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dynamics, we consider self-similar solutions that do not explicitly depend on time, so
that all the dynamics will be contained in the time variation of the modes’ parameters.
Corresponding solutions then obey

∀λ 6= 0, U(x) = λ−1U(x/λ), (1)

corresponding to homogeneous Navier–Stokes solutions of degree −1.
As shown by Sverak [20], Theorem 1, the only non-trivial solutions that are smooth

in R\{0} are axisymmetric, and correspond to Landau solutions, described in Section 2.2,
Equation (5). These solutions obey the stationary Navier–Stokes equations everywhere
except at the origin. Specifically, we have in some distributional sense:

∇ ·U = 0, (2)

(U · ∇)U +
∇p
ρ
− ν∆U = ν2δ(x)F, (3)

where F is a vector of magnitude F and given orientation e, providing the axis of symmetry.
Thus, there is not much choice in the building of small scales modes. Here is how they

are built, using Landau solutions.

2.2. Definition of Pinçon

We introduce the pinçons as individual entities labeled by α, characterized by their
position xα(t), and a non-dimensional vector γα(t), with γα = ‖γα‖ < 1 that produce lo-
cally an axisymmetric velocity field around their axis of direction γα given by (pα, vα)(x) ≡
(p(x− xα, γα), U(x− xα, γα)) with U and p given by:

U(x, γ) = 2ν

(
1
φ

(
γ− x
‖x‖

)
+ (1− γ2)

x
φ2

)
, (4)

p(x, γ) = −4ρν2
(

1
‖x‖φ +

1− γ2

φ2

)
. (5)

where pα is the associated pressure, φ(x, γ) = ‖x‖ − γ · x and we define φα = φ(x− xα, γα).
A few useful properties of φ are put in Appendix A. In particular, the velocity field given
by Equation (4) is homogeneous of degree −1 around xα, and axisymmetric around the
direction of γα. Plots of velocity and vorticity around a pinçon are displayed in Figure 1.
Close to the singularity, there is a neck pinch of the velocity streamlines, hence their name
pinçon. As first shown by Landau [21] (see also [20,22–25]), the velocity fields vα are
solutions of Equations (2) and (3) with

F = F(γα)
γα

γα
,

F(γ) = 4π

[
4
γ
− 2

γ2 ln
(

1 + γ

1− γ

)
+

16
3

γ

1− γ2

]
, (6)

γα = ‖γα‖.

We refer the reader to [25] for a rigorous derivation of such result. The function F(γ)
is shown in Figure 2a. It starts from 0 at γ = 0, corresponding to a state of rest (U = p = 0),
with a linear behaviour F(γ) = 16πγ near the origin, and diverges at γ = 1. In the latter
case, the velocity field is diverging on a whole semi-axis defined by γ · x = ‖x‖, such that
φ = 0. Hence, γ characterizes the intensity of the velocity field of a pinçon.
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(a) ‖U‖r0/ν

xγ

(b) ‖ω‖r2
0/ν

xγ

Figure 1. Streamlines (white curves) of velocity field around a pinçon of intensity γ = 0.6 in a plane
that contains the axis of the pinçon γ = γ ez, which is represented by the black arrow. The field is
axisymmetric around that axis. The color represents the norm of rescaled velocity (a) and vorticity
(b) fields, where ν is the kinematic viscosity and r0 some insignificant length scale. The coordinates
x, y, z are also nondimensionalized by r0. There is no azimuthal component of velocity, while the
vorticity is purely azimuthal with respect to the axis γ.

(a) (b)

Figure 2. Parameters of a pinçon as a function of its intensity γ. (a) intensity of the force produced by
the pinçon at its location. The black dashed line has equation y = 16πγ; (b) generalized momentum
of a pinçon. The black dashed line has equation y = 8γ/3.

2.3. Properties of Pinçons
2.3.1. Scaling under Coarse-Graining

The velocity field and all its derivatives diverge at the location of the pinçon so they
are undefined at such point. Its behavior may, however, be studied near the origin by
introducing a suitable test function ψ that is spherically symmetric around x = 0, positive
of unit integral, C∞ and that decays fast at infinity, considering the regularizations

vα
`(x) =

∫
ψ

(
x− y
`

)
vα(y)

dy
`3 ,

where ` is a small parameter. In the limit ` → 0, the function ψ
( x
`

)
is peaked around the

origin so that, as long as x is far from xα, we can estimate: vα
`(x) ≈ vα(x). Consider now

the situation where x = xα. We have then:

vα
`(xα) =

∫
ψ

(
xα − y

`

)
U(y− xα, γα)

dy
`3 .
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Applying finally the change of variable y− xα = `z, using homogeneity properties of U
and spherical symmetry of ψ, we have :

vα
`(xα) =

1
`

∫
ψ(z)U(z, γα)dz,

=
Cψ

`
〈vα〉B1 =

`→0
O(`−1), (7)

where Cψ = 4π
∫

rψ(r)dr and 〈vα〉B1 is the average over the sphere of radius unity. Via
Euler theorem, ∇vα is homogeneous of order −2. By the same reasoning, we then find that

∇vα
`
(xα) =

`→0
O(`−2). The same reasoning cannot be applied to∇2vα because the integral∫

ψ(r)dr/r does not necessarily converge at the origin. However, the following property

holds: (vα · ∇)vα
`
+ ∇pα

`

ρ − ν∆vα
` = ν2

`3 ψ
( x−xα

`

)
F, which is O(`−3).

2.3.2. Potential Vector, Vorticity and Helicity

Using vector calculus identities, one can check that the velocity field around a pinçon
derives from the vector potential:

Aα(x) = 2ν(x− xα)×∇ ln(φα),

= 2ν
γα × (x− xα)

φα
, (8)

The vorticity field produced locally around a pinçon can be formally defined by taking
the curl of vα. The vorticity is parallel to the potential vector and reads:

ωα(x) = 4ν(1− γ2)
γα × (x− xα)

φ3
α

, (9)

The vorticity field is thus purely azimuthal with respect to the pinçon axis γ, and by
axisymmetry, the vorticity lines form rings around the axis. We also notice that the velocity
field produced by a pinçon is of zero helicity.

2.3.3. Generalized Momentum and Coarse-Grained Vorticity

We define a generalized momentum Πα for the pinçon as an average of the velocity
field over a sphere of unit radius (see Appendix B for its computation):

Πα ≡ 〈vα〉B1 = νG(γα)
γα

γα
,

G(γ) =
2

γ2

[
2γ− (1− γ2) ln

(
1 + γ

1− γ

)]
. (10)

By definition, Πα provides an estimate of the coarse-grained velocity field at the pinçon
position, via vα

`(xα) = CψΠα/`. Note that Πα points in the direction of γα. For 0 ≤ γ < 1,
G(γ) varies smoothly from 0 to 4, starting from a linear behavior G(γ) = 8γ/3 at the origin
and ending with a vertical tangent at γ = 1 (see Figure 2b). Therefore, the function G(γ) is
bijective, and there is a one-to-one correspondence between G and γ and Π and γ.

Due to the axisymmetry, we have that ω`(xα) = 0, so that the coarse-grained pinçon is
vorticity free near its location.

2.4. Interaction of a Pinçon with a Regular Field

There are several reasons why the notion of a “single” pinçon does not make a physi-
cal sense:

(i) the pinçon is dissipative, and requires a force to maintain it; a surrounding fluid can
provide the necessary forcing;
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(ii) the pinçon lives in an infinite universe and does not fulfill the boundary conditions
of a realistic system. To be able to use a pinçon in confined systems, we need to add
an external velocity field that will take care of the boundary conditions;

(iii) if we accept that the pinçon describes the very intermittent part of the energy transfer
that cannot be resolved, we must also accept the possibility of coexistence and interac-
tion of several pinçons. If we assume that the pinçons are distinct and that they are
regular everywhere except at their position, this amounts again to considering the
interaction of a pinçon with a regular field.

Given the nonlinear nature of the Navier–Stokes equations, we cannot superpose two
solutions of Navier–Stokes equations (a pinçon and a regular field) to get a solution of
Navier–Stokes equations. Instead, we will now assume that the pinçon has a dynamics and
find such dynamics by imposing that the superposition of the pinçon and of the regular
field locally obeys the Navier–Stokes equations. Specifically, we consider a solution of
the shape vα = U(x− xα(t), γα(t)) and F = F(γ(t))e(t), where F is a prescribed function,
and xα, γ = γe, two vectors that parametrize the field vα as a function of t. We then
introduce v = vR + vα, where vR is a velocity field that is regular at the origin, and we
impose that v is a solution of Navier–Stokes locally around the singularity at xα, i.e., that v
is a solution of

∂tv`(xα) + (v · ∇)v`
(xα) +

∇p`(xα)

ρ
− ν∆v`

(xα) = 0. (11)

Decomposing the velocity field into its regular and irregular part, we see that
Equation (11) generates terms of various orders in ` that scale according to Table 1. Note that,
since vR is a regular field, its coarse-grained version scales like O(1), as well as its derivatives.

Furthermore, we introduce the quantity τ` = vR
`vR

`−vRvR
`, which is the Reynolds stress

contribution due to filtering. This term has a different scaling. Indeed,∇ · τ` = O(δv2
`/`) [26],

where δv` = vR(x + `)− vR (x). Since vR is regular, it can be expanded as vR(x + `)−
vR(x) = `∇vR, so that ∇ · τ` ∼ `(∇vR)

2 = O(`).
Collecting the different term, we find that the l.h.s. of Equation (11) is the sum of the

following orders:

O(`) : −∇ · τ` (12)

O(1) : ∂tvR
` +∇ · vR

`vR
` +
∇pR

`

ρ
− ν∆vR

` (13)

O(1/`) : γ̇∇γvα
` + (vα · ∇)vR

`
(14)

O(1/`2) : −ẋα∇xvα
` + (vR · ∇)vα

`
(15)

O(1/`3) : (vα · ∇)vα
`
+
∇pα

`

ρ
− ν∆vα

` (16)

Table 1. Order of the various terms appearing in Equation (11) as a function of the filter length ` in
the limit x→ xα.

vα γ̇α∂γ(vα) ẋα∂xvα (vα · ∇)vR (vR · ∇)vα ∇ · vR
`vR

`

1/` 1/` 1/`2 1/` 1/`2 1

Cancelling the O(1/`2) provides a first condition as:

ẋα∇xvα
` = (vR · ∇)vα

`
. (17)

Due to the regularity of vR, we can write (vR · ∇)vα
`
= vR(xα) · ∇vα

`
for small enough `.

Condition (17) is then satisfied provided:
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ẋα = vR(xα). (18)

Physically, this means that the singularity point is advected by the regular field surrounding
it. Cancelling the O(1/`) provides a second condition, as:

γ̇∇γvα
`
= −(vα · ∇)vR

`
. (19)

Due to the regularity of vR, we can write (vα · ∇)vR
`
= (vα

` · ∇)vR(xα). We then obtain
the equation:

γ̇∇γvα
`
= −(vα

` · ∇)vR. (20)

Physically, this means that the force axis and its direction are moved around by the shear of
the regular field at the location of the singularity.

Cancelling the O(1) term provides the condition that vR
` is a solution of the Navier–

Stokes equation. Indeed, this is the idea behind the two fluid model, to allow for the scales
above the coarse-graining to be described by a solution of the Navier–Stokes equation.

We are then left with the smallest order O(`2) and the highest order term O(`−3),
which cannot be balanced in general. For the system to have a physical solution, we then
impose a “bootstrap condition”, namely that the two terms must be of the same order of
magnitude, thereby fixing the coarse-graining scale `c via ν2/`3

c ∼ `c(∇vR)
2. We thus find

`c = (ν3/εr)1/4, with εr = ν(∇vR)
2 being the dissipation of the regular field. Therefore,

the coarse-graining scale imposed by the bootstrap condition is precisely the Kolmogorov
scale `c = η.

Physically, this condition can be understood as follows: the singularity is dissipative,
and to maintain it, one must apply a force. Such force is provided by the regular field,
through the term ∇ · τ`, which keeps track of the fraction of the velocity field that is
sent to the subgrid scale, and which is taken into account by the pinçon. Conversely,
the pinçon applies an extra turbulent stress onto the regular field that extends around it in
a ball of radius of the order of the Kolmogorov scale. To keep a precise account of these
effects, we thus split the Reynolds stress and the pinçon force into a contribution at xα and
a contribution around that location, and share the contribution among the pinçon, and the
regular field.

Taking into account the fact that vR
η ≈ vR, vα

η = CψΠα/η and γ̇∇γvα
η ≈ CψΠ̇α/η,

the following system of equations to describe the coupling between the pinçon and the
regular field is obtained:

for the regular field:

∂tvR
η(x) + (vR

η · ∇)vR
η(x) + ∇pR

η

ρ (x)− ν∆vR
η(x)

= ∇ · τη(x)− ν2

η3 ψ
(

x−xα
η

)
Fα;

(21)

for the pinçon:

ẋα = vR
η(xα),

Π̇α = −(Πα · ∇)vR
η(xα) +

η

Cψ
∇ · τη(xα)−

ν2ψ(0)
Cψη2 Fα. (22)

These equations describe a two-fluid approach of turbulence, coupling a coarse-
grained field at the Kolmogorov scale, and the pinçon with the Reynolds stress providing
the necessary driving force to create pinçons. The latter are entities living below the
Kolmogorov scale that are advected and sheared by the coarse-grained fluid, and that exert
a forcing on the coarse-grained field which results in a dissipation of energy. To conclude
our two-fluid model, we must prescribe the interactions between pinçons, in a way that is
compatible with the Navier–Stokes equations.
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2.5. Interactions of Pinçons

An ensemble of N pinçons, α = 1, . . . , N produces a velocity field v(x, t):

v(x, t) = ∑
α

vα(x, t). (23)

Around a pinçon α, the ensemble of other pinçons produces a regular field vR =

∑β 6=α vβ(xα). Motivated by such observation, we define the interactions of the pinçons via
the following set of 2N differential equations:

ẋα = ∑
β 6=α

vβ(xα, t), (24)

Π̇α = −(Πα · ∇xα)

(
∑

β 6=α

vβ(xα, t)
)
− ν2ψ(0)

Cψη2 Fα +
Eα

Cψ
χ, (25)

where Eα = U2
α describes the local energy of the large scale regular field that provides

a stochastic forcing χ via the (random) Reynolds stress contribution. In the sequel, we
assume that χ is isotropic and shortly correlated over a Kolmogorov time scale, so that
〈χi(t)χj(t′)〉 = δ(t− t′)δij. Note that Equation (25) is a definition that leaves aside many
conditions that may have to be satisfied for the model to be an exact representation of the
small scales of Navier–Stokes flows. For example, this model is more likely to be valid as the
dilute limit is achieved, so that the pinçons are sufficiently apart from each other for them
to be considered as point-like particles. In addition, no distinction is made between close
and distant interactions, while in the former case, diverging velocities and correlations may
impede our possibility to consider that the field generated by the external fields is smooth

enough so that the approximation (vR · ∇)vα
`
= vR(xα) · ∇vα

`
is valid for small enough `.

Therefore, even if individually each pinçon is a weak solution of Navier–Stokes equations,
the collection of N pinçon is not an exact weak solution of Navier–Stokes equations.

In some sense anyway, the equations of motions of the pinçons correspond to the
equations that are imposed by the structure of the Navier–Stokes equations and the re-
quirement that the local velocity field induced by each pinçon should obey such equations.
Equations (24) and (25) can therefore be seen as the equivalent of the motion of poles or
zeros of partial differential equations that have been computed, starting from Kruskal [27]
for the KdV equations (see [28,29] for a review). The motions are furthermore constrained
by the condition that they stay with the unit hypersphere such that ‖γα‖ < 1.

The pinçons are characterized by an interaction energy:

E =
Cψ

η ∑
β 6=α

Πα · vβ(xα, t). (26)

Due to the presence of dissipation and forcing Fα and χ, this interaction energy is not
conserved in general. However, there may exist situations where dissipation and forcing
balance statistically, so that the system reaches an out-of-equilibrium steady state.

2.6. Weak Pinçon Limit

The equations of motions (24) and (25) take a simple expression, in the “weak pinçon”
limit, where the intensity of the pinçons is very small, γα � 1 for any α. In this case,
Πα = 8νγα/3, and one can develop φ−1

αβ = (1 + γβ · rαβ/‖rαβ‖). The equations of motions
under such approximations are:
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ẋα = 2ν ∑
β 6=α

[
γβ

‖rαβ‖
+
(
γβ · rαβ

) rαβ

‖rαβ‖3

]
, (27)

γ̇α = 2ν ∑
β 6=α

[
−(γα · γβ)

rαβ

‖rαβ‖3 + 3 (γα · rαβ)(γβ · rαβ)
rαβ

||rαβ||5
(28)

− γα
γβ · rαβ

‖rαβ‖3 + γβ

γα · rαβ

‖rαβ‖3

]
− 6πνψ(0)

Cψη2 γα +
3Eα

8Cψν
χ.

These equations of motions are reminiscent of the equations of motions of the vortons (see
Equation (A8) in Appendix D), with vectorial products being replaced by a scalar product
and additional terms appearing. However, the motion and intensities of the pinçons are
driven by forces decaying, respectively, like 1/r and 1/r2, rather than respectively 1/r2

and 1/r3 for the vortons. Moreover, the pinçons are subject to a friction proportional to
the viscosity.

The interaction energy in this case is:

E =
16Cψν2

3η ∑
β 6=α

[
γα · γβ

‖rαβ‖
+

(
γα · rαβ

)(
γβ · rαβ

)
‖rαβ‖3

]
, (29)

which is the classical self interaction energy of pair of singularities [13].

3. Dynamics of a Pair of Pinçons
3.1. Interest of Considering a Pair of Pinçons

Previous experimental [30,31] and numerical investigations [32] about the location
of the structures with extreme local energy transfer showed that they are located near
interactions (possibly reconnection) of Burgers vortices. Previous and recent high-resolution
numerical simulations of reconnection of anti-parallel vorticity filaments [33,34] showed
that the process is associated with the formation of a local cusp over each filament that could
possibly lead to a singular behaviour [35]. This possibility was confirmed by a detailed
study of the interaction of two Burgers vortices conducted by [36–40] using the Biot–
Savart approximation. They showed that the interaction indeed leads to a cusp formation
on the vortex line, with very large, possibly diverging velocities at the tip of the cusp,
with orientation along the bisector of the angle of the cusp. The reconnection was also
found to be associated with a depletion of the helicity that eventually reaches zero at the
reconnection [36]. In this picture, the associated pinçons created by a coarse-graining at the
Kolmogorov scale would then be located at the tip of each cusp, with spins in the direction
of the bisector of the cusps (see Figure 3a). This shows the interest of studying more closely
the dynamics of a pair of pinçons and see how it compares with known features of the
reconnection. This is the aim of the present section. In all the sequel, we renormalize
the length by r0, the distance between the two pinçons at time t = 0 and the time by the
associated viscous time τν = r2

0/ν. We first start with the simplest case, where the pair
constitutes a dipole.
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Figure 3. (a) Schematic geometry of pinçons creation at reconnection; (b) geometry of the dipole: two
pinçons located at xα and xβ, and such that initially γα + γβ = 0. By convention, the angle θ is the
angle between γα and r = xα − xβ. The (a) is adapted from Figure 3 of [34].

3.2. Dynamics of a Dipole of Pinçons
3.2.1. Equations

Let us consider the dynamics of a dipole, sketched in Figure 3b, made up of two
pinçons located at xα and xβ, and such that initially γα + γβ = 0 and xα − xβ = r0r.

We have then vβ(xα) = −vα(xβ) ≡ νv(r)/r0 and Fα + Fβ = 0. Using the aforemen-
tioned non-dimensionalization, we then get the equation of motion:

ẋα =
ν

r0
v,

ẋβ = − ν

r0
v,

Π̇α = Πα∇rV − νψ(0)
Cψ

(
r0

η

)2
Fα +

kTαr2
0

Cψν
χ, (30)

Π̇β = −Πβ∇rV − νψ(0)
Cψ

(
r0

η

)2
Fβ +

kTβr2
0

Cψν
χ.

Therefore, the center of mass of the dipole xα + xβ does not move, while the mean dipole
strength (Πα + Πβ)/2 obeys:

Π̇α + Π̇β =
(Eα + Eβ)r2

0
2Cψν

χ. (31)

The forcing induces fluctuations proportional to the mean local energy (Eα + Eβ)/2 that
destroy the dipole geometry over a viscous time scale. It therefore only makes sense to
study the dipole case in the low temperature limit where (Eα + Eβ)/2→ 0.

3.2.2. Results at Zero Temperature

Let us first investigate the dynamics in the zero temperature Eα + Eβ = 0. In this
case, the dipole remains exactly a dipole at all times, and we have Πα = −Πβ ≡ νΠ,
Fα = −Fβ ≡ F and γα = − γβ ≡ γ. The dipole dynamics of the quantities characterizing
the dipole, namely r and γ (or equivalently Π), can be obtained by taking the difference of
the first two and the last two equations of Equation (30) to obtain:
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ṙ = 4
(
−γ + r/r

rφ∗
+ (1− γ2)

r
r2φ2∗

)
, (32)

Π̇ =
2Π

r3φ3∗
A(γ, θ) r− ψ(0)

Cψ

(
r0

η

)2
F, (33)

where

A(γ, θ) = γ(1− 3 cos2(θ)− 3γ cos(θ)− γ cos3(θ)− 2γ2) (34)

where r = ‖r‖, cos(θ) = (γ · r)/(rγ), φ∗ = 1 + γ cos(θ) and Π = ‖Π‖ = G(γ).
Note that, from these expressions, the evolution of r and Π occurs in the plane gener-

ated by the two vectors r and γ. Thus, there remain only three independent quantities to
determine the dipole axis and its orientation, namely r, θ and γ. The evolution of the first
two quantities can be simply derived by projecting Equation (32) on er and eθ , while the
last quantity can be obtained by taking the scalar product of Equation (33) with Π to get
an evolution for ‖Π‖2, which leads to γ through γ = G−1(‖Π‖). One thus obtains after
straightforward simplifications:

ṙ =
4
r

(
1− γ2

φ2∗
− 1
)

, (35)

rθ̇ = 4
γ sin θ

rφ∗
, (36)

Π̇2 = 4
Π2

r2 A(γ, θ) cos(θ)− 2ψ(0)
Cψ

(
r0

η

)2
F ·Π (37)

We have integrated the equations of motions (35) and (37) for fixed initial radius r0 = 1
and γ0 = 0.1 and various initial values of θ0 and taking ψ(0) = 1/(2π)3/2 (valid for ψ
Gaussian). The resulting evolution is computed in two cases, with and without friction. The
first case corresponds to the initial stage of the dynamics, just after the pinçons are created.
Indeed, a pinçon is created with an initial force corresponding to the local Reynolds stress
Fα = η3/(ν2ψ(0))∇ · τη(xα), so that the dissipation is initially suppressed. In that case,
we observe in Figure 4a that there are two fixed points of the dynamics for θ: one stable
and attractive, corresponding to θ = π, and one unstable and repelling, corresponding
to θ = 0. As a result, the pinçons are mostly repelling each other, except when they start
exactly anti-aligned and facing away each other, in which case they attract and annihiliate
each other. The resulting dynamics can also be appreciated in the phase space, as shown in
Figure 5a.

(a) (b)

Figure 4. Dynamics of a dipole of pinçon for various initial conditions and (a) without friction,
corresponding to the initial stage of the dynamics, just after pinçons creation; (b) with friction
coefficient 0.7, corresponding to the late stage dynamics. The radius is initially fixed to r = 1, the dipole
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intensity is initially set to γ = 0.1 and the initial dipole orientation is fixed at different values between
0 and π (identified by different colors). The panel represents the time evolution of the different
quantities: E: Interaction energy; r2: Square of Dipole separation; γ: Dipole intensity; θ: Dipole
orientation. Black dashed lines on θ(t) figure correspond to arccos

( 1√
3

)
, π

2 , and π − arccos
( 1√

3

)
.

(a) (b)

Figure 5. Phase space for a dipole of pinçons color-coded by the time, shown on the color bar.
(a) Without friction, corresponding to the initial stage of the dynamics, just after pinçons creation;
(b) With friction—coefficient 0.7—corresponding to the late stage dynamics. The radius is initially
fixed to r = 1, the dipole intensity is initially set to γ = 0.1 and the initial dipole orientation is fixed
at different values between 0 and π.

Interesting scaling laws are observed in the two stages that are reminiscent of what is
observed during reconnection events. The pinçons with initial inclination in the interval
[0, π/2] and different from 0 start moving towards each other, while decreasing their
strength and increasing their angle, in absolute value. Once they reach the value θ = π/2,
they change direction and get away from each other (see Figure 4a). During the collapse
stage, the radius of the dipole decreases approximately like

√
tc − t, which is the Leray

scaling [19]. The collapse stage is nearly universal, with weak dependence on the initial
angle, while the escape depends more strongly on the initial orientation. Such asymmetry
has also been observed in reconnection of quantum vortices [41]. During the separating
stage, θ gets closer to π and there is also an approximate power law escape law r ∼

√
t− tc.

The scaling laws are explored further in the general case in Section 3.4.
At a later stage, the initial Reynolds stress has decayed and cannot balance the pinçons

dissipation anymore. The extreme case is when the Reynolds stress has decayed to zero,
and when the dissipation is the strongest. This case has been studied by running another set
of simulations including the friction, starting the dipole at r0 = η. It is shown in Figure 4b.
We notice that, as expected, the dissipation now induces a constant decline of the dipole
intensity that eventually results in the death of the dipole. The resulting phase space is
shown in Figure 5b, where a plunging funnel corresponding to dissipation can now clearly
be seen. There are now two situations depending on whether the initial angle is less than
or bigger than π/2. In the first case, the dipole contracts and orientates itself towards π/2
before its death. This situation can be associated with a reconnection event. For initial
angles greater than π/2, the dipole expands while keeping its initial orientation before
eventually dying and stopping.

In summary, the natural dynamics of a dipole without stochastic forcing is always
dissipative, resulting in the final death of the dipole. Before its death, the dipole can
experience either a first contraction stage of its initial angle is less than π/2, with dynamics
resembling reconnection events, or experiences and expansion while it tries to anti-align its
two components (θ → π). The question is now whether the dipole can be maintained for
a longer time, and maintain another orientation if we take the stochastic forcing into account.
As we showed in the beginning, as soon as we add some stochastic noise, the dipolar



Entropy 2022, 24, 897 13 of 23

geometry breaks down on a viscous time scale. There is therefore a subtle interplay to be
understood between the decay of the dipole, the forcing and the departure from dipolar
geometry. There is, however, an interesting observation that allows for tackling the problem
in a simple and elegant manner. Indeed, due to the friction, the pinçon intensity decreases
with time, and we are likely to enter into the weak pinçon limit after a sufficient long time.
The latter is much simpler to code and understand, since it resembles the dynamics of
dipolar moments. In the sequel, we therefore investigate the finite but small forcing limit in
the weak pinçon approximation.

3.3. Results at Finite Small Temperature
3.3.1. From Pair of Pinçons to Dipole Equations in the Weak Pinçon Limit

In such limit, the dipole dynamics and the evolution of the dipole radius, orientation
and strength can be obtained from the evolution of three quantities: R = r2, C = γ · r and
N = γ2. To do so, Equations (27) and (28) are first considered for two pinçons γα and γβ,
and three quantities are introduced: r = xα − xβ, Γ = (γα + γβ)/2 and Π = (γα − γβ)/2.
By combination of the equations of motions, one get the three coupled equations:

ṙ = −4ν

(
Π

r
+ r

Π · r
r3

)
,

Π̇ = 2ν
[(

Π2 − Γ2
) r

r3 + 3
r
r5

(
(Γ · r)2 − (Π · r)2

)]
− 6πνψ(0)

Cψη2 Π +
3(Eα − Eβ)

16Cψν
χ, (38)

Γ̇ = 4ν

[
Γ
(Π · r)

r3 −Π
(Γ · r)

r3

]
− 6πνψ(0)

Cψη2 Γ +
3(Eα + Eβ)

16Cψν
χ.

The last equation of Equation (38) shows that Γ is forced by Ē = (Eα + Eβ)/2. If we start
with a dipole condition Γ = 0, in the small temperature limit Ē� 1 and for a time scale that
is short with respect to the diffusive time scale τν = r2

0/ν, all the terms proportional to Γ in
the second equation of Equation (38) can be ignored. Then, the first equation is multiplied
by r and the second equation by Π to obtain equations for R and N, and the first equation
multiplied by Π is summed with the second equation multiplied by r to get the equation of
evolution for C. After non-dimensionalization by r0 and r2

0/ν and rearrangement, one then
obtains the three coupled equations:

Ṙ = −16
C

R1/2 ,

Ċ = −2
[

N
R1/2 + 5

C2

R3/2

]
− ρC + R1/2µζ, (39)

Ṅ = 4
[

N
C

R3/2 − 3
C3

R5/2

]
− ρN + N1/2µζ,

where ζ is a delta correlated white noise obeying < ζ(t)ζ(t′) >= δ(t− t′), and the friction
ρ and forcing µ coefficient are given by

µ =
3r2

0(Eα−Eβ)

16ν2Cψ
,

ρ = 6πψ(0) r2
0

η2Cψ
.

(40)

From N, R and C, we then obtain r = R1/2, γ = N1/2 and θ = arccos(C/(rγ)).
To check the validity of the weak pinçon approximation, the comparison between the

full dynamics computed from Equation (33), and its weak limit Equation (40) in the zero
temperature limit µ = 0 and without (ρ = 0) and with friction is shown in Figure 6. We
see that the two dynamics coincide very well for most cases, and that the approximation
is better on the late stage, when there is friction. Indeed, the friction forces decay of the
dipole intensity.
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The weak dipole limit actually helps us identifying special angles for the dipole
dynamics. Indeed, from the last equation of Equation (40), the first term of the r.h.s
cancels whenever ξ(θ) = cos(θ)

(
1− 3 cos2(θ)

)
= 0, corresponding to the three angles in

the interval [0, π], namely θ = π/2, θ = arccos(1/
√
(3)) and θ = π − arccos(1/

√
(3)).

Those angles are identified by black dotted lines in Figures 4 and 6. When the forcing
and dissipation vanish or balance, they correspond to special directions where the dipole
intensity can remain stationary. Indeed, the angle θ = π/2 partitions the dynamics since
the angles θ(t) increase and the radius decreases if and only if θ(t) is smaller than π

2 .
The two other angles do not seem to play a specific role in the zero temperature limit.
However, the situation is different in other situations, at a finite temperature, as shown in
the following section.

(a) (b)

Figure 6. Comparison with the weak limit approximation: solid lines: complete model; dashed
line: weak limit; (a) without friction; (b) with friction, coefficient 0.7. The panel represents the time
evolution of the different quantities: E: Interaction energy; r2: Square of Dipole separation; γ: Dipole
intensity; θ: Dipole orientation. Black dashed lines on θ(t) figure correspond to arccos

( 1√
3

)
, π

2 ,

and π − arccos
( 1√

3

)
.

3.3.2. Dynamics at Finite Temperature

Integrating (40) allows for efficiently studying the dynamics of a noisy dipole, provided
two criteria are satisfied: (i) γ ≤ 0.5, in order to be in the weak limit and (ii) r is large enough
(r ≥ 1√

ρ ) so that the two pinçons may still be considered as distinct. Moreover, for numerical
reasons, we stop the integration whenever γ ≤ 0.01 or r ≥ √ρ, in which case we consider
that the pinçons are either dying or that the dipole has escaped to infinity. In practice, most
of our simulations were stopped because either γ ≤ 0.01 or γ ≥ 0.5. Figure 7 shows the
evolution of a dipole satisfying the equations of motion (40) for fixed initial radius r0 = 1
and γ0 = 0.1, various initial values of θ0 and ρ = 0.12 and µ = 0.009. Several tendencies
emerge, as illustrated in Figure 7. First, the integration time is slightly longer as the noise
may remain γ stationary for a certain amount of time. Second, the evolution of θ(t) is
not monotonic anymore and the angle θ tends to get closer to the values cancelling ξ(θ),
and tend to θ = π/2 in most of the cases. As a result, the dipole can be maintained for
some time in a non-equilibrium balance, where dissipation exactly balances the stochastic
forcing, allowing the dipole intensity to decay less rapidly, and the dipole to live longer.
We have checked that, when the noise is too large, then fluctuations are enough to bring
the dipole intensity close to the limit γ = 0 or γ = 1 in a finite time, resulting in the dipole
collapse or death quicker than in the zero temperature limit.
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(a)

(b)

Figure 7. Effect of noise in the weak limit dissipative case for dissipation coefficient 0.7 (a) on the
dynamics. The panel represents the time evolution of the different quantities: E:Interaction energy; r2

Square of Dipole separation; γ: Dipole intensity; θ: Dipole orientation. Black dashed lines on a θ(t)
figure correspond to arccos

( 1√
3

)
, π

2 , and π− arccos
( 1√

3

)
; (b) on the phase-space, color-coded by the

time, shown on the color bar.The radius is initially fixed to r = 1, the dipole intensity is initially set to
γ = 0.1 and the initial dipole orientation is fixed at different values between 0 and π. The intensity of
the noise is µ = 0.009.

3.4. General Dynamics of a Pair of Pinçons
3.4.1. Short Time Dynamics

In the case of dipole, the short time dynamics correspond either to an escape with
θ → π and γ → 1 or first a contraction (close interaction) and then an escape. Here, we
consider the general case of a pair of pinçons to determine whether such observation is
robust or not. The relative dynamics are characterized in this case by six independent
scalar variables which are the distance r between the pinçons, their intensities γα and γβ,
their angles θα and θβ defined by cos θα = (γα · rαβ)/(rγα) and cos θβ = (γβ · rβα)/(rγβ)
and the angle ϕ defined by cos ϕ = (γα · γβ)/(γαγβ). The dipole case studied in the
previous section corresponds to γ = γα = γβ , θ = θα = θβ and ϕ = π. We then
integrate the dynamics with Equations (24) and (25) without dissipation or noise for
different initial conditions of these parameters, except that we always set r0 = 1. Indeed,
since the pinçon are created with an initial force corresponding to the local Reynolds stress
Fα = η3/(ν2ψ(0))∇ · τη(xα), the short time dynamics correspond to the case without
dissipation or forcing.

Because there is no dissipation, we expect γ to tend toward 1 as for the dipole, so we
implement a stopping condition when there is one pinçon for which γ > 1− ε, with epsilon
a small parameter taken here to ε = 10−2. We have run the dipole dynamics with many
different initial conditions, and identified three scenarios:

(i) repelling dipolar expansion, illustrated in Figure 8a. This case corresponds to the
case where the two components run away from each other and gradually become
a repelling dipole: their mutual angle φ tends to π, while they become anti-parallel to
their separation vector θ → π and their intensities become equal to each other and
tend to 1. In this case, the role of each pinçon is symmetric.

(ii) aligned expansion, illustrated in Figure 8b. In this case, one component grows larger
than the other one, while both pinçons become aligned with their separation vector
and point in the same direction θ1 = π, θ2 = 0, φ = 0. The component with the lower
intensity moves faster and speeds ahead of the other one.

(iii) explosive collapse, illustrated in Figure 9a. In this case, the two pinçons are attracted
to each other, while one of the two pinçons rapidly reaches the asymptotic value
γ = 1, corresponding to an infinite dissipation. In contrast with the expansion situa-
tions where the pinçons tend to align or anti-align, the collapse case corresponds to
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intermediate values of ϕ and θ different from π. This case can therefore be considered
as the generic reconnection event.

(a) (b)

Figure 8. Time evolution of the distance r, the pinçons angles θ1, and θ2 (one line for each), total
intensity γ2

1 + γ2
2 and anisotropy (γ2

1 − γ2
2)/(γ

2
1 + γ2

2) in the two expansion cases. (a) case of repelling
dipolar expansion; (b) case of aligned expansion. The points are colored by the value of the pair
mutual angle, ϕ.

(a)

(b)

Figure 9. (a) Time evolution of the distance r, the pinçons angles θ1, and θ2 (one line for each), total
intensity γ2

1 + γ2
2 and anisotropy (γ2

1 − γ2
2)/(γ

2
1 + γ2

2) in the case of explosive collapse. (b) Phase
space for a pair of pinçons in the initial stage of the dynamics, just after pinçons creation. The phase
space is r, γ = γ2

1 + γ2
2 and ξ = ξ(θ1)ξ(θ2). The points are colored by the value of the pair mutual

angle ϕ in all the figures.

Interestingly, the different cases partition in different areas the phase space r, γ = γ2
1 +

γ2
2 and ξ = ξ(θ1)ξ(θ2), with ξ(θ) = cos(θ)

(
1− 3 cos2(θ)

)
, as illustrated in Figure 9b. One

sees that the collapse mode tends to occur around ξ = 0 meaning that at least one of the two
pinçons tend to orientate at π/2, arccos(1/

√
3) or π − arccos(1/

√
3) from the separation

vector. In contrast, the two expansion modes proceed with ξ = ±2, corresponding to
situations where the pinçons are aligned or anti-aligned with their separation vector.
Summarizing, two new cases are found with respect to the dipole dynamics, namely a new
mode of expansion, made with two aligned pinçons following each other, and a new mode
of collapse following the law ξ(θ1)ξ(θ2) = 0, with one component reaching the asymptotic
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value γ = 1, and corresponding to a generic reconnection event. In the sequel, we study in
more details these events.

3.4.2. Scaling Laws of Collapse

During the collapse stage, the radius evolution is fitted with a power law in order to
compare the exponent with the Leray scaling

√
tc − t [19]. Figure 10a shows the histogram

of the values of the exponent obtained by fitting the law r(t) = βc(tc − t)δ for the collapse
cases. We observe that most of the values are near 1/2 which correspond to the Leray
exponent. Figure 10b shows the time dynamics of rescaled squared radius. The Leray
scaling is found to be verified asymptotically as t/tc → 1.

(a) (b)

Figure 10. (a) Histogram of the values of the power law exponent δ; (b) squared distance rescaled by
for the explosive collapse cases. The black dashed line corresponds to the Leray scaling with δ = 1/2.
We see that, for t/tc close to 1, most of the curves follow a power law with a power exponent δ close
to 1/2.

3.4.3. Full Collapse Dynamics

The full dynamics of reconnection events can be investigated using a patching between
the short time behavior, and the large time behavior, allowing e.g., the turbulent stress
to decay like exp(−t/τforcing), where τforcing is a time scale associated with large scales.
As shown in Figure 11, for the same initial configuration, when dissipation is high and
the forcing characteristic time is short, the pinçons die very fast with no close interaction.
On the contrary, if the dissipation is too low with a forcing persistent enough, the dynamics
are very similar to the case without dissipation, and the pinçons still collapse in an explosive
manner with their intensities tending to 1. Two intermediate cases are found where we have
a collapse stage followed by a separation stage without explosion. These typical examples
are illustrated in Figure 12a,b . In both cases, we observe first a collapse phase and then
a separation phase although the particular dynamics are quite different. In the case of (a)
where the dissipation and the forcing characteristic time are rather small, the transition
between the two phases happens at a closer distance and has a configuration similar to
the dipole with one of the pinçons axis abruptly turning from an angle close to 0 to an
angle close to π, then the pinçons die very fast. In the case of (b) with larger dissipation
and a more persistent forcing, the dynamics are smoother with hardly any change in the
dipole relative orientation, only the axis angles change slowly and the pinçons survive
a long time with a stable configuration. During the interaction, the maximum velocity
and vorticity near the pair of pinçons, shown in Figure 13, exhibit marked oscillations
due to the finite resolution of the grid. Using a moving average, we see, however, that
for the cases where the intensities tend to 1, the maximum velocity and vorticity tend to
infinity as expected. If we now look at the case of close interaction with a final separation
corresponding to Figure 12a, they first decrease during the collapse stage until the time of
minimum of r, after which they increase until the angle is close to φ = π; then, they finally
both decay to zero when separating. This behaviour is reminiscent of what is happening
during a reconnection of vortex rings, where the distance between rings decay like

√
tc − t,

with maximum velocity and vorticity growing up and then decaying [35].
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Figure 11. Time evolution of the different variables characterizing the pair of pinçons for seven
cases with the same initial configuration but with different forcing characteristic time coefficient
λ = τν/τforcing = r2

0/(ντforcing) and dissipation coefficient ρ = (ψ(0)/Cψ)(r0/η)2. We see that, on
the one hand, when dissipation is high and the forcing time is short, the pinçons die very fast with no
close interaction. On the other hand, if the dissipation is low, the dynamics are very similar to the
case without dissipation, and the pinçons still collapse in an explosive manner with their intensities
tending to 1. Two intermediate cases are found where we have both the collapse dynamics and
a separation dynamics without explosion.

(a) (b)

Figure 12. Dynamics of a pair of pinçons as a function of time in the plane defined by γ1 and
r = rez for two different forcing characteristic time coefficient (λ) and dissipation coefficient ρ:
(a) (ρ, λ) = (0.18, 1.00) and (b) (ρ, λ) = (1.00, 0.10). The vectors gives the projection of γ1 and γ2

in the plane and the color codes the time, from t = 0 (dark blue) to t = tfinal (dark red), as well
as the coordinate of the points on the vertical axis x. In both cases, the two pinçons (blue and red
points) move initially towards each other (the distance is read on the horizonal axis z) and then their
orientations change and they repel each other. In the case of (a), the transition between the two phases
has a configuration similar to the dipole with one of the pinçons axis abruptly turning from an angle
close to 0 to an angle close to π, then the pinçons die very fast. In the case of (b), the dynamics
are smoother with hardly any change in the dipole relative orientation, only the axis angles change
slowly, and the pinçons survive a long time with a stable configuration.
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(a) (b)

Figure 13. Time evolution of the maximum of rescaled velocity field (a) and vorticity field (b) around
a pair of pinçons with same initial configurations and different forcing characteristic time coefficient
λ = τν/τforcing and dissipation coefficient ρ. The rescaling is the same as in Figure 1, with r0 the initial
separation between the pinçons. The values correspond to a moving average over 15 time steps.

4. Discussion

We have introduced a model of singularities of Navier–Stokes, named pinçonsthat
are discrete particles characterized by their position and “spin”. These particles follow
a nontrivial dynamics, obtained by the condition that the coarse-grained velocity field
around these singularities obeys locally Navier–Stokes equations. We have shown that
this condition can only be satisfied provided the coarse-graining scale is of the order of the
Kolmogorov scale. When immersed in a regular field, the pinçons are further transported
and sheared by the regular field, experiencing a friction together with an energy injection
coming from by Reynolds stress of the regular field. We have used these properties to
study the interaction of two pinçons, at the early and late stage of their evolution, and in
the presence or absence of a stochastic forcing induced by the possible Reynolds stress.

Quite interestingly, we have identified several modes of interactions at short times that
are characterized by the values of the parameter ξ(θ) = cos(θ)

(
1− 3 cos2(θ)

)
, where θ is

the angle between the spin of the pinçon and the axis of the pair. Specifically, in the absence
of noise, we identified two modes of expansion of the pair with ξ = ±2, corresponding
to situations where the pinçons are aligned or anti-aligned with their separation vectors,
and one mode of collapse with ξ = 0. In the presence of noise, we observe and additional
transient non-equilibrium steady state expansion mode, with ξ = 0, and the pinçons are
perpendicular to the axis of the pair. The quantity 1− 3 cos2(θ) actually plays an important
role in the theory of liquid crystals, as its average defines the order parameter of the system
s = (1− 3 cos2(θ))/2, with possible transitions between liquid (s = 0) and nematic phase
(s = 1). The different interaction modes therefore open the way to interesting different
collective behaviors when considering a larger number of pinçons. Whether such behaviors
are of relevance to the actual physics of turbulence is still an open issue, as the pinçon
model ignores on a number of issues that may limit its range of validity: existence of large
nonlocal energy transfer at the Kolmogorov scale, dilute approximation for the pinçon,
scale separation between the pinçon and the ambient large scale velocity field, to name but
a few.

Our study of the interaction of two pinçons, however, already revealed some interesting
similarities with reconnection between two vortex rings. Indeed, we observe that the collapse
generally obeys the

√
tc − t scaling that is observed during reconnection, and is characterized

by transient growth of velocity or vorticity like in the reconnection. From another point
of view, the pinçons dynamics are also reminiscent of the two-fluid model of superfluid,
where the “regular” field, made of phonons, interact with the local topological defects that
form the quantized vortices. Indeed, as shown by [41], the interaction of quantized vortices
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leads to Leray scaling, with distance between vortices decaying like
√

tc − t. In a broader
sense, the description of the interaction between pinçons and a regular field is parallel to
the interaction of localized wave packets interacting with a mean flow, in the WKB-RDT
model of [42]. By analogy, one may then wonder whether it would be possible to use the
pinçons as a subgrid scale model of turbulence, allowing for describing the interaction of a
velocity field filtered at the Kolmogorov length, with a collection of pinçons that encode the
very intense energy transfers that are observed when scanning very small scales of turbu-
lence [30]. If the pinçon model proved accurate enough to describe small scale turbulence,
it would then enable the use of larger time-steps, as the motion of the small scale motions
is governed by Lagrangian motions. Another issue is whether a short range regularization
is needed at short distances to make the model applicable to subgrid modelling.

More generally, the pinçon model shares some interesting properties with other dis-
crete models found in fluid mechanics, such as the vorton model of Novikov [10], derived
from the 3D Euler equations, or the point-vortex model, derived from the 2D Euler equa-
tion: like them, it is a N-body model, describing the motion and “momentum” of entities
with long range interactions. At variance with them, however, the pinçon model is not
Hamiltonian because pinçons only exist in the presence of viscosity, so that energy is not
conserved (and is actually dissipated locally by the singularity). To maintain pinçon, we
thus have to introduce a large scale that provides constantly energy to the system (in our
case via stochastic forcing). Both vorton model and point-vortex model are contributing
to the progress of our understanding of turbulence phenomenology by providing simple
toy models to play with: for example, the notion of “negative temperature” introduced by
Onsager to explain the inverse cascade of turbulence, after he observed a similar process
occurring in a point-vortex model.

We can then think of all these discrete models as “Ising models” of turbulence that can
be used to get insight on turbulence properties. Therefore, even if the pinçon model does
not accurately describe the behavior of small scale turbulence, it is an out-of-equilibrium
statistical model of Navier–Stokes singularities with many interaction modes that bears
some similarity with liquid crystal interactions. It may then stimulate new ideas regard-
ing turbulence dynamics and properties and play a similar role than the Ising model in
statistical mechanics.
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Appendix A. Useful Properties

We introduce the function: φ(x, γ) = ‖x‖ − γ · x. Such function has the properties:

∇xφ =
x
‖x‖ − γ (A1)

φ = x · ∇xφ (A2)

∇γφ = −x (A3)

∆x(ln(φ)) =
1− γ2

φ2 . (A4)

Therefore, vα can also be written:

vα = −2∇(ln φα) + 2x∆ ln(φα). (A5)

With such expression, it is easy to check that vα is of zero divergence everywhere except at
x = 0, where it is undefined.

Appendix B. Computation of the Generalized Momentum

By definition:

Πα =
1

4π

∮
Sxα

vαdS, (A6)

where Sxα is a sphere of center xα, and of radius unity, and the integration is performed only
over the surface of the sphere. Taking a spherical coordinate system with respect to a vertical
axis along γα, x− xα = (cos ψ sin θ, sin ψ sin θ, cos θ), it is easy to see that the azimuthal
average of x− xα perpendicular to γα is zero, and that the only nonzero component is
along γα, and gives 〈x− xα〉ψ = (0, 0, cos θ). Using the fact that cos θ = (1− φα)/γ with
γ = ‖γα‖, we thus get the azimuthal average of vα as

〈vα〉ψ = (0, 0, C);

C =
2γ

φ
− 2(1− φ)

γφ
+ 2

(1− γ2)(1− φ)

γφ2 ,

where we have dropped the subscripts α for simplicity. We may easily compute the
integration of the various terms over θ since, after a change of variable y = cos θ, and we
get for any n ≥ 0

〈 1
φn+1 〉θ =

∫ sin θ

φn+1 dθ;

=
∫ 1

−1

dy
(1− γx)n+1

=
1

nγ

(
1

(1− γ)n −
1

(1 + γ)n

)
,

with the convention that 1/nxn = ln(x) when n = 0. Summing all the terms, we finally
obtain Equation (10).
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Appendix C. Velocity Gradient Tensor

∇U =

(
∂Ui
∂xj

)
i,j

= − 2
φ

[(
γ− x
‖x‖ + 2

(1− γ2)

φ
x
)
⊗ ∇φ

φ
+

(
1
‖x‖ −

1− γ2

φ

)
I− x⊗ x
‖x‖3

]
= − 2

φ2

[
−γ⊗ γ +

(
3γcos(θ)− γ2(2 + cos2(θ))

)
(1− γ cos(θ))

x⊗ x
‖x‖2 +

γ⊗ x
‖x‖

−
(
γ cos(θ) + 1− 2γ2)
(1− γ cos(θ))

x⊗ γ

‖x‖ − γ(cos(θ)− γ)I
]

where cos(θ) = (γ · x)/(γ‖x‖)

Appendix D. Vorton Dynamics

The dynamics of the vortons are given by [10]:

ẋα = − 1
4π ∑

β 6=α

rαβ × γβ

‖rαβ‖3 (A7)

γ̇α = − 1
4π ∑

β 6=α

[
γα × γβ

‖rαβ‖3 − 3
(
γα · rαβ

) (rαβ × γβ)

‖rαβ‖5

]
. (A8)
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