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Abstract

Diabetic retinopathy is the leading cause of blindness in working age in US and worldwide. 

Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) are known to be essential for growth, 

differentiation and survival of neurons in the developing and mature retina. Nevertheless, a 

growing body of evidence supports an emerging role of neurotrophins in retinal diseases and in 

particular, diabetic retinopathy. Neurotrophins are initially synthesized in a pro-form and undergo 

proteolytic cleavage to produce the mature form that activates two distinctive receptors, the 

tyrosine kinase tropomycin receptor (Trk) and, to lesser extent, the common low affinity p75 

neurotrophin receptor (p75NTR). Despite tight glycemic and metabolic control, many diabetic 

patients continue to experience progressive retinal damage. Understanding the molecular events 

involved in diabetic retinopathy is extremely important to identify novel therapeutic strategies to 

halt the disease progression. Diabetes induces imbalance in neurotrophins by increasing its 

proform, which is associated with upregulation of the p75NTR receptor in the retina. A growing 

body of evidence supports a link between the imbalance of pro-neurotrophins and early retinal 

inflammation, neuro-and microvascular degeneration. Therefore, examining changes in the levels 

of neurotrophins and its receptors might provide a therapeutically beneficial target to combat 

disease progression in diabetic patients. This commentary aims to highlight the impact of diabetes-

impaired balance of neurotrophins and in particular, the NGF and its receptors; TrkA and p75NTR 

in the pathology of DR.
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Diabetic Retinopathy

Diabetic retinopathy (DR) is a severe sight threatening complication of diabetes mellitus and 

the leading cause of blindness in the worldwide. The retina is a typical neurovascular system 

with a delicate organization of neurons, glia cells and blood vessels. Although DR was 

previously perceived as a sole microvascular complication, it is now widely accepted that 

diabetes affects multiple cell types in the retina. The major mechanisms of DR pathogenesis 

appeared to be retinal neurodegeneration, inflammation, alteration of microvasculature 

including barrier dysfunction, loss of pericyte and development of acellular capillaries that 

eventually cause ischemia and hypoxia [1,2]. To meet the oxygen demands, retinal 

neovascularization is triggered in response to several proangiogenic factors including 

vascular endothelial growth factor (VEGF) leading to abnormal growth of new leaky blood 

vessels [1,2]. The inner blood-retina barrier (BRB) is located within endothelium of 

capillaries and interconnected by the processes of glia (astrocytes and Müller cells) as well 

as patches of pericytes [3]. The tight BRB serves essential role in regulating the 

microenvironment and preserving neuronal function. Early breakdown of BRB as well as 

leaky blood vessels arising from late neovascularization can cause macular edema and 

ultimately vision loss [4]. Current treatments like photocoagulation, vitrectomy and anti-

VEGF therapy are effective, yet limited with considerable side effect [5,6]. Understanding 

the molecular events that govern DR progression is critical to devise new therapeutic 

strategies for treatment. Earlier work by Hammes et al. 1995 showed that treatment of 

diabetic rats with nerve growth factor (NGF) prevented early retinal ganglion death, Muller 

cell activation and development of acellular occluded capillaries [7], suggesting the 

involvement of NGF and other neurotrophins in pathophysiology of DR. In the next 

sections, we will highlight the findings of NGF and its receptor recently identified in 

experimental models and clinical samples of DR.

Neurotrophin and Receptor System

Neurotrophins (NTs) are secreted growth factors that regulate neuronal differentiation, 

survival, neurite outgrowth, synaptic formation, and plasticity [8]. There are four types of 

neurotrophins that have been characterized in mammals including NGF, Brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) [9-11]. They 

are collectively called neurotrophins, since; they are derived from a common gene, with 

similar sequence and structure. All neurotrophins are initially synthesized in a pro-form, 

which later undergoes proteolytic cleavage intracellularly by plasmin and furin and 

extracellularly by matrix metalloproteinase to produce the mature form of neurotrophins 

[8,12-14]. All mature neurotrophins exert their action by interacting with two distinctive 

receptors, the high affinity tyrosine kinase tropomycin receptor (Trk) and the common low 

affinity p75 neurotrophin receptor (p75NTR). NGF will preferentially bind to its receptor 

TrkA and BDNF and NT4 bind TrkB receptor with high affinity whereas NT-3 has the 

binding affinity toward TrkC receptor. The mature neurotrophin for example, NGF binds to 

its respective TrkA receptor resulting in receptor auto-phosphorylation and initiation of 

different signaling pathways like PI3 kinase, Ras/Extracellular signal-regulated kinases 

(ERK), Akt 1, protein kinase C (PKC) pathway to promote neuronal survival, differentiation 
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and cell growth [15,16]. The affinity of Trk-receptors for mature neurotrophin is enhanced 

by the association of Trk with p75NTR receptors [17].

Similar to the mature neurotrophin, pro-form of a neurotrophin (proNT) can display its 

independent biological activity by binding p75NTR and interacting with sortilin, a member of 

VPS-10p domain receptor family to elicit cell death [12,18,19]. The p75NTR belongs to 

tumor necrosis factor (TNF) receptor superfamily and thus its activation during cell death 

signal involves activation of TNF receptor associated factors (TRAFs), nuclear Kappa B 

(NFkB) and ceramide [20-22]. The p75NTR has ability to bind both mature and pro-form of 

neurotrophins to interact with other adaptor proteins to produce neuronal growth, 

proliferation or cell death [16,18,2,23]. Activated p75NTR receptor undergoes 

intramembrane proteolysis by sequential α-secretase and γ-secretase-catalyzed cleavage of 

extracellular and intracellular domain respectively to release p75ICD. Interestingly, p75NTR 

receptor lacks the catalytic domain and signaling proceeds through ligand-induced 

recruitment and association of an effector molecules with p75ICD [17,22,24]. The p75ICD 

can then interact with proteins in the cytoplasm or to be translocated to nucleus where it may 

directly regulate transcription [25-29]. Initially, it was assumed that neuronal cells express 

and utilize neurotrophins, but subsequent studies showed that other non-neuronal cell types 

also express neurotrophins [30-32].

Nerve growth factor (NGF)

NGF is a pleotropic factor that extends its biological activity from central and peripheral 

nerve system to the immune, endocrine and visual system [9,33]. The duration and 

magnitude of NGF receptor signaling is dependent on the distribution ratio of TrkA and 

p75NTR receptor on the cell surface [34]. Physiologically, NGF and TrkA are expressed in 

the anterior segment of the eye like iris, ciliary body, lens, cornea and conjunctiva and NGF 

is released into aqueous humor [30,35,36]. In the retina, NGF is produced and utilized by 

retinal ganglion cell (RGCs) and glial cells in a paracrine and autocrine fashion [37,38]. The 

neurotrophin receptor TrkA is expressed in RGC, glial cell and endothelial cell whereas the 

low affinity p75NTR receptor is expressed widely across the retina, mainly within the Muller 

cells and to less extent in RGCs [39], pericytes [40], endothelial cells [41], retinal pigment 

epithelium [42] and photoreceptor cells [43]. TrkA and p75NTR are also expressed in most 

intra-ocular tissues, including lens, vitreous, choroid, iris, and trabecular meshwork [30] and 

in immune cell [44]. Neurotrophins are not only involved in regulation of retinal 

development but also plays a key role in regeneration of neuronal circuits in the visual 

system during retinal injury or retinal degenerative disease [9].

Alternation in NGF levels has been correlated with various diabetic microvascular 

complications including retinopathy, nephropathy, and neuropathy. As shown in Table 1, 

prior studies showed that serum and tear NGF levels were higher in DR patients and 

correlated well with HbA1c, severity of hyperglycemia, progression of the disease, and the 

existence of diabetic nephropathy [45]. Similarly, diabetes increased serum and kidney 

levels of NGF in an experimental model of diabetic nephropathy [46]. Another independent 

study reported significant increases in serum NGF level in patients with diabetic neuropathy 
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[47]. However, the expression of NT-3 and NT-4 was upregulated in vitreous fluid in PDR 

patients [11] Figure 1.

Imbalance of neurotrophins and their receptors in the diabetic retina

In the above mentioned studies, levels of NGF were detected using ELISA or mRNA 

expression techniques, which could not distinguish between the precursor and mature NGF 

form. With availability of better tools and antibodies that recognize proNGF apart from 

NGF, our group had discovered that maturation of proNGF is impaired in the diabetic 

milieu, resulting in increased proNGF expression and decreased NGF expression. This 

observation of increased proNGF and decreased NGF was confirmed in experimental 

diabetic retina and isolated retinal Muller cell (rMC-1) cultured in high glucose [48,49]. 

Furthermore, this increased proNGF/NGF imbalance was demonstrated in vitreous fluids of 

diabetic patients as well as in aqueous humor samples from PDR patients compared to non-

diabetic patients [49]. Diabetes-induced proNGF/NGF imbalance was attributed to the 

reduction in expression and activity of MMP-7, the enzyme that cleaves proNGF to form 

mature NGF [12,49] resulting in accumulation of proNGF and decreases in NGF levels in 

the retina [49]. In parallel, our recent study [50] showed that diabetes-induced imbalance of 

proNGF/NGF observed in aqueous humor fluid was mirrored in the serum of the same PDR 

patients (Table-1). This interesting finding highlights the possible contribution of the 

proNGF/NGF imbalance as a biomarker for DR but does not exclude the possibility that 

imbalance can also contribute to the pathogenesis of the disease. As shown in table-1, recent 

work showed that significant reductions in BDNF level in vitreous and serum samples of 

PDR patients compared to non-diabetic patients [51]. Similar decreases were observed in 

serum of PDR patients as well as in diabetic rat retina that coincided with decreased retinal 

TrkB expression [52].

The imbalance in proNGF/NGF during diabetes was associated with alteration and 

expression of TrkA and p75NTR receptors. While diabetes did not alter TrkA levels, the 

activation of the receptor was significantly decreased in human and diabetic rat retina 

[37,53]. The impaired TrkA activity was associated with upregulation of p75NTR receptor, 

resulting in favoring activation of cell death pathway and neurodegeneration in the diabetic 

retina [37,49]. Interestingly, even in a non-diabetic milieu, overexpression of the cleavage-

resistance proNGF plasmid significantly reduced NGF level and increased p75NTR 

expression in rat retina [41,54,55]. Another study demonstrated that the imbalance of 

proNT3/NT3 was associated with upregulation of p75NTR expression, leading to 

photoreceptor degeneration in a selective Muller cell ablation model [43]. Together, these 

observations suggest that alteration of proneurotrophin to the mature neurotrophin ratio 

coincided with upregulation of p75NTR expression and resulted in shifting the homeostasis 

toward cell death signals. In the next sections, we will examine evidence from literature on 

how imbalance in proNGF/NGF ratio correlates with early characteristics of diabetic 

retinopathy including: retinal inflammation, neuro- and microvascular degeneration.
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Impact of proNGF/NGF imbalance on retinal inflammation

Retinal inflammation is recognized as important factor in the pathogenesis of a wide array of 

retinal diseases including DR [56-58]. During diabetes, the imbalance of proNGF/NGF 

expression favors proNGF/p75NTR pathway, which has been linked to retinal inflammation 

[48,49], and apoptosis [37,55]. Diabetes and proNGF overexpressing model showed 

selective increases in proNGF and p75NTR within the Muller cells with increased glial 

fibrillary acidic protein, a sign of glial cell activation [38,48,49,59,60]. These findings 

signify the importance of p75NTR in regulation of inflammatory mediators and their 

downstream signaling. Activation of proNGF/p75NTR-mediated release of inflammatory 

mediators and glial cell activation can also contribute to pathogenesis of DR. 

Overexpression of proNGF-independent of diabetic milieu-induces significant expression of 

p75NTR, NF-kB, and inflammatory mediators TNF-α, IL-1β in Muller cells [55,59], but not 

in retinal endothelial cell [41]. We and others have shown that p75NTR activates NFkB under 

stressed condition [6, 62]. The underlying mechanism of how p75NTR can activate NFkB is 

not fully understood. One possibility is that activation of p75NTR causes intramembranous 

proteolysis to liberate p75ICD, which can recruit intracellular effector proteins like TRAF6 

[63] or DNA binding protein neurotrophin interacting factor (NRIF) to activate NFkB [41].

Deletion or inhibition of p75NTR receptor in Muller cells blunted the proNGF-mediated pro-

inflammatory response [59]. Similarly, genetic deletion of p75NTR reversed diabetes-

induced imbalance of proNGF/NGF by decreasing proNGF and restoring NGF levels. These 

effects were associated with decreases in inflammatory mediators including NFkB, pNFkB 

and TNF-α and RGC death, glial cell activation and vascular leakage [59]. In control non-

diabetic animals, deletion of p75NTR causes increases in basal expression of proNGF and the 

membrane bound TNF-α protein level, but not in their mRNA level. These observations 

suggest additional role for p75NTR in proNGF and TNF-α protein processing via 

posttranslational modification rather than regulation of transcription in the non-diabetic 

condition.

Impact of proNGF/NGF imbalance on retinal neuronal death

Recent work demonstrated the impact of proNGF\NGF imbalance on neurodegeneration 

using transgenic mice that overexpress proNGF. In this model, proNGF overexpression 

triggered neurodegeneration and learning and memory deficits [64]. Although NGF plays 

important role in survival and death during retinal neurogenesis, the role of NGF in the 

diabetic retina was not fully understood. Under pathological condition proNGF or proBDNF 

is secreted and acts as distinct ligand to promote neuronal apoptosis by directly binding to 

p75NTR receptor and transmembrane receptor sortilin [12,16,19,20]. Diabetes and proNGF 

overexpression triggered neurodegeneration that was associated with increased expression of 

p75NTR and apoptosis marker including caspase-3 and cleaved poly (ADP-ribose) 

polymerase [49,55]. These effects were accompanied by increased activation of Rho kinase, 

p38MAPK and JNK leading to apoptosis in primary RGC culture and in diabetic retinas [49, 

55]. Another mechanism by which proNGF can induce RGC death is through paracrine 

effect of proNGF/p75NTR-mediated secretion of TNF-α by Muller glial cells [59,65]. Recent 

work showed that NGF supplementation reduced RGC death in diabetes and glaucoma rat 
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model [7,66,67]. Together, these studies support the notion that restoring NGF level is 

neuroprotective in diabetic retina.

Impact of proNGF/NGF imbalance on retinal vascular permeability

During diabetes, retinal vasculature becomes leaky, leading to increased albumin flux into 

the retina, fluid accumulation, and macular edema that may progress to vision loss [68]. 

Earlier work showed that diabetes-induced breakdown of the blood retina barrier was 

associated with increases in proNGF and decreases in NGF [49]. Overexpression of the 

cleavage-resistance proNGF increased vascular permeability in heathy rat retinas [54]. 

Deletion of p75NTR receptor prevented the diabetes-induced blood retinal barrier breakdown 

in diabetic mice [59]. Further, in rMC-1 cell and in diabetic mouse retina, proNGF induced 

secretion of inflammatory mediators including TNF-α, which is known to induce vascular 

permeability and endothelial cell death [69-71]. However, pharmacological inhibition of 

p75NTR receptor or its cleavage blocked TNF-α in Muller cells and its mediated vascular 

permeability. In parallel, genetic deletion of p75NTR prevented diabetes-induced BRB 

breakdown without significant alteration of VEGF mRNA levels suggesting the importance 

of p75NTR receptor in mediating vascular permeability during diabetes [38,59]. VEGF is a 

known regulator of vascular permeability and angiogenesis in ocular diseases including DR. 

NGF has been shown to stimulate VEGF production in cultured primary astrocytes in vitro 

and in hind limb ischemia diabetic model [72,73]. Furthermore, intravitreal injection of 

bevacizumab, an anti-VEGF antibody down-regulated NGF and increased retinal cell 

apoptosis in rabbits [74]. In contrast, anti-NGF antibody application reduced the level of 

NGF and enhanced the expression of VEGF in rodent retina [75]. Although many studies 

reported interaction of NGF and VEGF, but whether proNGF can directly modulate VEGF 

levels and retinal vasculature remain to be addressed.

Impact of proNGF/NGF imbalance on retinal vascular cell death

Diabetes-induced vascular cell death causes formation of acellular capillaries, a hall mark of 

retinal ischemia that triggers the progression of DR from background retinopathy to PDR 

and blindness [68]. A land mark study by Hammes et al showed that NGF supplementation 

promoted endothelial cell survival and prevented pericyte loss as well as formation of 

occluded capillaries in the diabetic retina [7]. Using a non-diabetic model, our recent work 

showed that overexpression of proNGF increased the ratio of proNGF/NGF and resulted in 

apoptosis of endothelial cells and significant occluded (acellular) capillaries formation [41]. 

Overexpression of proNGF reduced NGF and TrkA phosphorylation and activated p75NTR 

mediated apoptosis by increasing JNK kinase, p38MAPK and cleaved-PARP activity by 

translocating p75NTR and DNA binding protein, NRIF into the nucleus and form a complex, 

which is essential for p75NTR mediated apoptotic signals [41]. Silencing p75NTR expression 

prevented proNGF-induced p75NTR and p75ICD expression and restored the balance by 

decreasing the proNGF/p75NTR level and increasing NGF/TrkA expression in a rodent 

retina and in retinal endothelial cells [4,54].

Prior studies showed that hypoxia induced the expression of p75NTR in retinal pigment 

epithelium, and promoted cell death of vascular smooth muscle and endothelial cells 
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[76,77]. In oxygen induced retinopathy mouse model, NGF contributed to retinal 

neovascularization by activating TrkA receptor [78]. Whereas, knocking down of p75NTR 

suppressed hypoxia induced pro-angiogenic factors and promoted the anti-angiogenesis-

related factors [42]. These results indicated that p75NTR could be a potential therapeutic 

target for hypoxia or oxidative stress diseases including DR.

Restoring the balance of NGF/proNGF as potential therapeutic strategy

Diabetes-induced imbalance of proNGF/NGF resulted in upregulation of proNGF/p75NTR 

axis and downregulation of NGF/TrkA axis. This imbalance appears to play critical role in 

early pathogenesis of DR such as retinal neurodegeneration, inflammation and vascular 

dysfunction that eventually leads to blindness. Restoring balance the between 

proneurotrophin/mature neurotrophin represents a potential promising therapeutic strategy to 

overcome retinal degenerative diseases including DR [79].

Treatment with NGF prevents the early retinal cell apoptosis and development of acellular 

occluded capillaries [7]. However, injection of anti-NGF antibody worsened RGC loss in 

experimental diabetic rat [80]. Furthermore, administration of NGF eye drops restored TrkA 

levels in the retina, and protected RGCs from degeneration in experimental diabetic model 

[66,80] and in glaucoma rat model [81] suggesting that NGF treatment can restore NGF/

proNGF balance during retinopathy. Inhibiting oxidative stress and tyrosine nitration using 

green tea extract, peroxynitrite decomposition catalyst or atorvastatin reduced the burden of 

proNGF/NGF imbalance in the diabetic retina. Restoring NGF/proNGF balance using these 

treatments prevented diabetes-induced retinal neurodegeneration [37,48,49] and vascular 

permeability [49].

Genetic deletion or silencing of p75NTR prevented proNGF accumulation and restored the 

mature NGF level and maintained the balance between NGF and proNGF to normal level in 

diabetic retina [59] or in the non-diabetic retina [41]. Genetic deletion or silencing of 

p75NTR also prevents proNGF-induced retinal inflammation, vascular permeability and 

retinal neurodegeneration in the diabetic retina [59] or development of acellular capillaries 

in a non-diabetic model [41]. Furthermore, restoring NT3/proNT3 balance prevented 

photoreceptor degeneration in a model of selective Muller cell ablation. In the latter study, 

restoring the balance was achieved using intravitreal injection of mature NT3 or by 

neutralizing p75NTR using a specific antibody. Therefore, targeting p75NTR expression or 

activity may provide a “druggable target” for the treatment of retinal degenerative diseases 

including DR.

In summary, neurotrophins are known to be essential for growth, differentiation and survival 

growth factors in the developing and mature retina. However, a growing body of evidence 

supports the evolving and critical role of neurotrophins in retinal diseases and in particular, 

diabetic retinopathy. Diabetes alters the homeostasis of NGF by favoring accumulation of 

proNGF at the expense of the mature NGF. It appears that the imbalance of proNGF/NGF is 

critical for various early endpoints for diabetic retinopathy including retinal inflammation, 

neurodegeneration, vascular permeability and development of acellular capillaries. 
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Restoring the balance of NGF/proNGF and targeting proNGF/p75NTR axis may be potential 

therapeutic strategy to prevent early signs of diabetic retinopathy.
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Figure1. 
Schematic representation of the multiple pathways by which proNGF/NGF can contribute to 

diabetic retinopathy. Diabetes impairs the homeostasis of NGF by decreasing the proteolytic 

cleavage of the proform resulting in increasing proNGF levels and decreasing NGF levels. 

Mature NGF binds to tyrosine kinase TrkA receptor in combination with p75NTR causing 

autophosphorylation of TrkA receptor and activation of P13K/Akt pathway leading to cell 

proliferation, cell survival and angiogenic response. ProNGF preferentially binds to p75NTR, 

in combination with its co-receptor sortilin, to activate multiple pathways depending on the 

interaction of the intracellular domain (ICD) and a given adaptor protein. Interaction of 

p75NTR ICD with NFkB results in activation of proinflammatory cytokine production. 

Interaction of ICD with RhoA/MAPK pathway resulting in neuronal death, cytoskeleton 

arrangement and BRB breakdown. Interaction of the ICD with the neurotrophin interacting 

factor (NRIF) will activate c-Jun kinase (JNK) resulting in endothelial cell (EC) apoptosis 

and formation of acellular capillaries, surrogate marker of ischemia.
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Table 1

A summary of studies that determined the level of neurotrophins in the eyes of diabetic patients.

Neurotrophin Fluid/Tissue Technique Reported Disease state References

NGF Serum ELISA Increase DR/PDR [45]

NGF Tear ELISA Increase DR/PDR [45]

NGF Serum ELISA Increase DN [47]

NGF Aqueous humor Immunoblot Decrease PDR [49,50]

NGF Vitreous fluid Immunoblot Decrease DR [49,50]

NGF Serum Immunoblot Decrease PDR [50]

proNGF Aqueous humor Immunoblot Increase PDR [49,50]

proNGF Vitreous fluid Immunoblot Increase DR [49]

proNGF Serum Immunoblot Increase PDR [50]

BDNF Serum ELISA Decrease NPDR, PDR [51]

BDNF Vitreous ELISA Decrease NPDR, PDR [51]

BDNF Serum ELISA Decrease PDR [52]

NT3/NT4 Vitreous fluid/Serum Immunoblot Increase PDR [11]

DN: Diabetic Neuropathy; DR: Diabetic Retinopathy; PDR: Proliferative Diabetic Retinopathy; NPDR: Non-Proliferative Diabetic Retinopathy
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