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Mendelian randomization (MR) can estimate the causal effect for a risk factor on
a complex disease using genetic variants as instrument variables (IVs). A variety
of generalized MR methods have been proposed to integrate results arising from
multiple IVs in order to increase power. One of the methods constructs the genetic
score (GS) by a linear combination of the multiple IVs using the multiple regression
model, which was applied in medical researches broadly. However, GS-based MR
requires individual-level data, which greatly limit its application in clinical research.
We propose an alternative method called Mendelian Randomization with Refined
Instrumental Variable from Genetic Score (MR-RIVER) to construct a genetic IV by
integrating multiple genetic variants based on summarized results, rather than individual
data. Compared with inverse-variance weighted (IVW) and generalized summary-data-
based Mendelian randomization (GSMR), MR-RIVER maintained the type I error, while
possessing more statistical power than the competing methods. MR-RIVER also
presented smaller biases and mean squared errors, compared to the IVW and GSMR.
We further applied the proposed method to estimate the effects of blood metabolites on
educational attainment, by integrating results from several publicly available resources.
MR-RIVER provided robust results under different LD prune criteria and identified three
metabolites associated with years of schooling and additional 15 metabolites with
indirect mediation effects through butyrylcarnitine. MR-RIVER, which extends score-
based MR to summarized results in lieu of individual data and incorporates multiple
correlated IVs, provided a more accurate and powerful means for the discovery of novel
risk factors.

Keywords: Mendelian randomization, multiple correlated instrumental variables, genetic score, metabolomics,
educational attainment
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INTRODUCTION

Observational studies have long been utilized to detect
associations between the exposures of interest and the risk
of complex diseases. However, the estimated effects are typically
biased and causality cannot be directly inferred because of
unobserved confounders or reverse causality (Ebrahim and
Davey Smith, 2008). Double-blind randomized controlled trials
with perfect adherence, which use randomization allocation to
avoid potential confounding, are often considered as the gold
standard to infer causality (Bothwell et al., 2016). However,
logistical difficulties limit the use in real-world studies.

Instrumental variable (IV) analysis provides unbiased
causal estimates in the presence of observed and unobserved
confounders under certain assumptions (Burgess et al., 2017).
A valid IV should (1) be associated with the exposure of interest;
(2) not be associated with any confounders of the exposure–
outcome association; and (3) affect the outcome only through its
impact on the exposure of interest (Figure 1A; Martens et al.,
2006). Because human germline genetic variants usually form
at fertilization and remain unchanged after birth (Ference et al.,
2019), they are less likely to be correlated with the environmental
or clinical factors but can be correlated with susceptibility to
these factors that are associated with outcomes and thus are ideal
candidates for IVs.

Mendelian randomization (MR), which uses genetic variants
as IVs, has emerged recently as a powerful tool to estimate the
causal effects of risk factors in observational settings (Smith
and Ebrahim, 2003; Yavorska and Burgess, 2017; Burgess and
Labrecque, 2018; Bowden et al., 2019) and has been increasingly
used in genome-wide association studies (GWAS) (Welter et al.,
2014; Burgess et al., 2015; Pickrell et al., 2016). However, as
a single variant typically explains only a small proportion of
variability, a large sample size is often required to power the
traditional MR (Pierce et al., 2011). A variety of generalized MR
methods have been proposed to integrate results arising from
multiple IVs in order to increase power (Burgess and Thompson,
2013; Burgess et al., 2013). These methods include generalized
summary-data-based Mendelian randomization (GSMR) (Zhu
et al., 2018) and inverse-variance weighted method (IVW)
(Burgess et al., 2013, 2016). GSMR integrates estimates from
single IVs by using a generalized least-square approach (Zhu
et al., 2018), whereas IVW combines estimates by using weights
based on the variance–covariance matrix (Burgess et al., 2016).
However, these existing methods are based on the summarized
results of single-variant analysis and commonly prune IVs based
on linkage disequilibrium to obtain relatively independent IVs,
resulting in loss of information. Even with adjustment of the
correlation structure, the results may still be inefficient. Notably,
Burgess et al. (2017) introduced a multivariate regression method,
which regresses the exposure factor on multiple IVs at the first
stage to construct genetic scores (GSs). GS can be viewed as a
linear combination of multiple IVs weighted by the strength of
the association between an IV and the exposure, adjusted for all
the other IVs. In the ensuing MR analysis, GS will be passed
along as a single IV. The method was recently implemented in
a study of ACLY and cardiovascular disease which incorporated

multiple germline genetic variants (IVs) to construct GS as
single IV and further inferred the causal relationship between
ACLY inhibitors and the reduced risk of cardiovascular disease
(Ference et al., 2019).

Thus, we propose an alternative method called Mendelian
Randomization with Refined Instrumental Variable from Genetic
Score (MR-RIVER) (Figure 1B) to construct a genetic score
summarizing multiple genetic variants based on summarized
results rather than individual-level data. Our method, which
accounts for correlations among multiple genetic variants by
borrowing linkage disequilibrium (LD) information from public
databases (such as 1000 Genomes Project), provides a useful
framework to integrate estimates obtained by using various
genetic IVs and improves the performance of the summarized
genetic score for the correlated genetic variants. Simulation
studies suggested improved performance of our proposed
method, compared to GSMR and IVW. We further applied the
proposed method to estimate the effects of blood metabolites
on educational attainment, by integrating results from several
publicly available resources (Shin et al., 2014; Okbay et al., 2016).

METHOD

MR-RIVER Algorithm
We propose a method to infer the causal relationship between
risk factor X (e.g., blood metabolites) and outcome Y (e.g., years
of schooling) given a set of IVs, denoted by Z = (Z1, Z2, . . .,
Zp) (e.g., a set of genetic variants). The major components of
our framework are depicted in Figure 1A. More specifically,
we use bXZi , along with standard error se(bXZi), to quantify the
association of each Zi with the risk factor X from the traditional
single-locus association analysis model, and likewise for bYZi and
se
(
bYZi

)
for each Zi with the outcome Y.

The unified weighted GS incorporating multiple IVs could be
estimated by the linear combination of multiple IVs:

GS =
p∑

i=1

b̃XZiZi (1)

Where b̃XZi denotes the direct effect of Zi on X after controlling
for the other IVs that derived from multivariable regression.
However, in practice, the published-available summarized data
were derived from single-variant analysis; it is unlikely to get
genetic association estimates from a multivariable regression
model in a large independent dataset due to issues of practicality
and confidentiality of data sharing on such a large scale. Here,
we propose an estimator by borrowing the idea of coefficient
decomposition to estimate b̃XZi by using summarized results
rather than individual-level data.

Specifically, under the assumption that (X, Z)
follow a multivariate normal distribution, regressing
X on each Zi will yield an estimate of bXZi . Without
loss of generality, we assume that there is a linear
relationship between X and Z. As E (X|Zi) = b0 +

bXZiZi, bXZi represents the total effect of Zi on X.
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FIGURE 1 | Diagram of Mendelian randomization and flowchart of the proposed MR-RIVER method. (A) Mendelian randomization inferring the causal association of
the exposure and outcome: (i) IVs are associated with the exposure X; (ii) IVs and outcome Y are independent, conditional on exposure X and unmeasured
confounders U; (iii) IVs and confounders U are independent. (B) Flowchart of the proposed MR-RIVER method for multiple genetic variants in causal inference.

After adjusting the effect of all the other IVs, the
relationship between X and Zi can be expressed as
E
(
X|Z1, · · · , Zp

)
= b0 + b̃XZ1Z1 + · · · + b̃XZpZp , where

b̃XZi is the direct effect of Zi on X under the control
of other IVs. Therefore, bXZi can be decomposed into

the direct effect and indirect effect via other correlated
IVs:

bXZi = b̃XZi +
p∑
j6=i

b̃XZjθZjZi (2)
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Here, θZjZi is the regression coefficient of Zj on Zi, and b̃XZi
is the direct effect of Zi on X, after controlling for the other IVs.
Equation 2 can be rewritten as:

b̃XZ = θ−1bXZ (3)

where bXZ is the p-length vector containing bXZi , b̃XZ is the
vector of refined coefficients b̃XZi , and θ is a p × p matrix
with θZj Zi being the ij-th entry. It follows that θZiZj =

ρZjZi

√
var

(
Zj
) /

var (Zi) where ρZj Zi is the correlation between
Zj and Zi, var(Zi) is the variance of Zi. var(Zi) and ρZjZi
can be obtained from the public GWAS resources (e.g., 1000
Genomes Project).

We note that Eq. 3 is crucial as it enables us to compute GS
defined in Eq. 1 with only summary data, in lieu of individual-
level data. With GS as a single IV, we can estimate the association
between the risk factor X and outcome Y with:

β̂XY =
βYGS

βXGS
(4)

=
cov(Y,GS)
cov(X,GS)

=
cov(Y,

∑p
i b̃XZiZi)

cov(X,
∑p

i b̃XZiZi)

=

∑p
i b̃XZi cov(Y,Zi)∑p
i b̃XZi cov(X,Zi)

=

∑p
i b̃XZibYZi var(Zi)∑p
i b̃XZibXZi var(Zi)

As mentioned by Burgess et al. (2016), var (Zi) is approximately
proportional to 1

/
var

(
bYZi

)
; thus, Eq. 4 can be simplified as:

β̂XY =

∑p
i b̃XZibYZi

/
var

(
bYZi

)
∑p

i b̃XZibXZi
/
var

(
bYZi

) (5)

The asymptotic standard error for β̂XY can be estimated by the
delta method (Thomas et al., 2007):

se
(
β̂XY

)
=

√√√√√√
∑p

i
∑p

j ρZiZjb̃XZi b̃XZj
/(

se
(
bYZi

)
se
(
bYZj

))
(∑p

i b̃XZiXZj
/
var

(
bYZi

))2

(6)
The association between X and Y can be further tested by using
the Wald test statistic u = β̂XY

/
se
(
β̂XY

)
, which asymptotically

follows a standard normal distribution under the null hypothesis.
We stress that, though Eqs.5, 6 resemble the estimator

proposed in Burgess et al. (2017), our estimator differs from
that in Burgess et al.’s (2017) required individual data, while
our estimator, with the introduction of the refined estimates in
Eq. 3, can be computed even with the summary data. Therefore,
our estimator is applicable in more broad settings, where only
summary data are available. Simulations have confirmed the
utility of our method.

Design of Statistical Simulations
Two sets of simulation studies were designed to investigate MR-
RIVER.

Evaluation of the Estimates of the Refined
Coefficients of IVs on X
We generated six IVs, Z1, Z2, . . ., Z6, from a multivariate normal
distribution MVN (0,6), where6 is a correlation matrix with an
equal correlation structure. We varied the correlation coefficient
and set it to be 0, 0.1, 0.3, 0.5, 0.7, and 0.9, corresponding
to various scenarios: from the independent case to the highly
correlated case. We generated X using the following models:

Xi =
∑6

j=1 Zijb̃j + εXi
b̃j ∼ N (µ, 1) , µ = −1, −0.5, 0.5, 1, 1.5, 2
εXi ∼ N (0, 1)

(7)

The sample size was fixed at 1,000. In addition, we simulated
5,000 additional individuals to provide an external correlation
structure for IVs. For each simulation configuration, 2,000
datasets were produced.

We first regressed X on each Zj separately to obtain the
summarized effect of Zj on X, and based on these results, we
applied Eq. 2 to obtain the estimates of the refined coefficients.
The estimated refined coefficients, along with the corresponding
standard errors, were compared to those from traditional GWAS
summarized results under different correlation structures and
effect sizes of Z.

Investigation of the Statistical Properties of
MR-RIVER
Let Xi and Yi denote the exposure and outcome variables of
the ith subject, and Zij the jth IV (j = 1, . . ., J). The data were
generated from the following model:

Zi ∼ MVN (0, 6) , bj ∼ U (0, 0.5)
Xi =

∑J
j=1 Zijbj + εXi

Yi = XibXY + εYi

where εXi ∼ N
(

0, var
(∑J

j=1 Zijbj
) (

R−2
ZX − 1

))
and εYi ∼ N

(
0, var

(
XibXY

) (
R−2
XY − 1

))
(8)

where6 is the correlation matrix of IVs with an equal correlation
structure. We varied the correlation parameter from 0 to 0.9
by 0.1. Each IV explains 0.005 of the variance of X, and we
considered J = 5, 10, 15, 20. Moreover, R2

ZX is the proportion
of variance of X explained by all IVs, which was set to be 0.025,
0.05, 0.075, and 0.1, while R2

XY is the proportion of variance of
Y explained by X, which was set to be 0.05, 0.1, 0.15, and 0.2.
Sample sizes for the IV-exposure association study (N1) and the
IV-outcome association study (N2) were set to be 1,000 and 1,500,
respectively. In addition, 5,000 (N3) individuals were generated
to provide an external correlation structure for genetic variants.

For each parameter configuration, a total of 2,000 datasets
were produced. Under all the scenarios examined, MR-RIVER
was found to outperform GSMR and IVW by maintaining the
Type I error, possessing more statistical power, as well as having
smaller biases and mean squared errors.
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FIGURE 2 | Comparison of refined and traditional coefficients under different correlation structures. Expected values are the regression coefficients obtained from
the multivariable regression model with all the variables used to generate dependent variable Y plotted against predicted values obtained from the refined method
(refined coefficients) and traditional single-locus analyses (traditional coefficients). Refined and traditional coefficients were compared with the bias from expected
coefficients under different correlation structures through a regression model. Red equation represents the relationship between expected coefficients and refined
coefficients, and green equation represents traditional coefficients.

RESULTS

Statistical Properties of Refined
Coefficients
We investigated the accuracy of refined coefficients. With the
obtained correlation structure of IVs from the internal analysis

set, the estimated refined coefficients (along with the standard
errors) based on the summarized results were in consistent
with the corresponding estimates from multivariable regression
(Supplementary Figures 1A,B), suggesting that the estimates of
the refined coefficients were unbiased.

As the key of the approach lies in borrowing the correlation
information from public resources, we further evaluated
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FIGURE 3 | Comparison of refined and traditional coefficients under different effect sizes. Expected values are the regression coefficients obtained from the
multivariable regression model with all the variables used to generate dependent variable Y plotted against predicted values obtained from the refined method
(refined coefficients) and traditional single-locus analyses (traditional coefficients). Refined and traditional coefficients were compared with the bias from expected
coefficients under different effect sizes through a regression model. Red equation represents the relationship between expected coefficients and refined coefficients,
and green equation represents traditional coefficients.

the method by obtaining the correlation structure from the
simulated external samples. According to different levels of
correlation among IVs, refined coefficients outperformed
traditional coefficients obtained from single-locus analysis,
especially when the correlations among IVs were relatively
high (Figure 2). Similarly, under the specific correlation
structure (with a correlation coefficient of 0.5), refined
coefficients remained approximately unbiased, while traditional

coefficients showed increased biases with increased effect
sizes (Figure 3).

Statistical Properties of MR-RIVER
With various strengths of correlations among IVs, MR-RIVER
maintained the type I error at the 0.05 level, compared to the
IVW (with type I error around 0.04) and GSMR (with the most
conservative control of the type I error) (Figure 4A). The results
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FIGURE 4 | Statistical properties of MR methods under different correlations. Correlation between IVs plotted against: (A) type I error under the null hypothesis; (B)
performance of power under the alternative hypothesis with bxy = 1; (C) bias under the alternative hypothesis; and (D) mean square error.

held when we varied the sample size (Supplementary Figure 2A)
or the number of IVs (Supplementary Figure 3A). Further,
increasing correlation strengths among IVs (Figure 4B), or
increasing sample size (Supplementary Figure 2B), or increasing
the numbers of IVs (Supplementary Figure 3B) led to increased
power for all MR methods. Overall, the power of MR-RIVER
was higher than that of GSMR and IVW under different
parameter settings.

Estimates of bxy from the three MR methods were
approximately unbiased, while the biases of the MR-
RIVER and IVW estimates were lower than that of
the GSMR estimate (Figure 4C). The bias increased
with the increased effect size (Supplementary Figure 4)
and so was true for the MSE (Figure 4D). MR-RIVER
and IVW had lower biases and MSEs, compared
to GSMR.
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FIGURE 5 | Study workflow for educational attainment MR analysis.

REAL DATA APPLICATION

Motivation
Educational attainment is moderately heritable and has been
recognized as a proxy phenotype for intelligence, cognition,
and neuropsychiatric disorders (Berry et al., 2006; Esch
et al., 2014). Discovery of the causal factors linking to the
educational attainment could shed light on the biological
pathways underlying human behavioral and health-related
outcomes (Rietveld et al., 2013). Blood metabolites, which closely
represent the physiological status of an organism, have garnered
significant interest in biomedical research (Simpson et al., 2016).
However, few studies have focused on a causal relationship
between metabolites and educational attainment in the presence
of multiple IV variables. Taking advantage of the proposed
MR-RIVER, this application aims to systematically evaluate the

causal relationship between blood metabolites and educational
attainment using multiple GWAS summary results.

Materials
Genome-wide association studies summary results for
educational attainment were obtained based on various studies
from the Social Science Genetic Association Consortium1 (Berry
et al., 2006; Rietveld et al., 2013). Educational attainment was
measured as the year of schooling completed (EduYears) among
293,723 individuals (with a mean of 14.3 years) (Supplementary
Table 1). Approximately, 9.3 million SNPs were included in the
association analysis, and minor allele frequencies were obtained
from the 1000 Genomes Project. Details of the SNPs included in
our analysis are displayed in Supplementary Table 2.

1https://www.thessgac.org/data
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FIGURE 6 | MR-RIVER and GSMR analysis for causal association between metabolites and educational attainment. Relationship between individual metabolites
with –log10 (P-value) of the association. Upper yellow values represent MR-RIVER results, and lower blue values represent GSMR results. Associated metabolites are
annotated.
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Summary results of quantitative trait locus (QTL) analysis of
SNPs on corresponding metabolites were obtained from 7,824
European adult individuals (Supplementary Table 3) (Shin et al.,
2014). Specifically, the metabolite QTL (mQTL) data contained
all of the summarized association statistics for 529 metabolites
with P-values less than 1 × 10−52.A total of 196 metabolites out
of 529 (37%) were unknown because their chemical identity was
not yet determined at the time of analysis. Detailed information
of metabolites can be found in Supplementary Table 4.

MR Analysis Results
We applied the method to explore the causal effect of blood
metabolites on educational attainment as depicted in Figure 5.
Based on assumption (1) of IV, SNPs were required to have an
mQTL relationship with the corresponding metabolites with P-
values less than 5 × 10−8. As a result, 9,472 SNPs were selected
as IVs, matched with 260 metabolites. Among these, 9,329 SNPs
were available in the educational attainment GWAS.

Causal inference for each metabolite on quantitative education
years was evaluated through MR-RIVER and GSMR. To obtain
sufficient IVs to increase the power of MR, IVs were pruned by
LD at 0.5; The HEIDI-outlier test was used to detect pleiotropic
SNPs and remove them from the MR analysis; see Figure 6.
Bonferroni correction was used to control for false positives. MR-
RIVER identified three metabolites associated with education
years: butyrylcarnitine (bxy = −0.043, P = 1.08 × 10−7), 1,5-
anhydroglucitol (1,5-AG) (bxy = −0.192, P = 1.77 × 10−7),
and homocitrulline (bxy = −0.269, P = 1.47 × 10−4). GSMR
identified biliverdin (bxy = −0.028, P = 2.92 × 10−15), 1,5-AG
(bxy =−0.183, P = 5.83× 10−8), and an unknown metabolite, X-
12092 (retention time, 1.130; mass-to-charge ratio, 144.2; spectra,
84.2:0.8) (bxy = 0.028, P = 3.85 × 10−7) (Table 1). In addition,
sensitivity analyses with different LD prune criteria (0.1–0.7, in
0.1 increments) showed robust results for MR-RIVER, but not
for GSMR (Supplementary Tables 5, 6).

We performed additional analyses to explore whether the
remaining metabolites affected education years through the
above-identified candidate metabolites. SNPs associated with the

2http://metabolomics.helmholtz-muenchen.de/gwas

TABLE 1 | Relative bias of imputed datasets with three imputation methods.

Method Metabolite bxy se of bxy P-value

MR-RIVER Butyrylcarnitine −0.0430 0.0081 1.08 × 10−07

1,5-Anhydroglucitol
(1,5-AG)

−0.1916 0.0367 1.77 × 10−07

Homocitrulline −0.2687 0.0708 1.47 × 10−04

GSMR Biliverdin −0.0284 0.0036 2.92 × 10−15

1,5-Anhydroglucitol
(1,5-AG)

−0.1838 0.0339 5.83 × 10−08

X-12092 0.0283 0.0056 3.85 × 10−07

bxy : causal effect of metabolite and educational attainment.
se of bxy : standard error of causal effect.
P value: P-value of causal effect.
X-12092: unknown metabolite (retention time, 1.130; mass-to-charge ratio, 144.2;
spectra, 84.2:0.8).

remaining metabolites were treated as IVs to infer potential
causal associations between the identified metabolites and
remaining metabolites (Figure 7A). The results indicated
28 additional metabolites were associated with the three
candidate metabolites. Among these, 24 metabolites (including
six unknown metabolites) were associated with butyrylcarnitine,
three unknown metabolites were associated with 1,5-AG, and
one unknown metabolite was associated with homocitrulline
(Supplementary Table 7).

Further, mediation analysis was used to evaluate potential
metabolic regulatory pathways for education years by Sobel
test (Baron and Kenny, 1986). The 15 metabolites indirectly
mediated the effect on education years through butyrylcarnitine
(Figure 7B and Supplementary Table 7). Most metabolites
were located in the carnitine metabolism pathway (8/15, 53.0%).
Blood metabolic biomarkers overall formed a potential causal
network (Figure 7C).

DISCUSSION

We proposed an improved MR approach, MR-RIVER, to
combine summarized results of multiple IVs into a single GS
and to estimate the unbiased causal effect of a risk factor
on an outcome. The publicly accessible summary-level data
were obtained from single-locus analyses without consideration
of the correlation between IVs. MR-RIVER provides a novel
way to refine the effect size of genetic variants account for
the correlation based on summary data and makes it efficient
to perform summarized data genetic score MR when the
correlation between IVs are unignorable. MR-RIVER closely
maintains the type I error around the nominal level while it
has higher power, lower bias, and smaller variation compared
to GSMR and IVW.

Genome-wide association studies uses original GWAS
summarized results for IV exposure and IV outcome obtained
from single-locus analyses and then derives the causal effect
by the generalized least-square approach weighted by the
variance–covariance matrix to adjust for correlations among
IVs (Zhu et al., 2018). MR-RIVER instead first modifies the
summarized results, accounting for correlations among IVs, and
then integrates the results. Thus, there are several differences
between MR-RIVER and GSMR. First, MR-RIVER adjusts
summarized results for each genetic IV by borrowing external
LD information to obtain more accurately estimate IV-exposure
effect—therefore, MR-RIVER has an advantage in accuracy.
Second, MR-RIVER aggregates multiple IVs by weighted linear
combination weighted by refined coefficients, which reduces the
dimension for IVs and simplifies the following calculation.

Interestingly, MR-RIVER and IVW showed similar
performance in bias and MSE. If the weights used to aggregate
multiple IVs are equal to the original GWAS summary results
(b̃XZi = bXZi in Eq. 5), then MR-RIVER is the same as IVW.
On the one hand, estimates of MR-RIVER are approximately
identical to IVW because point estimates are robust toward
the weights (Supplementary Figure 5A). On the other
hand, different weights result in different standard errors

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 618829

http://metabolomics.helmholtz-muenchen.de/gwas
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-618829 March 17, 2021 Time: 11:55 # 11

Lin et al. MR-RIVER for Correlated IV

FIGURE 7 | Diagram of MR analysis between metabolites and mediation analysis. (A) MR inferring the causal association of remaining metabolites (X ) on previously
identified metabolites (Y ). Mediation analysis of the rest of metabolites on risk of education years through the identified metabolites. (B) Metabolites that indirectly
mediate the effect on education years through butyrylcarnitine in mediation analysis. b_CI represents effect of metabolites on butyrylcarnitine and 95% confidence
interval (95% CI). IE_CI represents indirect effect of metabolites on education years and 95% CI, and IE_pval represents P-values. (C) Causal network of blood
metabolites on education years. Blue circles indicate metabolites that are directly identified, while yellow circles have indirect effect through blue metabolites. Red
lines represent positive effects, and blue lines indicate negative effects.

(Supplementary Figure 5B), which in turn lead to different
statistics (Supplementary Figure 5C). This may explain why
the bias and MSE of MR-RIVER and IVW are similar, but

the performance of power and type I error is different. To
summarize, MR-RIVER improves upon IVW and is powerful to
infer a causal relationship between an exposure and outcome.
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There has been much discussion on the potentials and
limitations of MR, as the IV assumptions cannot be fully tested
(VanderWeele et al., 2014; Paternoster et al., 2017). Horizontal
pleiotropy is a common phenomenon in the human genome
that some genetic variants affect the outcome through other
traits or pathways rather than exclusively through the risk factor
(Solovieff et al., 2013). It is a violation of the instrumental variable
assumptions and may induce a major source of potential bias
in causal inference. There are several methods are proposed
to detect pleiotropy (Slob and Burgess, 2020). The MR-Egger
method is able to assess the pleiotropic effects as well as to provide
a consistent estimate of the causal effect (Bowden et al., 2017),
while the estimates were generally imprecise with low power
(Slob and Burgess, 2020). The HEIDI-outlier test was proposed
to detect heterogeneity at multiple correlated instruments (Zhu
et al., 2018). It will be powerful and valuable when only some
proportion of the SNPs have a horizontal pleiotropy effect. In
our proposed method, we ensembled the HEIDI-outlier test
to detect potential pleiotropy and then remove them from the
MR-RIVER analysis.

Notably, after GWAS significant threshold screening,
LD prune, and HEIDI-outlier filtering, MR-RIVER analysis
suggested three causal metabolites that are associated with
education years. The first metabolite is butyrylcarnitine,
classified as an acylcarnitine. Previous studies have shown
that abnormally increased levels of acylcarnitines, including
butyrylcarnitine, are associated with fatty acid oxidation
disorders (Jones et al., 2010). Elevated butyrylcarnitine
concentration in plasma is associated with short-chain
acyl-CoA dehydrogenase deficiency (van Maldegem et al.,
2006), which may cause failure to thrive, developmental and
cognitive delay, seizures, and neuromuscular (Corydon et al.,
2001). Moreover, fatty acid oxidation disorders may lead to
mitochondrial dysfunction and further affect the energy supply
of the brain (Kölker et al., 2004; Wajner and Amaral, 2015).
Therefore, high levels of acylcarnitines may be involved in
potential metabolic regulatory pathways affecting cognitive
status or brain energy supplement and, in turn, increased
education years (mannose→butyrylcarnitine→education
years). Mannose easily crosses the blood–brain barrier and is
converted to fructose-6-phosphate that enters the glycolytic
pathway (Sharma et al., 2014). Cerebral tissue can utilize
mannose directly and rapidly from the blood to restore
or maintain normal metabolic functions in the absence of
glucose (Sloviter and Kamimoto, 1970). Taken altogether,
mannose levels appear to be a potential beneficial factor for
education years.

The second metabolite, 1,5-AG, is a monosaccharide
structurally similar to glucose and is a validated marker of
short-term glycemic control (Buse et al., 2003). Low levels of
1,5-AG, indicative of glycemic peak, are associated with dementia
and cognitive decline (Rawlings et al., 2017). Finally, elevated
homocitrulline, the third metabolite, is structurally similar to
but one methylene group longer than citrulline, and impairs
bioenergetics in the brain cortex, by reducing velocity of the
citric acid cycle and creatine kinase activity. Consequently, it
decreases energy production and transfer (Viegas et al., 2009).

Therefore, administration of 1,5-AG and homocitrulline may
improve educational attainment.

In conclusion, the proposed MR-RIVER method
appears to outperform the existing commonly used MR
methods. With publicly accessible summary-level data,
MR-RIVER provides a more accurate and powerful
mean for novel discoveries and identifies several blood
metabolites as biomarkers and interventional targets for
educational attainment.
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