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Abstract

Background: Infectious complications following experimental pancreatitis involve major disruptions in the gut microbiota. The aim
of this study was to characterize this disruption by examining the spatioregional distribution in microbial community structure and
function following experimental pancreatitis associated with pancreatic infection.

Methods: Mice were subjected to infusion of the pancreatic duct with either taurocholate to induce necrotizing pancreatitis or
normal saline (control group). The spatial (lumen versus mucosa) and regional composition and function of the microbiota from the
duodenum, ileum, caecum, colon, pancreas and blood were evaluated using 16S rRNA gene amplicon sequencing.

Results: Mice that developed necrotizing pancreatitis demonstrated a decrease in microbial richness and significantly altered
microbiota in distal parts of the gastrointestinal tract, compared with controls. Among the most differentially increased taxa
were the mucus-degrading Akkermansia muciniphila, and there was a decrease of butyrate-producing bacteria following
pancreatitis. Application of the SourceTracker tool to the generated metadata indicated that the duodenum was the most
probable source of bacteria that subsequently infected pancreatic tissue in this model. The functional prediction annotation
using pathway analyses indicated a diminished capacity of the caecal microbiota to metabolize carbohydrate, and fatty and
amino acids.

Discussion: The distal gut microbiota was significantly impacted in this model of experimental necrotizing pancreatitis. Data suggest
that the duodenal microbiota might also play a role in bacterial translation and secondary infections.

Surgical Relevance
Intestinal bacteria are key disease modifiers in severe acute pan-
creatitis, especially when it comes to secondary infections such
as pneumonia, bacteraemia and infected (peri-)pancreatic necro-
sis. Efficient and safe targeting of gut microbes as a way of pro-
phylaxis warrants a deeper understanding of which bacteria in
which intestinal compartment contribute to disease progression.
This study investigated whether induction of necrotizing pancre-
atitis impacted the composition and function of the spatiore-
gional gut microbiota in mice.

Necrotizing pancreatitis had a major effect on the microbiota
distribution of the distal gastrointestinal tract with a reduction of
butyrate-producing bacteria. The duodenum was identified as
the main source of pancreatic infection in the model. These data
suggest that microbial communities of both the upper and lower
gastrointestinal tract might represent future targets for prophy-
laxis in patients with severe acute pancreatitis.

Introduction
Infection-related complications remain the most important de-
terminant of the course, outcome and healthcare burden

following severe acute pancreatitis. Although the intestinal tract

is recognized to be the main site of origin of pathogens that cause

infections during acute pancreatitis, the precise site and species

that drive disease progression have been incompletely investi-

gated1–6. Manipulations of the microbiome may fail to recognize

off-target effects, such as when probiotics are used to replace lost

microbiota or when broad-spectrum antibiotics are applied to

eliminate emerging pathogens7,8. Empirical treatment with sys-

temic meropenem, for example, prior to induction of experimen-

tal pancreatitis in mice, results in acceleration of mortality and

increased infections, predominantly caused by gut-derived

Enterococcus gallinarum9. Such findings may indicate that while

certain pathogenic bacteria might require targeted elimination,

others may need to be preserved in order to prevent loss of

colonization resistance afforded by the normal microbiota.

Evaluation of the gut microbiota following experimental pancrea-

titis has the potential to uncover which members of the micro-

biota are beneficial (such as butyrate-producers) and which are

not, and, importantly, where such alterations occur10,11.
It was hypothesized that region-specific changes in the gut

microbiota could be defined that would predict subsequent
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pancreatic infection in this model. The aims of this study were
therefore to define the spatial (luminal versus mucosal) and re-
gional (duodenum, ileum, caecum and colon) differences in mi-
crobial community structure and function using 16S rRNA gene
amplicon sequencing in mice subjected to experimental pancrea-
titis and to assess how these changes related to pancreatic infec-
tion.

Methods
Ethical approval
All animal experiments were approved by the Institutional
Animal Care and Use Committee of the University of Chicago
(ACUP 72540).

Animal experiments
Six-week-old C57BL/6 mice were purchased (Charles River
Laboratories International Inc., Wilmington, Massachusetts,
USA) and housed under standard conditions (12 hours dark/light
cycle) for 6 weeks before any study procedures were performed.
Animals had ad libitum access to tap water and standard chow
diet. Mice were anaesthetized with intraperitoneal ketamine
(100 mg/kg) and xylazine (5 mg/kg) (Henry Schein Animal Health,
Dublin, Ohio, USA). Before surgery, an injection of bupinorphrine
(0.1 mg/kg) and meloxicam (1 mg/kg) was administered followed
by postoperative injections of bupinorphrine every 12 hours for at
least 48 hours. All procedures were performed under sterile con-
ditions according to local guidelines and policies.

Murine model of acute biliary necrotizing
pancreatitis
Necrotizing pancreatitis was induced by infusion of the pancre-
atic duct with taurocholate acid, as previously described12. This
involved midline laparotomy, exposure of the posterior side of
the duodenum and identification of the papilla of Vater followed
by cannulation of the common bile duct for 2 mm and connection
with PE-10 tubing (Fisher ScientificTM, Waltham, Massachusetts,
USA) attached to a syringe pump (Harvard apparatus, Holliston,
Massachusetts, USA). The cannula was temporarily fixed with an
8/0 prolene suture, and a micro-clamp placed at the proximal he-
patic duct. The pancreas was infused for 10 minutes with either
50 ml saline (controls, n¼ 7) or an equal volume of 4 per cent so-
dium taurocholate hydrate (pancreatitis, n¼ 7) with 1 per cent
methyl-blue (Sigma-Aldrich, Saint-Louis, Missouri, USA). The
cannula, micro-clamp and ligature were removed and the duode-
nal puncture closed, followed by routine wound closure. A group
of mice that did not undergo surgery (untreated, n¼ 5) acted as a
further comparator group.

All animals were sacrificed by carbon dioxide suffocation at ei-
ther 24 or 72 hours following surgery. Sterile blood was collected
by cardiac puncture. Pancreas and intestinal contents were asep-
tically removed and stored in saline with 10 per cent glycerol as
cryopreservative at -80�C until analysis. Histology of pancreatic
tissue was performed as previously described13. No technical rep-
licates were used.

16s rRNA gene amplicon sequencing
Microbial DNA was extracted from pancreatic tissue and intesti-
nal (duodenum, ileum, caecum, colon) tissues and contents using
the MagAttractVR PowerMicrobiome DNA/RNA KF kit and from
blood using the DNeasyVR Blood & Tissue kit (Qiagen,
Germantown, Maryland, USA). Amplicons of the V4 region of the
16S rRNA gene were constructed using 515 F/806R primer pair,

according to the Earth Microbiome Project protocols (EMP; http://
www.earthmicrobiome.org/emp-standard-protocols/16s/). Gene
amplicon sequencing was done on a MiSeqTM platform (Illumina,
San Diego, California, USA) at the Argonne Sequencing Facility,
generating 150 bp pair-end reads14,15. Decontaminating exact se-
quence variants (ESV) were removed using water control samples
and the R package Decontam using the prevalence method with
a threshold of 0.516. Statistical analysis and visualization were
done using R packages phyloseq and ggplot217,18. A panel of
butyrate-producers based on genus taxonomy was constructed
as described previously13,19. The Inverse Simpson index was used
as measure for alpha diversity which takes abundance into ac-
count. For beta diversity, the UniFrac distances were used to
compare two communities based solely on the presence or ab-
sence of bacterial taxa (unweighted), or taking abundance
into account (weighted). Differential abundance and microbial
predictors were determined using R packages Deseq2 and
Randomforest20,21. Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt) 2 tool that predicts functional
aspects from 16S rRNA amplicon data using Kyoto Encyclopedia of
Genes and Genomes (KEGG) and MetaCyC metabolic databases
were used with QIIME2. Significant differences between predicted
functional pathways were calculated using the R package
Aldex213,22. Blast was used for reads to determine a match at the
species level23. The SourceTracker tool was designed to use 16S
rRNA gene sequencing data to predict from which source a sample
is determined24. Pancreatic and blood samples were used as ‘sink’,
and the luminal and mucosal gut samples as ‘source’ using stan-
dard settings.

Untargeted gas chromatography–mass
spectrometry metabolomics analysis
Following sacrifice at 24 hours following surgery, caecal content
was collected, snap frozen and stored at -80�C until analysis. Ice-
cold high-performance liquid chromatography (HPLC) grade wa-
ter (100 ml) was added, homogenized and centrifuged at 16.000g
for 20 minutes at 4�C. Supernatant was collected and 450 ml ice
cold HPLC- grade methanol added, homogenized and centrifuged.
The supernatants were combined and filtered through a 0.22 mm
filter. Then 5 ml of 3 mg/ml myristic acid d27 (Sigma Aldrich,
Saint-Louis, Missouri, USA) was added as internal control. The
samples were evaporated in a VacufugeVR (Eppendorf, Hamburg,
Germany) and the residue stored at -80�C.

Samples were derived by adding 50 ml of 20 mg/ml methoxy-
amine (Sigma) in pyridine. Samples were incubated at 37�C for
90 minutes in a shaking incubator. Next, 100 ml of MSTFA þ 1 per
cent TMC (Sigma) was added and incubated at 37�C for
30 minutes before analysis.

Samples were analysed using a high-resolution accurate mass
7200B QTOF gas chromatography–mass spectrometer (Agilent,
Santa Clara, California) with a mass range 35–800, acquisition
rate 6 spectra/s. Samples were randomized in batches of five, and
injected at a 25 : 1 split ratio. A temperature programme of 70�C
for 5 minutes was used, ramped at 5�C/min until 320�C, and held
for 3 minutes. A blank sample containing solvent (pyridine) was
run between each sample to clean the column of any residue.
The chromatograms were processed (peak picking, definition of
pseudospectra and annotation) using R (R Core Team, 2014) with
the ‘runGC’ function of the metaMS package25. The resulting
pseudospectra were annotated using the commercial Fiehn Gas
Chromatography–Mass Spectrometry (GC/MS) Metabolomics RTL
Library26. Features with matching factors 60 per cent or greater
were positively identified.
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Statistical analysis
Data were analysed using GraphPad Prism 8 (Graphpad Software,
San Diego, California, USA) or R (R Core Team, 2014). Unless
stated otherwise, results were expressed as mean(s.d.). Non-para-
metric Mann–Whitney or student t test was used to test statisti-
cal significance, depending on the distribution of normality.
ANOVA was used to test significant differences between multiple
groups. Benjamini–Hochberg correction was used for multiple
comparison of groups. The Metaboanalyst 4.0 webserver module
was used for the metabolome pathway analysis using normalized
data and default settings with an FDR cut-off of 0.227.

Results
Histology of the pancreatic tissue of pancreatitis mice confirmed
the presence of focal necrosis (Fig. S1a,b), in comparison with con-
trol mice that only showed mild oedema (Fig. S1c,d) and untreated
mice (Fig. S1e,f). No mortality was observed prior to sacrifice.

The microbiota in all gut compartments in both mucus
(Fig. 1a) and lumen (Fig. 1b) were affected by acute necrotizing
pancreatitis (ANP) as seen by the distribution of ESVs. Overall,
there was a relative loss of taxa in the pancreatitis group, as dem-
onstrated by a decrease of richness in caecal (P¼ 0.044) and co-
lonic mucosae (P¼ 0.044), but not in luminal samples (Fig. 1c).
However, alpha diversity did not differ between groups (Fig. 1d)
suggesting that mainly low-abundance taxa were affected.

Variance analysis of unweighted beta diversity showed that
the centroids of the experimental groups significantly differed in
the mucosal ileum (R2 ¼ 0.162, P¼ 0.032), mucosal and luminal
caecum (R2 ¼ 0.199, P¼ 0.024 and R2 ¼ 0.16, P¼ 0 0.043) and mu-
cosal and luminal colon (R2 ¼ 0.146, P¼ 0.008 and R2 ¼ 0.189,
P¼ 0.008 by PERMANOVA), but not in the duodenum (Fig. 1e).
Weighted beta diversity did not differ significantly (Fig. 1f), again
indicating that mostly low-abundance microbes were impacted.
These differences were observed among both the luminal and
mucosal microbiota. When comparing alpha and beta diversity
of untreated and control mice, no major differences were ob-
served (Fig. S2).

In comparing gut segments (Fig. S3) using the unweighted
UniFrac measure, mucosal duodenal microbiota in animals with
ANP closely resembled mucosal ileal microbiota (P¼ 0.056). In the
control group mucosal duodenal and ileal microbiota differed
markedly (P¼ 0.001) (Fig. S3).

To investigate possible involved bacterial pathways in the dis-
ease course of necrotizing pancreatitis, the authors next applied
functional prediction on the microbiome data set (Fig. 2a)28.
Prediction analysis demonstrated that multiple Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways involved
in carbohydrate, nucleotide and fatty acid metabolism were sig-
nificantly downregulated in the caecal lumen following pancrea-
titis. Conversely, non-homologous end-joining was upregulated.
MetaCyc pathway analysis additionally demonstrated upregula-
tion of glucose, aromatic biogenic amine and 1,4-dihydroxy-2-
napthoate metabolism. In the luminal colon, only degradation of
purine nucleobases was decreased. There were no identifiable
changes in regulatory pathways in the mucosal segments, nor in
the duodenal or ileal luminal microbiota.

The metabolic profile of caecal luminal content in necrotizing
pancreatitis and controls was further assessed with untargeted
GC-MS metabolomics. Differential abundance analysis (Deseq2)
demonstrated that two short-chain fatty acids, 2-hydroxybutyric
acid and 5-aminovaleric acid, were decreased in pancreatitis

(Fig. 2b). Amongst the increased metabolites were monosacchar-
ides (D-mannose, D-lyxosylamine), phenolic acid (3-hydroxyphe-
nylacetic acid), amino acid (L-threonine) and bile salt (cholic
acid).

Analysis of differential abundant taxa of integrated luminal
and mucosal segments (duodenum, ileum, caecum and colon)
between the pancreatitis and control groups (Fig. S4) identified
Verrucomicrobia, with its representative species Akkermansia
muciniphila, as the sole phylum (Fig. 3a, P< 0.050) that differed be-
tween the groups, with an increase in the pancreatitis group. The
phylum Firmicutes demonstrated an increase in the
Erysipelotrichaeceae family, but a decrease in Lachnospiraceae
in the pancreatitis group (P< 0.050). Although there was no differ-
ence in Proteobacteria, the phylum known to contain the major-
ity of pathogens, bacteria from the genus Escherichia/Shigella were
increased with pancreatitis (P< 0.050). Furthermore, there was
both a decrease (mostly from the families Lachnospiraceae and
Rumminococcaceae) and increase (genera Butyricimonas and
Ruminococcus) of known butyrate-producing taxa (P< 0.050).

Investigation of the separate gut segments indicated no major
shift in relative abundances of the four major phyla (Fig. S5a–d).
Notably, Firmicutes : Bacteroidetes ratio demonstrated an ap-
proximately 50-fold decrease in the colonic mucosal (Fig. 3b), but
not the luminal microbiota (Fig. S5e). Overall, there was a de-
crease of relative abundance of a panel of butyrate-producers in
caecal mucosa (Fig. 3c). Akkermansia muciniphila, a mucus-
degrading bacteria, was enriched in both the lumen and mucosa
of caecum and colon (Fig. 3d and Fig. S5f).

Deseq2 analysis for differential abundance and a random for-
est classifier identified the genera that contributed the most in
the prediction of the experimental groups. This analysis identi-
fied 43 decreased ESVs and 13 increased ESVs when combining
gut segments of the groups (P< 0.050) (Fig. 4), with the majority
overlapping in lumen and mucosa. In accordance with the alpha
and beta diversity measures, the number of differential genera
gradually increases along the gastrointestinal tract, with the ma-
jority found in the colon (47 genera), followed by caecum (29 gen-
era), ileum (15 genera) and duodenum (15 genera) (Fig. S6a–d,
P< 0.050). Akkermansia muciniphila was among the most increased
abundant taxa in mucosa and lumen with both Deseq2 (Fig. 4)
and random forest classifier (Fig. S7). Escherichia/Shigella was in-
creased in the luminal compartment and mucosa of the caecum
(Fig. S6c).

Sequencing of the 16S rRNA gene of pancreatic tissue after
pancreatitis induction identified pathogens that translocate from
the gastrointestinal tract to distant tissues. At the phylum and
genus level, there were no major differences in relative abundan-
ces between the experimental and control group (Fig. 5a and Fig.
S8).There were only two bacterial genera that were significantly
overrepresented in pancreatic tissue based on Deseq2: Proteus
and Lachnospiraceae_FCS02_group (Fig. 5b). The Proteus ESV in
these samples had a 100 per cent identical match with Proteus mi-
rabilis. Routine aerobic culture of pancreatic tissue following pan-
creatitis in this model revealed no Proteus species. Intestinal
abundance of Proteus and Lachnospiraceae_FCS02_group were
not significantly increased in the pancreatitis group. However,
when comparing relative abundances between gut segments it
was noted that Proteus abundance was highest in the duodenum,
especially in mucosa (Fig. S9).

SourceTracker analysis indicated that the duodenum contrib-
uted 57 per cent to the disseminated bacteria, of which the ma-
jority were derived from the luminal compartment (Fig. 5c). In the
control group 86 per cent could not be attributed to the
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Fig. 1 Compositional analysis (16S rRNA gene analysis) of segmental lumen- and mucosa-associated microbiomes in acute necrotizing pancreatitis

Microbiota analysis of gut segments from mice with retrograde infusion of the pancreatic duct (pancreatitis) and saline-infused (control) mice (n¼ 7 per group). a, b
Venn diagrams of exact sequence variants (ESVs) of gut segments from mucosa a and lumen b. c Richness (observed taxa) of luminal and mucosal gut segments.
Richness was significantly decreased in caecum mucosa (P¼0.044, paired t-test with Benjamini-Hochberg correction) and colon mucosa (p¼ 0.044) of pancreatitis
mice. d Alpha diversity of luminal and mucosal gut segments. No significant differences were found. e, f Beta diversity of luminal and mucosal gut segments
measured by unweighted e and weighted f UniFrac. There were significant differences in ileum mucosa, caecum lumen and mucosa and colon lumen and mucosa
for weighted UniFrac e, and in colon lumen and mucosa for unweighted UniFrac f. Beta diversity P and R2 values based on PERMANOVA test with Benjamini-
Hochberg correction. *P< 0.050, †P< 0.010
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gastrointestinal tract. In blood samples, only about 3 per cent of
bacterial reads were predicted to have been derived from the gut
segments in both control and pancreatitis animals (Fig. 5d).
Although the relative abundance of P. mirabilis was highest in the
duodenum compared with other gut segments, there was no dif-
ference in relative abundance of duodenal P. mirabilis between
the pancreatitis and control group.

Discussion
Although bacterial overgrowth, impaired intestinal permeability
and bacterial translocation to peripheral organs are widely recog-
nized as hallmarks of disease progression in severe acute pancre-
atitis, the species involved in this process and their site of origin
remain poorly understood. The present study investigated the
biogeographical changes in microbial community composition,
membership and function between different regions of the gas-
trointestinal tract in a clinically relevant animal model of necro-
tizing pancreatitis.

The present study demonstrated that necrotizing pancreatitis
induced a shift within the lumen to mucosal-associated micro-
biota in some regions, with the mucosal microbiota appearing to

display greater alterations in alpha (for mucosal caecum and co-
lon) and beta diversity (for luminal ileum, caecum and colon).
These differences appeared to be most pronounced in the colon.
Although the mechanisms that govern this response remain to
be identified, alterations in perfusion and oxygen tension as a re-
sult of the profound physiological perturbation that occurs dur-
ing pancreatitis could be relevant29. A more complete description
of the local physicochemical cues at precise sites within the spa-
tial and regional contexts where microbiota reside during necro-
tizing pancreatitis is needed to elucidate these potential
mechanisms fully.

The identification of A. muciniphila, a commensal mucus-
degrading bacterium of the phylum Verrucomicrobia, in this
model may be important, given increasing understanding into its
role in intestinal health and gastrointestinal disorders30. A. muci-
niphila produces short-chain fatty acids, propionate and acetate,
and works in synergy with downstream metabolizing bacteria
that produce butyrate31. Experimental and clinical studies have
shown that supplementation of live pasteurized strains of A.
muciniphila and even purified membrane proteins have a benefi-
cial effect on obesity and diabetes32–35. The role of A. muciniphila,
which demonstrated a 20-fold increase in caecal mucosal
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samples and a 100-fold increase in the colonic mucosa at
72 hours after induction of necrotizing pancreatitis, remains to be
clarified. It is possible that a bloom of mucus-degrading bacteria,
such as A. muciniphila, may play a part in the known mucosal
damage and altered intestinal integrity that develops in clinical

and experimental pancreatitis36,37. In line with previous
work1,3,4,38,39 an increase of the Escherichia/Shigella genus in some
gut compartments was noticed, implying a potential pathogenic
role in this model of necrotizing pancreatitis. The majority of
pathogens cultured in infected pancreatic collections (among
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Fig. 3 Taxonomic tree and relative abundances in integrated gut segments of pancreatitis and control mice

a Taxonomic tree indicating significantly increased and decreased relative abundance of bacteria at different taxonomic levels of integrated luminal and mucosal
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others Escherichia coli and P. mirabilis) are known gut inhabitants
that are thought to translocate and cause (extra-) pancreatic
infections40,41. There were no major differences in the pancreatic
microbiome between pancreatitis and control mice, indicating
that the majority of these taxa were either representations of a
native pancreatic microbiome (if one exists), the results of intrin-
sic contamination of the DNA isolation or sequencing methods
(despite computational decontamination) or as a result of the
surgical procedure. Pancreatic over-representation of Proteus mi-
rabilis, a facultative anaerobic Gram-negative pathogen fre-
quently cultured in experimental and human infected
necrotizing pancreatitis42, might be the result of bacterial trans-
lation. One explanation why P. mirabilis was not cultured is that it

was unable to survive and proliferate in the pancreatic tissue in

this model. The high abundance of Proteus in the duodenum com-
pared with levels in the distal gastrointestinal tract adds support

to this.
A major finding in the present study was the implication that

the pancreatic duct may be a route of infection from the duode-
num which acts as a reservoir of potential invading pathogens. In

contrast to other studies43–46, the use of the SourceTracker tool
pointed towards the duodenum as the most likely origin of pancre-

atic infection in this model. Other studies have demonstrated that
bacteria can migrate to the pancreas of healthy mice within

30 minutes following their administration, suggesting that infec-
tion occurs proximally, perhaps directly via the pancreatic duct47.

In this specific model, it is accepted that surgical trauma (laparot-

omy and cannulation) followed by inflammation (taurocholate
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infusion) could lead to more contamination compared with
trauma without subsequent inflammation (saline-infused control
group).

There was discrepancy in terms of the gut regions where
microbiota changes were most pronounced (caecum and colon),
and the likely source of pancreatic infection in the present model
(duodenum). This might reflect duodenal overgrowth with down-
stream microbes due to decreased intestinal motility. The timing
of microbiota sampling might also be relevant. Duodenal micro-
biota changes that preceded pancreatic infections might have oc-
curred before 72 hours.

In general, results from the present study were comple-
mentary to similar studies in this area1,2,4,48 and parallel find-
ings in patients with acute pancreatitis4,6,39,49–51. Table 1
shows taxa from human studies that were significantly over-
and under-represented in patients with acute pancreatitis
compared with healthy subjects. Although previous studies
use culture methods to describe the consequences of acute
pancreatitis on the gut microbiome, genetic approaches reveal
a much greater depth and breadth of changes in microbiota
composition and function4,51. Transfer of human intestinal

microbiota samples from patients with a specific disease pro-
cess to germ-free mice is a powerful tool to link the microbiota
to a specific disease phenotype52. While there are many limita-
tions to the findings in the present study that do not allow a
causal link to be established between duodenal microbiota
and those that have migrated to the pancreatic tissues, the
findings are compelling. Genetic sequencing of both faeces
and saliva (which might better represent the upper gastroin-
testinal microbiota) or even endoscopy-acquired samples
could test this hypothesis in the clinical situation. While
marker gene sequencing has proved useful in characterizing
the composition of microbial communities, functional output
and ability to distinguish between ESVs is limited. Further
studies using metagenomics and metatranscriptomics (whole
genome/transcriptome shotgun-sequencing) and integrated
analyses will need to be performed to extend these initial
observations and provide a more detailed understanding of
how the microbiota are altered within the complex environ-
ment of the gut, both regionally and spatially, when the host is
exposed to the complex physiological disturbances that typi-
cally characterize acute pancreatitis.
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