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The fall of reductionist approaches to explanation leaves biology with an unescapable
challenge: how to decipher complex systems. This entails a number of very critical
questions, the most basic ones being: “What do we mean by ‘complex’?” and “What
is the system we should look for?” In complex systems, constraints belong to a higher
level that the molecular one and their effect reduces and constrains the manifold of the
accessible internal states of the system itself. Function is related but not deterministically
imposed by the underlying structure. It is quite unlikely that such kind of complexity could
be grasped by current approaches focusing on a single organization scale. The natural
co-emergence of systems, parts and properties can be adopted as a hypothesis-free
conceptual framework to understand functional integration of organisms, including their
hierarchical or multilevel patterns, and including the way scientific practice proceeds
in approaching such complexity. External, “driving” factors – order parameters and
control parameters provided by the surrounding microenvironment – are always required
to “push” the components’ fate into well-defined developmental directions. In the
negative, we see that in pathological processes such as cancer, organizational fluidity,
collapse of levels and dynamic heterogeneity make it hard to even find a level of
observation for a stable explanandum to persist in scientific practice. Parts and the
system both lose their properties once the system is destabilized. The mesoscopic
approach is our proposal to conceptualizing, investigating and explaining in biology.
“Mesoscopic way of thinking” is increasingly popular in the epistemology of biology
and corresponds to looking for an explanation (and possibly a prediction) where “non-
trivial determinism is maximal”: the “most microscopic” level of organization is not
necessarily the place where “the most relevant facts do happen.” A fundamental
re-thinking of the concept of causality is also due for order parameters to be carefully and
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correctly identified. In the biological realm, entities have relational properties only, as they
depend ontologically on the context they happen to be in. The basic idea of a relational
ontology is that, in our inventory of the world, relations are somehow prior to the
relata (i.e., entities).

Keywords: living dynamics, systems thinking, mesoscopic way, data emergence, micro-environment, physical
constraints, relational ontology, biological relationships

COMPLEXITY

Complexity as a concept emerged as a necessary stance – from
both an epistemological and an ontological point of view –
once the reductionist approach established since Descartes’s time
proved to be inadequate in explaining a number of relevant
phenomena. Such inadequacy is particularly evident in biology
and resonates with the concept of “unfathomable complexity,”
proposed by Elsasser (1987). This notion of complexity has to do
with the impossibility to devise a series of experiments to clarify
the way in which all properties of an organism can be reduced
to consequences of molecular structure and dynamics, the latter
being controlled and fully determined by the laws of physics. The
fall of reductionist approaches to explanation leaves biology with
an unescapable challenge: how to decipher complex systems. This
apparently simple association of words entails a number of very
critical questions, the most basic ones being: “What do we mean
by ‘complex’?” and “What is the system we should look for?”

Besides the existence of several excellent operational
definitions of complexity elaborating on different notions of the
amount of correlation among parts of a system (see for example:
28, 30, 31, 32), herewith we sketch three relevant “signatures” of
complex systems:

1. A complex system includes a vast number of components
(nodes), linked each other through dynamic relationships
(links), enabling its representation in terms of a
correlation network.

2. Such a network (independently of the chosen correlation
metrics) exhibits a hierarchical structure, allowing the
system to have meaningful dynamics at different spatial
and temporal scales.

3. The spatial and temporal relationships among the different
elements are subdued to a non-linear dynamics giving rise
to both memory (hysteresis) and multi-stability (different
equilibrium states) effects.

Thereby, describing the evolving system in both space and
time is not trivial, as different functional states of the system
can be supported by the same underlying structure. Indeed, a
complex system can occupy different attractors along the paths
of a hypothetical landscape, as suggested by C.H. Waddington
in the 1950s. According to the topological architecture of such
landscape, the system displays various degrees of robustness,
i.e., resilience in respect to internal/external perturbations.
As sharply observed by Elsasser (1987), “If we accept the concept
of an organism as just stated, we can say that biology is a
non-Cartesian science.”

To be “non-Cartesian,” in this context, means simply that the
system looks different at different magnification scales and no
privileged (and context independent) explanation layer exists.

Therefore, it is quite unlikely that such kind of complexity
could be grasped by current approaches focusing on a single
organization scale: complexity does not depend either on the
number of genes (indeed, humans show lower values in respect
to even evolutionary lowest living individuals, as strawberry!),
or on their connections [the so-called Gene Regulatory Network
(GRN)]. As an example, it was posited that extensive search
for genome structures among animals would have come to
identify those genes that actually hold the key to humanness.
Yet, the result of such an effort showed that humans and chimps
are basically isogenic; no specific human genes responsible for
our human properties could be identified (The Chimpanzee,
Sequencing, and Analysis Consortium., 2005). Similar problems
were present in the “gene centric” explanations of complex
human traits and diseases. As aptly remarked, “although some
niche applications have been found for precision medicine, and
gene therapy is now becoming a reality for a few rare diseases,
the effects on public health are minuscule while the costs are
astronomical” (Joyner and Paneth, 2019).

Classical molecular studies focused on the dynamics of
single molecular components conceived as “drivers” of the
biological process. A major drawback of such approach that it
is unable in explaining the emergence of complex patterns. The
emergence of a pattern (i.e., of a relatively stable configuration
of n elements being them gene expression levels or amino-
acid residue positions in 3D space) has to do with the energy
minimization on the entire n-dimensional space and cannot
be traced back to separate “optima” for each element. The
among elements correlation and the presence of environmental
constraints drastically “restrict” the number of patterns that the
system at hand can really assume (Kitano, 2002; Chuang et al.,
2010; Ma’ayan, 2011).

A case in point is provided by microgravity conditioning of
living cells, where the “removal” of the gravity constraints enable
the system to freely explore new – previously “inaccessible” –
phenotypic attractors, by splitting a previous homogeneous
population into two – morphologically and functionally –
different clusters (Masiello et al., 2014). This phenomenon
cannot be understood by investigating the “molecular dynamics”
of the involved components, and it should be viewed as
a true “emergent” property of the system, triggered by an
environmental, physical cue. Constraints belong to a higher level
that the molecular one and the aforementioned effect reduces
and constrains the manifold of the accessible internal states of
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the system itself. Conclusively, the form a molecule/a cell assume
cannot be linearly derived (“reduced”) only from the physical
laws governing combinatorics.

This is a crucial issue separating the operational measures of
complexity (mainly applied to alphabetical or numerical strings)
from “semantic sensitive” functionally oriented definitions:
“sequence complexity” does not mirror “structural complexity”
of the organism that the sequence gives rise to. This statement
applies (among the others) to Kolmogorov complexity measure,
as this index is a degree of regularity (correlation in time), rather
than of semantic-functional complexity (a random sequence is
accorded maximum Kolmogorov complexity, yet, a biologist
could hardly be interested with, given that random sequences do
not give rise to organisms) (Adami, 2002). Along the suggestions
fostered by Kolmogorov-dependent definition of complexity,
several attempts have been made to correlate (and even to
equate) complexity to entropy measures. However, entropy in
dissipative systems does not increase, but eventually decreases
just as negative entropy corresponds to (relative) order, certainty,
and organization (Mikhailovsky and LevichEntropy, 2015). This
implies that Kolmogorov measure proceeds likely in the opposite
way from classical, entropy-based, order parameters.

This conundrum lies on the deceptive assumption that
equalize “order” and “complexity.” Yet, complex system are
neither fully disorganized (like a gas), nor steadily ordered
(like a crystal). In complex system order values are changing
over time, showing dramatic fluctuation at points where the
system undergoes critical transitions, leading to the emergence
of new configurations (“phenotypes,” in the biological parlance)
in which order values (i.e., negentropy) is frequently uncoupled
from Kolmogorov-based complexity parameters. As a result,
changes in entropy may likely reflect true differences in system’s
order, but not necessarily in complexity. Moreover, in biological
systems, complexity cannot be computed based on the number of
functions they fulfill. Differentiated cells lose several capabilities
when compared to their progenitor stem cells, yet it would be
paradoxical to affirm that such a highly structured cell like a
neuron is deprived of complexity. To make a long story short, we
can state “In biology function is related but not deterministically
imposed by the underlying structure.”

CO-EMERGENCE AND COLLAPSE

Co-emergence of system, parts and properties can be adopted
as a conceptual framework to understand functional integration
of organisms, including their hierarchical or multilevel patterns,
and including the way scientific practice proceeds in approaching
such complexity (Bizzarri et al., 2013; Bertolaso, 2016).

Complex systems (paradigmatically those entailed by living
beings) show emergent properties, which likely arise from the
non-linear dynamics of the relationships established among the
entities (molecular components) that make up the system. This
statement implies some non-trivial consequences, at both the
epistemological and ontological level.

First, as forecasted by Whitehead, biological phenomena
consists of processes rather than material objects, and that

processes are best defined by their relations with other processes,
thus undermining the common shared belief on “bits of matter” –
like genes or other molecular units – that exist and function
independently of one another (Whitehead, 1967). Accordingly,
molecular components are nothing more and nothing less than
the sum of their relations to other entities, “its synthesis of
and reaction to the world around it” (Whitehead, 1985). As “all
things flow” – a philosophical stance that can be traced back to
Heraclitus and that has been adopted recently in contemporary
philosophy of science (Duprè and Nicholson, 2018) – it is
mandatory to shift our focus from “molecules” to “relationships.”

A phenomenon can in principle be studied at different
levels (sub-atomic, atomic, molecular, cell, etc.), but we are
mostly interested in “effective” relationships, i.e., those relations
triggering “emerging properties” of the system at a higher
organization layer. Effective relations live at the “mesoscopic
level,” as pinpointed by Laughlin and Pines (2000). This is the
level where “order” can be fruitfully found, as only systems
behave in a coherent fashion (even gene activity is subjected
to intrinsic stochastic fluctuation (Elowitz et al., 2002). Indeed,
while at the microscopic level, objects and their relationships
are affected by fluctuations around the average – due to both
environmental and intrinsic stochasticity – at the mesoscopic
level stochastic fluctuations turn into ordered behavior, thus
allowing order to emerge. A useful architectural analog of the
mesoscopic level are the arches of a gothic cathedral: the arch
occupies the intermediate layer between the brick and the entire
building and represents the optimal level where to study the
forces responsible for the stability of the cathedral as a whole.

The aforementioned reflections push to reconsider the current
epistemological approach, concepts borrowed from classical
mechanics – like those referring to determinism in biological
reactions and causality – do not hold the same meaning
when we are referring to the mesoscopic level and need to
be re-framed accordingly. Going back to the architectural
metaphor the statement “The arch generates (is the ‘cause’
of) the cathedral structure” is devoid of any sense, and
must be substituted by “The presence of a given push-pull
momenta configuration correspondent to arches network drives
the entire cathedral toward an ‘allowed’ (stable) global structure.”
Deterministic (if-then) causation is substituted by the drastic
restriction of “allowed solutions” stemming from the underlying
mesoscopic configuration.

Co-emergence of systems, parts and properties are a natural
(and hypothesis free) consequence that can be adopted as a
conceptual framework to understand functional integration of
organisms, including their hierarchical or multilevel patterns, and
including the way scientific practice proceeds in approaching
such complexity (Bizzarri et al., 2013). This can be crucially
important in such pathological processes such as cancer,
where organizational fluidity, collapse of levels and dynamic
heterogeneity, make it hard to decide a priori a specific
level of observation for a stable explanandum (what must be
explained) to persist in scientific practice. Parts and the system
both lose their properties once the system is destabilized. In
the negative, we see that in pathological processes such as
cancer, organizational fluidity, collapse of levels and dynamic
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heterogeneity make it hard to even find a level of observation for a
stable explanandum to persist in scientific practice. Parts and the
system both lose their properties once the system is destabilized.

This specifically holds true in carcinogenesis, were some
key aspects of tumor development (metastasis, phenotypic
transition, growth or dormancy) emerge from the non-
linear dynamics of the interactions between cells and their
microenvironment (Bizzarri and Cucina, 2014). Changes in
the tissue microenvironment act as stress factors on cells
causing a range of adaptive responses within the reaction norm
of the genome that may at some stage also include higher
mutation rates. Tissue stress factors can be changes in the ECM
composition (Extra-Cellular Matrix) caused by exposure to some
carcinogen (and most carcinogens are not primary mutagens),
changes in mechanical tissue forces after trauma, surgery and
wound healing, or a change in fundamental signaling interactions
between groups of cells due to changes in pH, Oxygen balance,
and metabolic conditions which are all progressively changing
during the course of a tumor’s evolution. More generally,
the life history of the biological entity intrinsically depends
on a constitutive and continuous orientation of the parts
among themselves and depending on the contextual signals. The
asymmetry so generated is vital in the sense that it guarantees the
adequate growth of the organism, as the effects of changes in cell
or tissue shape seem to show. This unity of action admits degrees,
and parts-whole relationships – as long as they hold – are to be
explained through a specific kind of regulation. The biology of
cancer shows that the stability of constitutive elements depends
on the organization, and that there is a source of regulation
in the biological context: cells change their behavior depending
on their functional integration in the tissue; alteration in cell
communication in turn alters gene expression, and the loss of
integration of cells within a functional tissue leads to genetic
instability and apoptosis.

The collapse of levels, as characterized in cancer, results from
the loss of the general functional integration of a biological entity.
It is here that the “mesoscopic level,” as pinpointed by Laughlin,
is substantiated.

THE MESOSCOPIC APPROACH

The described situation highlights the importance of identifying
an explanatory level that is adequate to the observed
phenomenon, by finding relational structures that are able
to relate microscopic elements and macroscopic phenomena
and parameters. “Mesoscopic way of thinking” is an increasingly
popular statement in the epistemology of biology (Noble, 2006;
Bertolaso, 2009; Bertolaso, 2016) and corresponds to looking
for an explanation (and possibly a prediction) based on such
kind of description. “Mesoscopic” is a term that originates in
physics and engineering, and very frequently adopted in Ecology,
perhaps the most epistemologically conscious branch of biology
(Hastings et al., 2011).

Ecologists have long recognized that the “most microscopic”
level of organization is not necessarily the place where “the most
relevant facts do happen.” On the contrary, the most fruitful

scale of investigation (most of the times) is where “non-trivial
determinism is maximal” (Pascual and Levine, 1999). That is to
say, the scale more “rich” in meaningful correlations between
features pertinent to micro- and macro- scale or, to use an
ecological term, the mesoscopic realm. Non-trivial determinism
can be, in fact, defined in terms of prediction error as:

Prediction r2
= 1− E2/S2

In the above formula, E is the mean prediction error and S
the standard deviation. In the case of a simple linear regression
in which a dependent variable Y must be predicted by an
independent variable X, non-trivial determinism is nothing
else than the usual squared Pearson correlation between the
two X and Y variables. The formula can be extended to
any other situation in which we wish to predict a system
feature Y located at a hierarchically higher layer with respect
to X, moreover both X and Y do not need to represent
single variables but any suitable set of information at any
definition scale. Consequently, in the “many Y”/“many X”
case, non-trivial determinism corresponds to the first canonical
coefficient (Härdle and Simar, 2007) while in the case of a
binary diagnosis it equates to the area below the ROC curve
(Heagerty and Zheng, 2005).

The mesoscopic way of reasoning closely resembles the
“middle-out” paradigm set forth by Laughlin et al. (2000) as
the next frontier of basic science – of chemistry, quantum
physics for coherent dynamic behaviors (Bertolaso et al., 2015),
and, more recently, of network-based approaches in biology
(Giuliani et al., 2014). Complex networks (whichever level of
biological organization they belong to) allow for a natural
convergence between top-down and bottom-up approaches
for the simple fact the computation of network invariants
encompasses the simultaneous consideration of microscopic
(single node), mesoscopic (cluster of nodes) and macroscopic
(entire network) features (Csermely et al., 2013). This allows
the environmental effects at different levels of definition to be
tracked (Masiello et al., 2018).

This implies that statements like “Drug A provokes a drastic
increase of average shortest path of protein contact network” or
“Cancer provokes a decrease in modularity of gene regulation
network” should be accepted as meaningful explanations without
the need to go in depth into specific amino-acid residues or
genes. When looking at networks, functional properties of a
node are inferred from its topological role in the network.
However, without the right choice of mesosystems and the
appropriate estimation of local/global constraints, the problem
of finding elements that are causally specific with respect to
the initial explanandum will not be solved, no matter which
mechanisms at the lowest (e.g., molecular) level are found.
On the other hand, empirical topology/function rules are
discovered at different degrees of generalization by moving from
a population of heterogeneous biological networks to a single
wiring architecture (Kohestani et al., 2018).

It is worth noting the same concepts (here mainly linked to
spatial organization) apply to temporal structures. Recurrence
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Quantification Analysis (RQA) (Marwan et al., 2007) is a non-
linear signal analysis technique focusing on the search of “non-
trivial determinism” that here takes the form of “sojourn points,”
i.e., areas of the phase space that are visited by different
system trajectories corresponding to “stable configurations” of
the temporal organization.

The onset of such “deterministic islands” in a time course
is instrumental to detecting emerging properties of the system
as a whole: e.g., the onset of “fatigue” (a global system
feature), corresponds to the observation of a drastic increase in
determinism of EMG time series (a mesoscopic (muscle fibers)
level feature) (Liu et al., 2004).

Conceptualizing the Mesoscopic Way
The mesosystem is an identified system that exhibits regularities
where not only the peculiar relations among the parts, but
also the properties of the parts themselves and their reciprocal
interactions, emerge (Laughlin et al., 2000). Laughlin and
Pines (2000) state: “The emergent physical phenomena regulated
by higher organizing principles have a property, namely their
insensitivity to microscopic details that is directly relevant
to the broad question of what is knowable in the deepest
sense of the term.”

Insensitivity to microscopic details is the core of the middle-
way and stems from the possibility to establish a “network
thermodynamics” (Mikulecky, 2001), building upon the existence
of laws of nature only dependent on the wiring architecture of a
system that co-exist (but do not interfere) with the laws typical to
the material the elements are made of. That is why an electrical
circuit can simulate a mechanical one and, after all, why we do
not need to enter into the details of electronic properties of single
constituent atoms to get onto enzyme kinetics.

The most basic mathematical construct of the mesoscopic
approach is the “complex network” wherein a set of nodes
are linked to each other by edges. Nodes can be any
relevant element of the system at hand (genes, proteins,
amino-acid residues, neurons) and edges any connection
between them (correlation coefficients, physical interactions,

spatial proximities, simultaneous firing). Network invariants
are nothing else than descriptors of the corresponding wiring
architecture such as:

1. “degree”: how many links are attached to a given node,
which is a local descriptor,

2. “average shortest path,” corresponding to the average
length of minimal paths connecting all the node pairs,
which is a mesoscopic feature.

3. “connectivity” that is the density of links, which in turn is a
global property.

Figure 1 depicts some of these descriptors.
It is immediate to note that the values taken by the

above descriptors depend (and influence) all the different
organization layers: thus a node with a high degree (microscopic
level) will be traversed by many shortest paths (mesoscopic
level) that in turn will influence general network connectivity
(macroscopic level).

In operational terms, shortest paths spanning protein
contact networks (those networks whose nodes are amino-
acid residues and whose edges correspond to residues set
apart along the sequence and put in contact by protein
folding) correspond to the “fast lanes” along which allosteric
signals travel. This creates an immediate link between a global
functional property of the protein molecule (allostery) and
the mesoscopic level (shortest paths) strictly resembling the
architectural metaphor we introduced in section “Complexity”
(arches = shortest paths, gravitational forces = allosteric signal)
(Di Paola and Giuliani, 2015).

It is worth noting that this approach is by no means
limited to complex networks: any meaningful representation
of the correlation structure of a system can extract relevant
“mesoscopic principles of organization.” This is the case of a
time-honored technique, principal component analysis (Pearson,
1901; Giuliani, 2017), which allows for an immediate quantitative
appreciation of the degree of order and organization of a
system (Soofi, 1994).

FIGURE 1 | Modules correspond to subset of nodes having much more links among them than with other nodes of the network. Measures of centrality (closeness,
betweenness) describe nodes in terms of the number of shortest paths traversing them. Shortest path is the characteristic metrics for networks: they correspond to
the shortest distances (in terms of number of nodes/links to be traversed) for linking pairs of nodes.
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Success of the mesoscopic approach strictly depends upon
choice of the correct level (and consequently the correct
observables) to be investigated. Choice of the “preferable” level
is dictated by the function-phenomenon we are focusing on. It is
at this level – the mesoscopic one – that microscopic elements
are organized in a coherent manner so to produce macroscopic
features. The mesoscopic approach strives to “capture” the self-
organizing process, which in turn will lead to the emergence of
specific system properties.

That approach implies we should put any singularity
(i.e., discrete change in a unitary molecular element) in dynamic
correlation with the context it belongs to. Function and meaning
of each molecular change emerges thereby within such a context,
having no “ontological” meaning per se. This aspect is specifically
epitomized when looking at the role played by those genes
that can exert their effects in opposite ways, depending on the
time/context in which they are activated. Conclusively, these
findings imply the necessity to take into consideration, even when
we concentrate on a single element (e.g., the lethal character of
a specific mutation), the general functional frame in which the
element is inserted.

INVESTIGATING THE MESOSCOPIC WAY

Experimental practices both clarify the notions related to
the mesoscopic approach and demonstrate its consistency
and usefulness. In the previous section, we introduced the
concept of non-trivial determinism as an operational guide for
setting the optimal scale definition. The Pearson correlation
can be substituted in the formula by any suitable correlation
metrics as connectivity or average shortest path in the case of
networks, amount of determinism in the case of recurrence
analyses (Marwan et al., 2007). It is worth noting already
that such statistical methodology allows for a quantitative
check of the heuristic power of a given temporal or spatial
scale of organization in terms of maximization of “non-trivial
determinism” (Pascual and Levine, 1999).

In order to visualize the ability of this approach to identify
the optimal scale of analysis, we report in Figure 2 the bi-
dimensional plot having as axes two independent MCF7 (a breast
cancer derived cell line) samples. The points of the graph (around
23000, expression values in logarithm units) are the single
gene expression values, the d-value corresponds to the range
(box size) of variation, inside which the correlation (Pearson
coefficient, r) is computed.

The correlation computed overall is near to unity (r = 0.98),
and declines at decreasing range of variation; the inset on the
top left corner of the figure shows that a correlation plateau
is reached at d = 0.45. This remark outlines how correlation
values are tightly dependent on the observation scale: in this case,
the optimal scale is where correlation between the two samples
(correspondent to the existence of an ideal gene expression profile
of such cell kind) reaches its maximum and corresponds to
the correlation attainable with a random choice of 50 genes.
This implies that the “minimal set” for making the “specific cell
kind transcriptome signature” emerge is 50 genes, which in turn

FIGURE 2 | In order to visualize the ability of this approach to identify the
optimal scale of analysis, we report in this figure, the bi-dimensional plot
having as axes two independent MCF7 (a breast cancer derived cell line)
samples (data obtained from Tsuchiya et al., 2016). The points of the graph
(around 23000, expression values in logarithm units) are the single gene
expression values, the d-value corresponds to the range (box size) of
variation, inside which the correlation (Pearson coefficient, r) is computed.

corresponds to a very important property of complex systems
called “percolation” (Pike and Stanley, 1981) linked to the level
of perturbation needed to provoke a transition in the system at
hand (Tsuchiya et al., 2016).

In this peculiar case, the scale dependence of the correlation
is instrumental to maintain both tissue functionality (the
specialized physiological function asks for an invariant ideal
pattern of gene expression) and the flexibility required to adapt to
a changing microenvironment (the specific gene expression levels
need a “free motion” range to cope with environment).

As the mesoscopic level is where organizational principles act
on the elementary biological units that will become altered, or
constrained, by both their mutual interaction and the interaction
with the surrounding environment, constraints acting at the
mesoscopic level can therefore shape the activity of single
elements (proteins, genes, etc.), eventually driving them into
different and even opposite functions. This explains why putative
so-called oncogenes can act as tumor-suppressor genes (Lee et al.,
1995; Johnson, 2000; Muñoz et al., 2008; Schneller et al., 2011;
Wang et al., 2011), a well-known paradox that undermines the
fundamentals of the Somatic Mutation Theory of carcinogenesis
(Baker and Kramer, 2007; Bizzarri and Cucina, 2016).

THE DYNAMICS OF MESOSCOPIC
PARAMETERS

As we are dealing with processes – no matter the number and
the specific identities of the involved molecular components –
in which mesoscopic properties of the system are thought to
change in space and time, we should focus on the dynamics of
mesoscopic parameters. A useful way is to adopt a landscape
diagram in which system’s transitions from one state (attractor)
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to another is portrayed by means of calculating order and control
parameters, by analogy with phase-space diagrams employed
in physics and chemistry. Such a model is already currently
in use, albeit framed within a reductionist stance. Indeed, the
Waddington’s model usually adopted is featured by hills and
valleys linked each other through branched pathways to portray
the differentiation tree (Waddington, 1957). Both valleys and
hills are determined by calculating values of state variables
recognized by GRNs models, where the mean trajectory of
observational data are obtained by numerically solving ordinary
differential equations (ODE). This procedure usually leads to
identifying several activation states, as featured by specific sub-
sets of gene expression patterns (Wu et al., 2014). Based on
this approach, a number of studies managed to demonstrate
how intrinsic stochasticity in gene expression can activate a
wide range of gene patterns, thus accounting for differences
in phenotypes observed even among isogenic cell populations
(Kupiec, 1983). The random pattern of gene expression produces
probabilistic outcomes by activating switching mechanisms that
select among alternative paths, ultimately leading an isogenic
cell population to be partitioned into different phenotypes
(McAdams and Arkin, 1997) because of the interplay between
stochasticity of gene activity and non-linear dynamics of the
transcriptional regulatory network (Huang, 2009). Current
models posit that GRNs activity is modulated in a subtler
fashion and results to be extremely sensitive to even small
fluctuations occurring in the molecular dynamics in both the
internal and the external microenvironment. Therefore, the GRN
configuration can “capture” any kind of perturbation occurring
in the system, although it is still unclear how GRNs activity could
“sense” perturbations from the biophysical microenvironment.
Moreover, GRNs sensitivity to external changes can hardly
accommodate with one of the advantages displayed by complex
systems, i.e., robustness (resilience to fluctuations).

RELATIONAL ONTOLOGY FOR
BIOLOGICAL PROPERTIES

Mesoscopic models are able to capture many characteristics of
a system. But then, what kind of causality is able to support
biological explanations? Perturbations coupled with intrinsic
genomic stochasticity can both destabilize an attractor state
thus resulting in different gene expression patterns that would
support independent cell “identities.” The resulting presence
of different transcriptional profiles at the bifurcation point is
properly a “transient state” and it represents a raw substrate
for cell fate switching, but in its own cannot decide about
the fate the cell will choose and why a transition ends up
into a unique phenotypic specification. By focusing only on
the intrinsic dynamics of GRNs we could hardly find out why
a cell population shall take a specific direction among many
others. Namely, an unsolved problem is represented by what
happens at the bifurcation points, where cell fate decisions
take place (Moris et al., 2016). Is an external, “driving” factor
required to “push” cell fate into one well-defined direction
(Masiello et al., 2018)? Indeed, Waddington’s based diagram

include both control parameters, mainly provided by the
surrounding microenvironment, which mostly belong to the class
of physical constraints, and order parameters. In fact, ordered
phenomena might only arise from global cues and constraints
that superimpose their driving effects upon the local, random
dynamics of molecular agents (Bizzarri et al., 2013).

A preliminary re-thinking of the concept of causality is due
to allow order parameters to be carefully and correctly identified.
In classical physics, the individual item is subjected to rigorous
causality recognition according to the paradigm of linearity
briefly mentioned in section “Complexity”: effects are linearly
transduced from causative factor(s) to end up into an effect in a
deterministic fashion. In quantum mechanics, instead, such item
is undetermined, whereas the average behavior of the including
set (the “ensemble” in mathematical terms) can be defined in
terms of statistical probability. That is to say, while in classical
physics every individual object obeys causality, in quantum
mechanics – also applying to complex systems – causality is
meaningful only by considering an entire class of objects. In
other words: causality applies to a class of entities, rather than
to a single object. Therefore, the quantities/properties that are
in common to all members of a class are the observables of
the ensemble/system. As an example, consider cardiac rhythm:
this is an outstanding (system) parameter, per se able to
capture the functioning of the cardiac system and its possible
pathological features. However, this rhythm does not pertain to
any single myocardial cell or to single molecules either (Noble
and Noble, 1984). It is a true system property, arising from the
coordinated activity of the system, and it represent the parameter
we must look at in order to grasp really the functioning of
the cardiac muscle.

Noble (2017) emphasizes that the existence of system
properties that constrain the behavior of lower-level entities is
a case of downward causation – “the control of lower-level
processes by higher-level processes” (p. 81). However, it is not
exactly clear how this might be possible – if entities at lower levels
have certain characteristics that make them behave in certain
ways, how do we make sense of system constraints? By drawing
on previous work (Bertolaso and Ratti, 2018), we propose to
use a relational ontology to ground both the conceptual and
explanatory aspects of this issue.

The basic idea of a relational ontology is that, in our
inventory of the world, relations are somehow prior to the relata
(i.e., entities). In biological terms, this would mean that the
identity of biological entities should not be conceived in terms of
their (internal) characteristics, but rather in terms of the relations
they have with other entities – ultimately, in terms of the habitat
they are embedded in. Therefore, understanding biology in terms
of a relational ontology, means shifting the focus from the entities
taken in isolation, to the historical context (bio-environment) of
the entities themselves. Let us make these considerations more
precise. An entity is a specific (i.e., biological) class of things
that are subjected to the predication of properties. Simplifying,
we can distinguish between intrinsic properties – properties that
entities have in virtue of what they are (e.g., having a specific
mass) – and relational properties – properties that entities have
because of the way they interact with other entities (e.g., acidity).
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The idea behind a relational ontology is that this distinction is
spurious. In fact, even properties that look like they are intrinsic,
in fact they are relational. A case in point is the notion of gene
(Boem et al., 2016). Genes can be specified in terms of intrinsic
properties (i.e., the gene x is a specific sequence of nucleotides),
while in other contexts such as in networks biology a specific gene
is defined as a node within a network of interactions (Barabasi
and Oltvai, 2004) defined by a set of descriptors related to its
connectivity features (e.g., degree, clustering coefficient, etc.).
However, as Bertolaso and Ratti (2018) say “the fact that a gene
has a specific sequence, and the fact that this sequence has a
certain causal role (i.e., being transcribed as a blueprint for a
specific protein) strictly depend on the context where the gene
happens to be. Therefore, even properties that seem prominently
internal are somehow relational, i.e., they depend on the context.”

To specify this further, let us introduce the notion of
“ontological dependency.” As Wolff clarifies, “[t]o say that A
ontologically depends on B is to say that both A and B exist,
but that B is in some sense ontologically and explanatorily
prior to A (. . . ) A exists (at least in part) because B exists”
(p. 618). Therefore, in the biological realm entities have relational
properties only, as they depend ontologically (in the sense
just specified) on the context they happen to be in. This
view can vindicate even more the relevance of the mesoscopic
approach in contemporary biology. It also supports the thesis
defended elsewhere (Plutynski and Bertolaso, 2018) concerning
the explanatory import of systemic models when dealing with
complex biological dynamics. They deal in fact with properties of
signaling networks and concern general patterns of stability and
instability in the dynamics of, for example, cancer progression.
“This requires placing cell intrinsic mechanisms associated with
cancer initiation and progression in a larger context, at a variety
of temporal and spatial scales, from the cell-signaling networks
active in wound healing to evolutionary and developmental
history. In this way, they integrate top-down and bottom-
up perspectives on the same phenomena” (ibidem). Robust
feature of networks therefore are the target explananda of
mesoscopic models.

CONCLUSION

Organisms are complex entities co-emerging with their parts
and properties. At the microscopic level, objects and their
relationships are affected by fluctuations around the average –
due to both environmental and intrinsic stochasticity – and then
subject to quantum mechanics laws; at larger scales, stochastic
fluctuations turn into ordered behavior, thus allowing order to
emerge. The co-emergence of system, parts and properties – and
the collapse thereof, as occurring in pathological processes such
as cancer – can become a conceptual framework to understand
the functional integration of organisms by adopting a mesoscopic
approach, i.e., by focusing on the organization scale that – in
network theory terms – maximizes the entity and number of
correlations among the system’s elements. Experimental practices
both clarify the notions related to the mesoscopic approach,
and demonstrate its consistency and usefulness, as relevant
results can be achieved only by means of right and sensible
choice of mesosystem variables and the appropriate estimation
of local/global constraints. A relational ontology is necessary
to ground both the conceptual and explanatory aspects of the
mesoscopic approach, driving a re-thinking of the concept of
biological causality.
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