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Migraine is a highly prevalent neurovascular dis-
order afflicting more than 15% of the global
population. Nearly three times more females are
afflicted by migraine in the 18–50 years age group,
compared to males. Migraine attacks are most
often sporadic, but a subgroup of individuals
experience a gradual increase in frequency over
time; among these, up to 1%–2% of the global
population develop chronic migraine. Although
migraine symptoms have been known for cen-
turies, the underlying mechanisms remain largely
unknown. Two theories have dominated the cur-
rent thinking—a neurovascular theory and a cen-
tral neuronal theory with the origin of the attacks
in the hypothalamus. During the last decades,
the understanding of migraine has markedly
advanced. This is supported by the early semi-
nal demonstration of the trigeminovascular reflex

35 years ago and the insight that calcitonin gene-
related peptide (CGRP) is a key molecule released
in acute migraine attacks. The more recent find-
ings that gepants, small molecule CGRP recep-
tor blockers, and monoclonal antibodies generated
against CGRP, or its canonical receptor are use-
ful for the treatment of migraine, are other impor-
tant issues. CGRP has been established as a key
molecule in the neurobiology of migraine. More-
over, monoclonal antibodies to CGRP or the CGRP
receptor represent a breakthrough in the under-
standing of migraine pathophysiology and have
emerged as an efficacious prophylactic treatment
for patients with severe migraine with excellent
tolerability. This review describes the progression
of research to reach the clinical usefulness of a
large group of molecules that have in common the
interaction with CGRP mechanisms in the trigem-
inal system to alleviate the burden for individuals
afflicted by migraine.
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Introduction

Migraine is established as the most prevalent and
disabling neurovascular brain disorder with severe
socioeconomic impact, affecting females to a higher
degree than males (Fig. 1). It currently ranks as
the sixth most prevalent disorder worldwide. It is
a major cause of disability, thus posing a heavy

From the symposium Neuropeptides: The diverse dialects of the
nervous system.

burden on individuals and society [1]. Diagnos-
tically, it is characterized by moderate to severe
headache attacks, often unilateral, and accom-
panied by nausea, vomiting, photophobia, and
phonophobia [2]. In many cases, it is initially
associated with an aura phenomenon, lasting for
20–60 min, and often of visual nature. Exper-
imental and clinical translational research has
provided key observations adding to the under-
standing of the underlying neurobiology and as a
stimulus for the development of novel therapies.
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Fig. 1 Global age-standardized prevalence of migraine in
males and females [1].

There is consensus on a genetic background
of migraine clinically based on interviews with
patients; however, genome-wide association
screening (GWAS) studies have failed to pro-
duce data to pinpoint one specific locus [3]. Thus,
migraine is likely a polygenic phenotype as GWAS
studies initially reported 38 independent loci asso-
ciated with the risk of migraine. More recent work
reported that 123 loci are associated with the risk
of migraine with links to all chromosomes [4]. It
is therefore improbable that a single gene can
be responsible for the origin of common forms of
migraine.

Studies of a rare condition, familial hemiplegic
migraine, however, has been more success-
ful in pointing towards a more specific single
mechanism—increased sensitivity of central ner-
vour system (CNS) glutaminergic signaling [5]. The
debate is still ongoing regarding the importance of
peripheral sites as the origin of migraine attacks,
posing the question: does migraine start in the
dura mater and/or in extracerebral arteries [6]?
Do migraine attacks require a peripheral sensory
input to be activated [7]? Recent imaging stud-
ies suggest that midbrain and brainstem struc-
tures are the drivers of migraine attacks [8]. Today,
much evidence suggests that migraine attacks
may start in the hypothalamus, sometimes already
on the day before the headache (the prodromal
phase), continue with the activation of the thala-
mus and the brainstem, and then the trigeminal
system. The trigeminovascular system is likely nec-
essary for the characteristic headache (the core of
a migraine attack). Finally, after cessation of the
headache phase there are imaging data showing
that there are still alterations in the brain that cor-
relate with CNS symptoms, such as tiredness (the

postdrome) [9, 10]. Current debate favors the view
that migraine is a CNS disorder, in which attacks
starts in subcortical regions, exemplified by stud-
ies of premonitory symptoms [11] and supported
by a series of elegant studies during continuous
scanning of patients during the migraine cycle [12].
The imaging studies collectively point towards a
hypothalamus–thalamus–brainstem pathway as a
putative driver of the migraine biology [10]. Thus,
the functional brain imaging studies have demon-
strated brainstem areas to be specifically acti-
vated in migraine attacks, sometimes referred to
as the “migraine generator” [13]. The link from the
hypothalamus with the dorsal rostral pons, the
spinal trigeminal nuclei, and sensory trigemino-
vascular system, are key parts in understanding
the transmission of headache pain.

Historical background on the treatment of migraine

The American neurologist Harald Wolff [14]
observed a widened temporal artery with pul-
sating quality in migraine patients that responded
to administration of ergotamine with vessel con-
striction and reduced headache. Therefore, a
vascular target seemed at this time a likely expla-
nation of migraine and served as inspiration in
the development of migraine therapies related to
the role of 5-hydroxytryptamine (5-HT) and vaso-
constriction [15]. The work ultimately resulted in
the successful development of the triptan class
of drugs, 5-HT1B/1D receptor agonists for acute
treatment of migraine attacks introduced during
the early 1980s [16]. The role of intracranial and
extracranial vasculature was still in focus and pos-
tulated to be a key part of the migraine attack [17].
Studies of perivascular innervation of the intracra-
nial circulation, first with a focus on the autonomic
nerves and later with the immunohistochemistry of
neuropeptides, revealed numerous colocalizations
[18]. The first sensory neuropeptide in the intracra-
nial arteries is substance P (SP), originating in the
trigeminal ganglion [19–21]. It was soon proposed
to be a key messenger molecule responsible for
neurogenic inflammation and sensitization of noci-
ceptors located in, for example, the dura mater
[22]. This was soon followed by other neurokinins
and calcitonin gene-related peptide (CGRP) that
also originated in the trigeminal ganglion and colo-
calized with SP [23]. However, CGRP was, for nearly
two decades, deemed not interesting, because it
did not induce neurogenic inflammation [24] or
did not activate the trigeminal neurons and only
resulted in vasodilatation of meningeal arteries
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[24]. Thus, much effort focused on SP, and specific
neurokinin blockers were developed that were
effective in the inhibition of neurogenic inflamma-
tion, the proposed decisive model [25]. However,
when tested in randomized clinical trials they were
all without effect on migraine [26–28], and hence
abandoned as antimigraine treatment candidates.
Recent detailed work has shed new light on SP and
the related neurokinins, as well as on their recep-
tors in different parts of the trigeminovascular
system [29].

What inspired the continued work on CGRP mechanisms in
migraine?

Soon after the discovery of CGRP [30], work was
initiated to develop the immunohistochemistry and
specific radioimmunoassay (for quantification) for
the study of neuropeptides associated with the
intracranial vasculature [18]. CGRP is a 37-amino
acid peptide produced by neurons both in the CNS
and in the peripheral nervous system [31]. The
peptide exists in two forms, αCGRP and βCGRP,
that differ by three amino acids in humans and
are encoded by two different genes, CALCA and
CALCB. CGRP was earlier shown to be a potent
vasodilator in various parts of the vascular system
[32–34]; it relaxed the cerebral arteries in asso-
ciation with increased levels of cyclic adenosine
3′5′-monophosphate (cAMP), and the response
was unrelated to the patency of the endothelium;
later, CGRP was found to have effects through-
out the body and in numerous organs [35]. The
demonstration of CGRP in the trigeminal system
verified its colocalization with SP, and surgical
denervation removed these peptides from the
intracranial perivascular innervation [23], while
retrograde tracing verified its origin in neurons of
the trigeminal ganglion [36].

In addition, CGRP was earlier found in the CNS;
however, recent in-depth mapping revealed an
astonishing abundance of CGRP and its canonical
receptor in the brain and in particular in migraine-
related regions and the trigeminovascular system
[37, 38]. The CGRP expressing regions are linked
with many cerebral systems, some of which are
related to those involved in migraine attacks.

From basic research to clinical proof

Initial reports describing the presence of CGRP
in trigeminal neurons and its potent vasodilator
effects mediated via adenylyl cyclase resulted in
the demonstration of the trigeminovascular reflex

(cerebral artery constriction activates the sensory
perivascular nerve fibers to release CGRP to main-
tain the resting artery diameter and blood flow)
[39]. This inspired me to suggest that CGRP is
involved in the migraine pathophysiology [23, 32,
33, 39]. The first clinical observations by Goadsby
and Edvinsson linked the release of CGRP to pri-
mary headaches. The initial study in patients with
severe trigeminal neuralgia showed elevated lev-
els of CGRP in the jugular vein (but CGRP ele-
vation was not seen in the peripheral cubital
fossa vein) and this was associated with facial
flushing symptoms [40]. Subsequently, two stud-
ies were performed on migraine patients with acute
severe attacks showing up in the emergency room
because of the severity of the migraine pain. These
studies revealed that only CGRP and not SP,
neuropeptide Y, or vasoactive intestinal peptide
were released during these acute attacks. Subcu-
taneous sumatriptan aborted the headache and
normalized the CGRP levels [41, 42]. Subsequent
mechanistic and immunohistochemical studies on
patients and human tissues firmly established the
importance of CGRP in migraine pathophysiology
[31, 43]. Once the peptide has been released from
the sensory nerve, it is only slowly removed from
the extracellular space due to the lack of specific
reuptake machinery. Another interesting aspect of
neuropeptides in general is their volume trans-
mission, diffusion-driven distribution into extra-
cellular fluid over a relatively large distance [44].
Another feature of neuropeptides is the fact that
they can be released at both synapses and nonsy-
naptic sites such as neurons and axons [45].

It was reported that the CGRP receptor is a
G protein–coupled receptor that consists of a
seven-transmembrane (7-TM) part, the calcitonin
receptor-like receptor (CLR), and a 1-TM part, the
receptor amplifying membrane protein 1 (RAMP1)
(Fig. 2). When activated, it couples with a recep-
tor component protein (RCP) and adenylyl cyclase
[46, 47]. RCP has been suggested to be essential
for CLR signaling [48]. Another important aspect
of CGRP receptor signaling and regulation is the
removal from the cell surface by internalization.
Studies have examined this process, and evidence
has revealed that tagged CLR/RAMP1 (the canoni-
cal CGRP receptor) is internalized into endosomes
in response to CGRP [49].

In parallel, the industry worked to develop small
CGRP blocking drugs—the first of these was
olcegepant, which soon paved the way for several
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Fig. 2 The components of the calcitonin gene-related peptide (CGRP) receptor (CLR and RAMP1) and the signal pathway from
RCP (receptor component protein) to the adenylyl cyclase system. Upon release of CGRP, it docks into the space between
CLR and RAMP1, causing its activation [31]. This complex is then internalized into the cell.

Fig. 3 Released calcitonin gene-related peptide (CGRP) is prevented from activating the CGRP receptor in several ways.
(i) Presynaptic triptans may reduce the release of CGRP. (ii) Small molecule gepants may compete with CGRP at the receptor
site. (iii). Monoclonal antibodies may adhere to CGRP, forming a large complex that does not fit at the receptor site. (iv) Specific
monoclonal antibodies directed towards the N-terminals of CLR and of RAMP1, which effectively blocks CGRP from reaching
the active receptor site [31].

others in the new drug class “gepants” (Fig. 3).
The developed small molecule receptor antago-
nists were shown to be competitive antagonists at
the human CLR/RAMP1 receptor [50, 51]. After
additional basic studies [51, 52], olcegepant was
given intravenously to patients with acute migraine
attacks [53]. Olcegepant not only aborted the
attack rapidly, but pain freedom persisted in some

patients for up to 24 h. Further proof of the impor-
tance of CGRP came, when intravenous (iv) CGRP
resulted in migraine-like attacks more frequently
in migraine patients than in healthy subjects [54].

The recognition of the important role of CGRP in
migraine triggered further efforts to target CGRP
and its receptor as a therapeutic approach for
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migraine treatment. Since the dipeptide olcegepant
was not suited for oral use, other pharmaceutical
companies explored this target in more detail and
developed their own gepants. The second gepant to
appear clinically was telcagepant. The subsequent
trials met the primary as well as the secondary
endpoints and were well tolerated [55, 56]. How-
ever, in prophylaxis studies, reversible liver toxi-
city was observed, resulting in halting of its fur-
ther development. The liver issue has now been
solved with a new group of gepants. Their chem-
ical structures and the developmental process of
novel gepants have now been revealed in some
detail [57]. At present, we are seeing the appear-
ance of a further series of gepants for both acute
and prophylactic use (ubrogepant, aterogepant,
and rimegepant). These gepants have successfully
passed the required randomized clinical trials for
the treatment of migraine and are available in the
United States [58, 59].

After 2 decades of basic research on the CGRP
family of peptides, the focus now aimed at finding
other means or molecules that can be used to block
the CGRP responses [31]. A different approach
was to examine whether specific antibodies could
be designed toward CGRP. Two lines of research
appeared; one was the further development of mon-
oclonal antibodies (mAbs) binding CGRP, where
we now have three different molecules on the
market (eptinezumab, fremanezumab, and gal-
canezumab). The understanding of the unique-
ness of the CGRP receptor led AMGEN to
construct an mAb recognizing the N-terminal
of the two components of the canonical CGRP
receptor: CLR and RAMP1. Erenumab is a highly
specific antagonist against the CGRP receptor. The
research behind it provided tools that could assist
in further understanding of migraine pathophys-
iology. CGRP-related therapies offer considerable
improvements over existing drugs; as they are
designed selectively to act on the trigeminal pain
system, they are more specific and have few or mild
adverse effects [60]. The development of the small
molecules, gepants, resurfaced with CGRP receptor
antagonists such as atogepant, rimegepant, and
ubrogepant; they are effective for acute relief from
migraine headache attacks and can also be useful
as prophylactics.

Monoclonal antibodies

Basic research in the field of neuropeptides relied
on methods to produce reagents for immuno-

histochemistry and radioimmunoassay for their
quantification of the production of specific and
selective antibodies directed towards various parts
of the molecule under study [61]. Usually, these
antibodies were polyclonal and therefore not suited
for therapy. By using humanized or human anti-
bodies, side effects were reduced and target
specificity improved. Thus, the mAbs have high
specificity towards the target and long half-lives;
they aremetabolized by the reticuloendothelial sys-
tem and not by the liver enzymes and have, there-
fore, a low potential for liver or renal toxicity. Due
to their large molecular size, the mAbs cross the
blood–brain barrier (BBB) only in very low concen-
trations [62], which limits possible CNS side effects
that would be expected due to the rich expression
of CGRP and CGRP receptors in numerous regions
within the brain [38].

Patients with multiple attacks per month, as com-
monly seen in frequent episodic migraine (EM) or
chronic migraine (CM), need prophylactic drugs.
Those that are available were found by serendipity
and include β-adrenoceptor blockers, antidepres-
sants, antiepileptics, and botulinum toxin [63]. The
first three of these drugs have widespread effects in
the CNS, are not specific for the migraine targets,
and are often accompanied by side effects that limit
their usage [63]. More than 90% of patients treated
with these drugs have, after 1 year, stopped taking
them due to either low efficacy or unwanted side
effects.

The first published results with mAbs aimed at
the trigeminovascular system showed a some-
what different pharmacological profile compared to
the gepants [64, 65]. Although the CGRP-directed
antibody reduced the vasodilatory effect of CGRP,
the inhibition was not competitive. Today, four
mAbs are available: erenumab is a human mAb
designed to bind the N-terminals of CLR and
RAMP1 of the CGRP receptor, thereby stopping
CGRP from activating the receptor [66]. The other
three mAbs (fremanezumab, galcanezumab, and
eptinezumab) are directed towards the 37-amino
acid molecule, acting equally well at α- and β-
CGRP [67]. Collectively, these molecules have all
emerged as effective and well tolerated for the
preventive treatment of migraine. They are much
larger than other preventive medications, which,
as said, limits their ability to pass the BBB [68,
69]. The tolerability profile is excellent and does
not differ to any major extent from their control
groups.
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Because CGRP is widely expressed in the body,
discussion is ongoing regarding possible cardio-
vascular or intestinal side effects [70]. A common
question is why are there so few peripheral effects,
and would there not be interactions with pain sys-
tems generally [71]? The mAbs have now been
approved by regulatory authorities FDA and EMA,
and greater than 500,000 patients are on these
treatments. Numerous patients have reported that
“the CGRP directed medications have transformed
their lives” [60]. Amazingly, the mAbs have effects
both in EM and CM patients who have not
responded well to other available preventive treat-
ments [72, 73]. The American Headache Society
has provided a statement paper for which patients
should have the mAbs for migraine prophylaxis
[74].

A site of antimigraine effect

The debate regarding the site of action of gepants
and mAbs is ongoing. Currently, there is con-
sensus that the mAbs cannot pass the BBB,
hence the place for relieving the migraine pain
is peripheral [62, 69, 75], suggesting action
on the trigeminovascular system [31]. Interest-
ingly, studies of the trigeminal system using
quantitative and semiquantitative methods have
revealed that the trigeminal ganglion (TG) is freely
accessed by molecules in the blood, molecules
that can have effects on its cellular struc-
tures [75, 76]. There is no alteration in the
integrity of the BBB during migraine attacks
[77]. Thus, reportedly, there was no alteration
in the BBB (interictal and ictal) in acute glyc-
eryl trinitrate–induced migraine attacks [78].
Furthermore, magnetic resonance imaging per-
formed during the aura phase reported no
evidence of increased BBB permeability [79]. In
addition, the BBB was intact in spontaneous
attacks of migraine without aura [80]. Further-
more, induced dural inflammation in a preclinical
model did not show effects on BBB integrity calcu-
lated as the permeability surface area [75].

Where could the CGRP directed medications act to
produce their effects? The studies have shown that
the brain is protected from passage of the gepants
and triptans (less than 2–3% passes the BBB), and
for the mAbs less than 0,01% passes the BBB.
Then the trigeminal system offers the most logi-
cal site of action of these acute and prophylacitc
drugs [68, 75]. From available data, it is obvious
that mAbs act on sites outside the BBB, putatively

within the trigeminovascular system, the central or
peripheral aspects of the sensory C- and Aδ-fibers
[81, 82]. Given this suggestion, there are at least
four tentative places for the action of the anti-CGRP
drugs: (i) the most peripheral ends of the C- and Aδ-
fibers, in part located in the adventitia of intracra-
nial vasculatures and on the dura mater with mast
cells [83], (ii) the trigeminal ganglion with neurons
and satellite glial cells [84, 85], (iii) the trigemi-
nal nucleus caudalis, though it is limited by the
BBB [11, 86], and recently (iv) the nodes of Ranvier,
which offers a novel target site [87]. The debate is
ongoing and possibly several of these sites may be
involved.

The details of the molecular interaction of mAbs
have been studied. Manoukian et al. showed in
a cell model that CGRP induces a concentration-
dependent increase in cAMP and CGRP receptor
internalization at different concentrations (EC50
8.4 pM vs. 7.9 nM, respectively). The lack of
effect of the antibodies and gepants at the rest-
ing stage agrees with human data, where the
small molecule CGRP antagonist telcagepant [88,
89] and the CGRP antibody fremanezumab or
the CGRP receptor antibody erenumab did not
have vasomotor effects by themselves [90, 91].
An experimental anti-CGRP molecule (8E11) and
an anti-CGRP receptor antibody (AA58) blocked
both effects, but the cAMP effect occurred at lower
concentrations [92]. Using a combination of flow
cytometry and confocal microscopy, the study
showed that CGRP and the CGRP receptor were
internalized and localized to the endosomes. It has
been suggested that the endosomes and not the
plasma membrane is the site of pain transmission
[93]. Hypothetically, the increase in CGRP may
contribute to migraine pain via CGRP receptor
internalization and endosomal signaling [92].

Clinical effects of the CGRP antibodies

The mAbs either bind to the CGRP receptor, or the
α and β isoforms of CGRP. They are not broken
down by liver enzymes, which adds to their long
half-life in plasma, varying between 3 and 5 weeks.
The mAbs are effective in EM and CM and have
few side effects. The mAbs have, during the last
few years, passed phase III, some even phase IV,
and are now on the market in numerous countries
[60, 94]. Since there are no direct comparative tri-
als, we have to rely on meta-analysis papers; the
overall conclusion is that their efficacy is good with
few and mild side effects [95, 96]. The mAbs have
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been proposed as disease-modifying drugs since
they can help to slow down the natural progression
of migraine [97]. All mAbs studies showed a signif-
icant reduction in their primary endpoints, either
meaning change from baseline inmonthly migraine
days (MMD) or a change in headache hours from
baseline [98].

Erenumab is a humanized IgG2A mAb that tar-
gets the CGRP receptor [66]. Early onset of its effi-
cacy has been documented in many trials. In the
first week, 43% of EM and 26% of CM patients
receiving erenumab 140 mg had a ≥50% decrease
in weekly migraine days [99]. Furthermore, CM
patients treated with erenumab for a month dis-
closed a reduction by 12.2 MMD, along with a
reduction in the use of medication, the intensity
of pain, and disability. Subcutaneous erenumab,
70 mg and 140 mg monthly, has been evaluated
in phase III randomized controlled trials (RCTs)
(STRIVE and ARISE) for the prevention of EM
[99, 100]. Besides significant reduction in the use
of antimigraine drugs, erenumab led to substan-
tial improvements. The most common side effects
noted were upper respiratory tract infection and
pain at the injection site. In the STRIVE trial,
besides a drop in the number of MMD, statis-
tically significant reductions in the number of
days requiring the use of antimigraine drugs and
improvement in physical functioning scores and
daily activities were observed [100]. Phase IIIb LIB-
ERTY trial examining EM patients with a his-
tory of 2–4 preventive drug failures verified the
supremacy of erenumab 140 mg and established
that erenumab worked well for patients with refrac-
tory migraine [73]. Recently, a 5-year open-label
study validated that erenumab is a safe drug with
effects that remain over this period [101, 102]. Lip-
ton et al. reported that CM can reverse to EMwithin
a year of erenumab treatment [103].

Eptinezumab is the only CGRP mAb designed for
iv use quarterly. It is a fully humanized IgG1λ mAb
targeting both α and β isoforms of CGRP [104].
Phase III RCTs have assessed eptinezumab for pro-
phylaxis of EM (PROMISE-1) and CM (PROMISE-2)
[105]. There was ≥75% reduction in MMD observed
in 24.7%, 22.2%, and 29.7% of patients medi-
cated with eptinezumab 30, 100, and 300 mg,
respectively, over 12 weeks. Interestingly, the
occurrence of migraine on the first day after the
infusion was significantly reduced by approxi-
mately half. In the PROMISE-2 trial, the doses of
100 and 300 mg showed significant reductions in

MMDs over the 6-month trial period. The ≥75%
migraine responder rates (RRs) were up to 38.5%
(100 mg) and 42.3% (300 mg dose) and 22.7%
(placebo) (months 4–6). The ≥50% migraine RRs
were 60.7% (100 mg), 63.4% (300 mg dose), and
44.5% (placebo) (months 4–6). A 1-year open-label
safety study of 300 mg eptinezumab in CM (PRE-
VAIL) reported a reduction in migraine-associated
disability and improvement in patient function-
ing [106]. In addition, besides effective prevention,
eptinezumab was found to achieve headache pain
freedom after 4 h and absence of most bothersome
symptoms after 2 h as compared to placebo [107].

Fremanezumab binds equally well with α and β iso-
forms of CGRP. It is a humanized IgG2κ mAb eval-
uated at doses of 225 mg administered monthly
and 675 mg quarterly for the prevention of EM
(HALO-EM) [108]. The phase III study, HALO-
CM trial assessed the doses of 675 mg quarterly
and 225 mg monthly for the prevention of CM
[109]. Patients treated with fremanezumab with
concurrent medication overuse headache (overuse
of antimigraine drugs) had reported a statistically
significant reduction of monthly medication use
days compared to placebo [110]. A long-term study
(52 weeks) from the HALO trials showed that fre-
manezumab reduced MMD in patients with EM
and CM by −5.1 and −8.0 days, respectively [111].
Side effects observed were redness at the site of
injection, induration at the site of injection, diar-
rhea, anxiety, and depression [108]. The FOCUS
trial was a phase III trial in EM and CM patients
who had failed 2–4 preventive medications [72].
Fremanezumab was effective with MMD reduc-
tion in both patient populations. Interestingly, a
post hoc analysis stratified the results by age and
sex and reported that fremanezumab was effective
in all age groups and equally between men and
women [112].

Galcanezumab is a humanized IgG4 mAb acting
well at both α and β forms of CGRP. Subcutaneous
monthly doses of 120 mg or 240 mg have been
investigated for the prophylaxis of EM (EVOLVE-1
and EVOLVE-2) and CM (REGAIN) [113–116].
Analysis of the three trials revealed a greater
number of EM or CM patients treated with gal-
canezumab achieved ≥50% reduction in MMD
compared to placebo, establishing the efficacy of
this antibody [114]. The EVOLVE-1 trial on the
prevention of EM compared galcanezumab (120 mg
and 240 mg) with a placebo. Galcanezumab dis-
played fast onset starting at month 1 that lasted
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through month 6. Patients had lesser MMDs
needing acute treatment. Galcanezumab improved
both Migraine Disability Assessment (MIDAS)
and daily functioning scores compared to placebo
[116]. In the EVOLVE-2 trial, the side effects seen
were pain at the local injection site, local reac-
tions, and itching [115]. REGAIN (evaluation of
galcanezumab in the prevention of CM) comprised
a 3-month double-blind, placebo-controlled treat-
ment phase and a 9-month open-label extension
phase [113]. Common side effects of galcanezumab
were pain at the site of injection, upper respiratory
tract infection, reactions at the local site of admin-
istration, backache, and sinusitis [113]. In a 1-year
open-label study of self-administered subcuta-
neous monthly injections as prophylactic therapy,
both 120 mg and 240 mg doses were found to be
safe and associated with a reduction in MMD [117].
Long-term galcanezumab lead to improvement in
functional impairment and disability [118].

The overall results from the clinical trials of mAbs
against CGRP and the CGRP receptor have collec-
tively demonstrated stable effects in EM and CM.
The response remained for more than 5 years of
therapy, with remaining efficacy and with few side
effects. These novel treatments designed to tar-
get the specific pathophysiology of migraine, where
CGRP plays a key role, already have an important
place in the therapy of severe migraine. Long-term
risks, especially in comorbid conditions, have so far
not disclosed severe side effects. The role and inter-
action of these mAbs are now monitored in special
subsets of the population, such as pregnant and
lactating women and in children, and in other con-
ditions where the CGRP family of peptides may
have a role.

Conclusion

The current view suggests that migraine has an
elusive genetic background. Various triggers may
elicit attacks, whether due to stress or fluctuations
in hormones, which trigger cells in the hypotha-
lamus to initiate the attack. The connectivity in
the brain implies the involvement of the thala-
mus and brainstem regions, ultimately resulting
in enhanced activity in the trigeminal system and
sensitization at both central and peripheral sites.
The new specific CGRP-directed medications aim
to play down this activity.

CGRP was earlier proposed to be involved in
migraine pathophysiology [32] and later basic and

clinical research formed the foundation for a new
group of specific remedies, mAbs directed towards
CGRP or the CGRP receptor, and small molecule
drugs (gepants) acting on the CGRP receptor [31].
The mAbs are now approved for prophylaxis of
migraine, and the first of the gepants are in clinical
use. The experience has been reviewed by several
groups and is very encouraging [60]. It took basic
research more than 3 decades to be translated to
clinical practice, but the result for the patients
has been extraordinary [31]. Ongoing work aims to
unravel the biology of CGRP signaling, expand the
clinical evidence for the role of CGRP in migraine
headache, and potentially find other ways to treat
the different patient groups of primary headache
disorders, like cluster headache, inter alia. All in
all, the latest findings have provided new insights
into the central role of the trigeminal system in the
pathophysiology of migraine pain.
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