
Heliyon 10 (2024) e28534

Available online 22 March 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Machine learning approach to identify malaria risk in travelers 
using real-world evidence 

Pedro Emanuel Fleitas , Leire Balerdi Sarasola , Daniel Camprubi Ferrer , 
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A B S T R A C T   

Background: Pre-travel consultation and chemoprophylaxis measures for malaria are a key component in the prevention of imported malaria in 
travelers. In this study we report a predictive tool for assessing personalized malaria risk in travelers based on the analysis of electronic medical 
records from travel consultations. The tool aims to guide physicians in the recommendation of appropriate prophylaxis prior to their trip. We also 
provide best-practice recommendations for pre-processing noisy and highly sparse real world evidence data. 
Methods: We leveraged a large EMR dataset, containing demographic information about travelers and their destination. The data has been previously 
preprocessed using various strategies to handle missing and unbalanced data. We compared multiple machine learning approaches to assess the risk 
of malaria acquisition in travelers during their travels. Additionally, a feature importance analysis was performed using SHAP (SHapley Additive 
Explanations) values to identify patterns associated with malaria risk. 
Results: Our study revealed that our XGB models achieved high predictive capacity (AUC >0.80). The most significant features predicting malaria 
infection during travel included travel destinations with low malaria risk, vaccination history, number of countries visited, age, and trip duration. 
Remarkably, we were able to obtain a reduced model with only five features. When comparing this model with a population of travelers recom-
mended for malaria chemoprophylaxis, we observed that it was deemed necessary in only 40% of these travelers. This suggests that 60% received 
chemoprophylaxis despite having a low personalized risk of malaria. 
Conclusion: We have developed an algorithmic tool that utilizes a concise survey to generate a personalized travel risk assessment, effectively 
minimizing the prescription of unnecessary malaria chemoprophylaxis. Through the identification of patterns linked to predictions, our model 
significantly enhances the efficacy of pre-travel consultations.   

1. Introduction 

Malaria is a parasitic disease caused by various species of Plasmodium worldwide, transmitted by the bite of Anopheles mosquitoes. 
Malaria remains one of the main parasitic diseases [1]. Additionally, cases of malaria imported to non-endemic regions and diagnosed 
among travelers are a challenge for non-endemic countries. In Europe, 12.000–15.000 cases of imported malaria are diagnosed every 
year [2]. In this context, pre-travel consultation and prophylactic measures for malaria (chemoprophylactics and measures to reduce 
mosquito bites) play a crucial role in preventing the disease among travelers. This involves assessing the traveler’s risks based on their 
destination, demographic, and health profile [3]. However, despite the existence of guidelines to assist clinicians in assessing malaria 
risk in travelers [4], there is currently no available tool that assigns a personalized malaria risk score to travelers by considering the 
interaction of multiple variables. Such a tool would enable clinicians to make an initial assessment of malaria risk in travelers and 
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Table 1 
Characteristics of travelers without malaria chemoprophylaxis (Set_NP) and with malaria chemoprophylaxis (Set_P).  

Set_NP: Travelers without malaria chemoprophylaxis (n = 3490)  

Age range Frequency Mean number of 
vaccines 

Male Female Attended to pre- 
travel advice 

Born in 
Europe 

Born in America Born in Africa Travel to 
America 

0–14 1 4 1 0 0 1 0 0 1 
15–44 2785 4 1172 1613 1305 2538 73 8 1204 
45–64 597 3 295 302 165 529 25 5 269 
>64 107 3 59 48 28 99 6 1 55 
Age range Travel to 

Africa 
Travel to Asia Travel to 

Oceania 
Trip for 
work 

Sightseeing trip VFR trip International 
cooperation trip 

Travel to a country with a recommendation 
for malaria chemoprophylaxis 

Malaria 
infection 

0–14 0 0 0 0 0 1 0 0 0 
15–44 512 1179 19 405 1964 196 220 796 90 
45–64 147 153 1 124 366 83 24 174 44 
>64 25 24 0 10 68 17 12 34 5 

Set_P: Travelers with malaria chemoprophylaxis (n ¼ 953) 

Age range Frequency Mean number of 
vaccines 

Male Female Attended to pre- 
travel advice 

Born in 
Europe 

Born in America Born in Africa Travel to 
America 

15–44 741 5 268 473 676 712 8 0 178 
45–64 175 5 78 97 162 167 3 0 41 
>64 37 5 16 21 33 34 0 2 7 
Age range Travel to 

Africa 
Travel to Asia Travel to 

Oceania 
Trip for 
work 

Sightseeing trip VFR trip International 
cooperation trip 

Travel to a country with a recommendation 
for malaria chemoprophylaxis 

Malaria 
infection 

15–44 512 90 1 115 424 24 178 625 38 
45–64 140 9 0 30 116 5 24 154 5 
>64 27 1 0 3 26 2 6 33 2  
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determine the appropriate prophylactic measures. In line with this objective, the data collected during pre-travel consultation and 
recorded in electronic medical records (EMR) can be aggregated and analyzed to obtain a set of real-world data (RWD). This infor-
mation can then be utilized to develop models that assist in risk assessment, clinical decision making, and health technology 
assessment among other applications [5]. 

EMR offers several advantages, including large sample sizes, a wide range of predictor variables, and data that better reflect the real 
world compared to well-designed prospective cohort studies. However, the analysis of EMR also presents several limitations, such as a 
high degree of missing data, imbalance between features, and potential bias towards a specific population, such as patients with a 
particular disease in a specific hospital. This situation is referred to as “health data poverty”, which occurs when individuals, groups, or 
populations cannot benefit from a discovery or innovation due to insufficient data that adequately represent of the general patient 
population [6]. Consequently, robust imputation models and data processing methods are necessary to overcome health data poverty 
and generate descriptive and predictive insights. 

Machine learning techniques are a powerful tool for designing models and identifying individuals at risk of adverse health events. 
This allows healthcare providers to plan preventive interventions [5]. Machine learning has proven successful in assessing person-
alized risk in several chronic medical conditions such as: diabetes, cancer, asthma, and heart disease [7], and also infectious diseases 
such as COVID-19, dengue, brucellosis, etc. [8]. 

In the specific context of malaria, machine learning models applied to EMR has been successful in identifying malaria patients in 

Fig. 1. Flowchart of data processing, validation and evaluation of machine learning models.  
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endemic areas, utilizing symptoms and demographic characteristics of the patients [9,10]. To our knowledge, there is no prior study 
that attempts to predict the risk of infection in travelers. This topic is also relevant in the context of pandemic preparedness and 
surveillance. Travelers can serve as potential sources of disease transmission, especially if they visit areas with ongoing malaria 
outbreaks. By accurately assessing and mitigating the risk of infection in travelers, the spread of malaria to new regions or the rein-
troduction of malaria in previously controlled areas can be prevented. 

In this study, our focus is on predicting malaria risk in travelers using typical pre-travel consultation questionnaires, and identifying 
relevant patterns and correlations in malaria detection. The primary objective of this paper is to build a predictive tool for personalized 
risk of malaria for travelers based on the analysis of EMR. The tool aims to identify travelers at higher risk who would benefit from 
malaria chemoprophylaxis. Our ultimate goal is for this tool to assist physicians in making recommendations for malaria prophylaxis in 
high-risk travelers. 

2. Methods 

Ethical approval 

This study received approval from the Medical Research Committee of Hospital Clinic, which authorized the review of medical 
records for the purposes of this study. As the study is based on the analysis of existing electronic medical records, the informed consent 
of the patients was not required. No additional interventions were conducted, and no new data was obtained from the patients, thus 
active participation in the study was not requested. To ensure the confidentiality and protection of personal data, anonymized data was 
utilized to remove any identifiable information, and access to the records was restricted. 

Considering the retrospective nature of the study and the anonymity of the data, the study posed minimal risk while offering 
potential benefits in terms of generating valuable insights. 

2.1. Dataset 

The dataset comprises 4443 anonymized traveler records from pretravel consultations at the Department of International Health, 
Hospital Clínic, University of Barcelona, Spain, from October 2014 to January 2022. A total of 5% (184/4443) travelers had been 
diagnosed with malaria during or immediately after their trip. The EMR for each patient includes data on age, sex, country of birth, 
administered vaccines, travel destinations, duration of the trip, number of countries visited, type of area visited (i.e., urban, rural or 
urban and rural), travel reason (i.e., work, tourism, international cooperation, or VFR (Visited friends and relatives)), attendance to 
pre-travel advice consultation (yes/not), and the outcome of malaria diagnosis. Features with more than two categories were processed 
with one-hot encoding. 

This dataset was divided into two datasets, one where travelers did not receive malaria chemoprophylaxis (n = 3490) called set_NP 
and another where travelers received malaria chemoprophylaxis (n = 953) called set_P. The latter set is composed of those travelers 
who declared in the post-travel consultation that they had received malaria chemoprophylaxis during their trip. However, 45 (5%) of 
travelers in set_P acquired malaria during their trip. The characteristics of these datasets can be observed in Table 1. 

The two different datasets were used for different analyses to avoid the potential confounder effect of malaria chemoprophylaxis 
when assessing the outcome of imported malaria. The Set_NP was used for the building, validation and evaluation of the machine 
learning models. On the other hand, the set_P was used to compare the model prediction with the chemoprophylaxis recommendation. 
We used the set_P to retrospectively assess the potential impact of the machine learning model recommendation on the indication of 

Table 2 
Predictive characteristics of the 6 best machine learning models for assessing malaria infection risk in travelers.  

Model Training Training_PSM 

Training set Test set Training_PSM Test set 

*Mean AUC (IC95%) AUC Sensitivity Specificity *Mean AUC (SD) AUC Sensitivity Specificity 

QDA 0.76 (0.71–0.82) 0.8 0.86 0.74 0.70 (0.67–0.73) 0.8 0.86 0.74 
GNBC 0.78 (0.75–0.81) 0.75 0.86 0.65 0.74 (0.71–0.77) 0.75 0.86 0.65 
AB 0.87 (0.85–0.89) 0.93 0.24 0.99 0.79 (0.75–0.84) 0.82 0.31 0.94 
DT 0.59 (0.54–0.65) 0.63 0.17 1.00 0.66 (0.59–0.69) 0.74 0.21 0.99 
LR 0.89 (0.87–0.92) 0.92 0.14 1.00 0.80 (0.77–0.84) 0.8 0.24 0.98 
XGB 0.80 (0.78–0.83) 0.85 0.14 1.00 0.68 (0.64–0.72) 0.75 0.24 0.94 

Model Training_SMOTE_20 Training_SMOTE_50 
Training_SMOTE_20 Test set Training_SMOTE_50 Test set 
*Mean AUC (IC95%) AUC Sensitivity Specificity *Mean AUC (IC95%) AUC Sensitivity Specificity 

QDA 0.97 (0.96–0.98) 0.81 0.86 0.76 0.99 (0.99–0.99) 0.81 0.86 0.77 
GNBC 0.92 (0.91–0.93) 0.86 0.83 0.89 0.95 (0.94–0.95) 0.86 0.67 0.90 
AB 0.98 (0.97–0.99) 0.89 0.36 0.97 0.99 (0.99–0.99) 0.92 0.52 0.95 
DT 0.91 (0.90–0.92) 0.79 0.48 0.94 0.96 (0.96–0.97) 0.84 0.52 0.91 
LR 0.97 (0.96–0.97) 0.87 0.17 1.00 0.98 (0.98–0.99) 0.82 0.24 0.98 
XGB 0.97 (0.97–0.98) 0.86 0.14 0.98 0.99 (0.99–0.99) 0.84 0.14 0.98  
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malaria chemoprophylaxis. For which, travelers categorized as having a high risk of acquiring malaria by the model would be the ones 
to whom malaria chemoprophylaxis would be recommended. 

3. Data pre-processing 

3.1. Missing data handling 

The main dataset has 1.9% of total missing data split among the features. To overcome it, multiple imputation, excluding the 
outcome, was performed using random forest using the mice library of R software [11,12]. In set_P the imputation was made on the 
whole set, while Set_NP was first separated into a training set (70% of the Set_NP, n = 2443, cases = 97, controls = 2346) and a test set 
(30% of the dataset, n = 1047, cases = 42, controls = 1005). Multiple imputation was performed in the training set. Then, the pre-
diction matrix created based on the training set was applied for multiple imputation in the test set (Fig. 1). 

As a result of each multiple imputation, five complete data sets were created for each data set (Set_P, Set_NP Training, and Set_NP 
Test). The distribution of the variables with missing data from the imputation sets did not present significant differences with the 
original data set (Quantitative variables p = 0.99 Kolmogorov-Smirnov test, categorical variables p > 0.05 chi square test) (Supple-
mentary files , Fig. S1). Finally, an imputed Set_P, a training set called Training and a testing set called Test were created by computing 
the mean (for quantitative variables) or selecting the most likely imputed value (for categorical variables) between the different five 
sets. 

3.2. Handling of imbalanced data 

The issue of data imbalance can impact on the effectiveness of the machine learning classification model, because the variability of 
the frequent class is much better represented by a large number of cases compared to the scarce class. Therefore, the model tends to 
provides more accurate classification for the more abundant class. In our dataset malaria cases accounted for only 4% of the main 
dataset. 

Two approaches were taken to reduce the imbalance in the training set. 

• Propensity Score Matching (PSM): This method enables the generation of a smaller dataset where the patterns of one class re-
sembles those of the other [13]. Each malaria case was matched with four healthy individuals who had similar scores. Logistic 
regression was employed for the calculation of the scores, including variables age, sex, type of area visited, and reason for the trip, 
as features, and malaria infection as the outcome. Matching was performed by comparing the scores by nearest neighbor using the 
MatchIt library of R software [14]. Finally, a reduced training set called Training_PSM was obtained, consisting of 97 cases of 
malaria from the Training set and 388 control cases (n = 485) (Fig. 1). 

Fig. 2. SHAP values computed for malaria infection cases of the 25 most significant features obtained with the optimized XGB model in the Test set. 
(a.) Mean SHAP values. (b.) SHAP values. Each point represents an individual of the Test set. High values of the feature are represented in red, and 
low values in blue, and the corresponding SHAP value is observed on the x-axis. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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• Synthetic Minority Oversampling Technique (SMOTE): This method allows the creation of a larger data set in which synthetic data 
are generated for the minority class by an oversampling technique. Two new training datasets were generated: the Train-
ing_SMOTE_20 dataset, giving a proportion of 20% malaria infection (n = 2928); and the Training_SMOTE_50 giving a proportion 
of 50% malaria (n = 4674) (Fig. 1). This was done with the smotefamily library of R software [15]. No modifications were made in 
the Test set. 

3.3. Machine learning models 

Four training sets (Training, Training_PSM, Training_SMOTE_20, Training_SMOTE_50) were used for training 12 machine learning 
classification methods (Nearest Neighbors (NN), Support vector machines (SVM), Radial Basis Function SVM (RBF-SVM), Gaussian 
Process Classifier (GPC), Decision Tree (DT), Random Forest (RF), Multi-layer Perceptron classifier (MLPC), AdaBoost (AB), Gaussian 
Naive Bayes classifier (GNBC), Quadratic Discriminant Analysis (QDA), XGBoost (XGB), and Logistic Regression (LR)) (Fig. 1). For 
each model, a 100-fold cross-validation (70% train, 30% test) was applied on each training set and the mean and standard deviation of 
the area under the receiving-operating curve (ROC AUC) were calculated. In addition, each model was validated on the same Test set, 
the AUC, sensitivity (positive recall) and specificity (negative recall) for malaria infection were calculated. The best models were 
chosen for optimization of parameters using the parameter F1 as the reference performance metric (Fig. 1). F1 is calculated as the 
harmonic mean of both precision and recall for the minority positive class, and is a robust performance metric for imbalanced 
scenarios. 

In addition, the probability of the model was adjusted to obtain a sensitivity greater than 90% in the training set, since the model 
acts as a first screening stage for the physician in the travel consultation visit. These analyzes were performed with various Python 
libraries, the data was structured with the Pandas library [16], the machine learning algorithms were sourced from the scikit-learn 
library [17], and the figures were made with the matplotlib library [18]. 

3.4. Feature importance and feature selection mechanism 

In the best-performing machine learning classification model, we analyzed the feature importance using SHAP (Shapley Additive 
exPlanations) values. SHAP values provide an explanation for each prediction by quantifying the contribution of dataset features to the 
model’s output [19]. In addition, we employed SHAP values as a feature selection mechanism, where the features were ranked ac-
cording to their contribution, and classification models were evaluated using different percentages of the features [20]. For this, the 
SHAP library of Python was used [19]. 

4. Results 

4.1. Machine learning modeling to assess malaria risk 

The machine learning approach allowed us to obtain models with high predictive capacity for malaria infection in travelers 
(Table 2). These models demonstrated notable AUC values exceeding 80%. The QDA and GNBC models presented the highest 
sensitivity values, successfully detecting more than 85% of the malaria cases. On the other hand, the AB, XGB and LR models presented 
the highest specificity. Subsequently, an ensemble model was generated with the combination of QDA (higher Sensitivity) and XGB 
(highest specificity). However, this ensemble model did not exhibit superior characteristics to the individual models (Supplementary 
files Fig. S2). 

Parameter optimization of the aforementioned models was performed and the best results were obtained with the XGB model, 
obtaining an AUC in the cross-validation of 0.90 (95%CI: 0.84–0.96) and an AUC of 0.80 in the evaluation with the Test set. Therefore, 
adjusting the sensitivity to 90%, a specificity of 81% was obtained. This implies the high capacity of the model to identify travelers at 

Fig. 3. Performance of the XGB model for the risk of infection with malaria in travelers, with different percentage of features.  
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risk of acquiring malaria during their trip. 

4.2. Feature importance 

Of the 101 features, the importance analysis with SHAP values revealed that only 63 features (63%) were relevant for the XGB 
model (Supplementary files, Fig. S3). The ten most important features were being vaccinated with yellow fever vaccine, biological sex, 
tourist travel, have received travel advice, duration of the trip, age, have visited rural and urban areas, travel to India, and the number 
of countries visited (Fig. 2a.). From the above-mentioned characteristics, those that increased the risk of malaria in travelers were: 
having been vaccinated with the yellow fever vaccine, being male, and age. On the other hand, tourist trips, attending the traveler’s 
consultation, having being born in Spain and traveling to India were associated with a lower risk of malaria in travelers (Fig. 2b.). It 
should be noted that in our population of travelers the destinations associated with a higher risk of malaria were Equatorial Guinea, 
Nigeria, Kenya, the Ivory Coast and Burkina Faso (Fig. 2). While countries such as Colombia, Brazil and Mexico presented a low risk of 
malaria for travelers. 

4.3. Reduced model based on feature selection 

The XGB model was optimized in the Training set based on feature importance, considering different percentages of features: 100%, 
60% 50%, 40%, 20% 10% and 5% of features (Fig. 3). The optimal number of features was 60% (63 features), resulting in the following 
performance metrics: Cross validation in the Training set AUC = 0.90 (95% CI: 0.78–0.96), evaluation in Test set AUC = 0.80, 
sensitivity = 0.90 (95% CI: 0.78–0.96) and specificity = 0.83 (95% CI:0.81–0.86). 

Remarkably, even when the number of features was reduced to 5%, the model’s predictive ability was high, with an AUC = 0.83 
(95% CI: 0.74–0.91) during cross-validation with the Training set, and AUC = 0.70 in the evaluation with the Test set, with a 
sensitivity = 0.90 (95% CI: 0.77–0.96), and a specificity = 0.71 (95% CI: 0.68–0.74). Consequently, a minimal model consisting of only 
5 questions was developed for the convenient clinical assessment of malaria risk in travelers in the pre-travel consultation. These 
questions include: 1. Have you been vaccinated with the yellow fever vaccine? (Yes/No). 2. What is your biological sex? (Female/ 
Male). 3. Is the purpose of your trip tourism? (Yes/No). 4. Did you attend a pre-travel consultation visit? (Yes/No). 5) How long will 
you be traveling? (Number of days). 

4.4. Clinical relevance and applicability of the XGB model 

In order to assess the practicality of the model for assessing risk in travel consultation visits, the minimum XGB model consisting of 
five questions was evaluated in Set_P which consisted of unseen data from travelers who had received chemoprophylaxis prior to their 
travel. The results showed that the model successfully identified 71% of the travelers who were later diagnosed with malaria (Table 3). 
Moreover, the model predicted that chemoprophylaxis was necessary for only 373 (40%) travelers of Set_P, implying that 60% of 
travelers received chemoprophylaxis despite having a low risk of malaria. 

5. Discussion 

In this study, we developed machine learning models with high predictive capacity to assess individualized malaria risk and 
personalize travel risk assessment. Traditionally, the risk of malaria among international travelers is evaluated in pre-travel consul-
tations based on the incidence of malaria in the destination country as the primary indicator. While machine learning has been 
previously been utilized with clinical data and malaria images (Giemsa-stained blood films) to assist in diagnosis [9,21,22], to the best 
of our knowledge, this is the first study in which traveler’s EMR have been analyzed using this methodology to assess personalized 
malaria risk for travelers [23]. 

Our best model with 63 features presented an AUC = 0.80 in the evaluation with the Test set. Furthermore, we successfully ob-
tained a reduced model based on a minimal 5-question survey (Test set evaluation: AUC = 0.70, sensitivity = 0.90 (95% CI: 0.77–0.96), 
specificity = 0.71 (95% CI: 0.68–0.74)), aiming to assist the physicians during the travel consultation visit. It is essential to consider the 
specific use case and applicability of the model, as one model may be more advantageous than the other depending on the context. 

It is important to note that feature importance does not necessarily indicate a causal relationship with malaria infection and can 
often point to biases in the data, which should be carefully considered. However, there are notable patterns that emerge, such as the 
lower risk associated with tourist trips, as many tourist destinations in Southeast Asia, the Caribbean and Latin America have no risk of 
malaria [24]. Another noteworthy pattern is the higher risk in VFR travelers, and lower risk of malaria in India, which is classified as a 

Table 3 
Comparison between the XGB (five question) model and the Set_P.      

Set_P (Malaria diagnosis)   

Set_P chemoprophylaxis recommendation (n = 953)  Positive Negative 

XGB Model High risk of malaria 373 (40%) High risk of malaria 32 341 
No risk of malaria 580 (60%) No risk of malaria 13 567  
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low-risk country, where malaria chemoprophylaxis is not recommended except when visiting specific states like Assam or Orissa [23]. 
The most informative feature of the XGB model was the vaccination against yellow fever, which was found to be associated with an 

increased risk of acquiring malaria. However, it is important to interpret this result with caution due to the confounding effect of travel 
to high-risk countries with malaria. Yellow fever vaccination serves as an example of a feature that is useful for the predictive model, 
but its association with the outcome is indirect. In many cases, yellow fever vaccination is administered to travelers visiting yellow 
fever endemic areas, which often overlap with malaria endemic areas [25]. Additionally, the higher risk of malaria among male 
travelers in our population can be attributed to the higher number of reported cases among male travelers compared to female 
travelers. 

In some cases, recommending malaria chemoprophylaxis when the risk is low may be unnecessary, and could increase cost and the 
rate of adverse events. It is important to note that malaria chemoprophylaxis alone does not provide complete protection and should be 
accompanied by measures to reduce mosquito bites [26]. Additionally, non-adherence to malaria chemoprophylaxis is common, 
particularly among VFR travelers, long-term travelers and those who have difficulty adhering to a daily schedule [27]. 

Within the set_P population where all travelers received malaria chemoprophylaxis, 5% (45/953 travelers) still acquired malaria 
during their trip. However, it is challenging to determine how many cases could have acquired malaria if chemoprophylaxis had not 
been recommended. Nevertheless, in this scenario, the XGB model was able to identify 71% (32/45) of the total malaria cases in Set_P, 
and classified 40% as high risk of that population. This approach represents a more conservative prescription of antimalarial 
chemoprophylaxis, with only 40% receiving chemoprophylaxis while emphasizing measures to prevent mosquito bites for the 
remaining 60%. The validity of this approach should be further explored with new data. However, our model can be easily imple-
mented in an application for use during the pre-travel consultation visit, enabling a quick assessment of malaria risk, and providing 
initial information to the physician for safer travel measures. 

The analysis of EMR, presented several challenges in terms of data quality and completeness, which had to be addressed analyt-
ically. In our database, we encountered 1.9% empty data with some features having up to 20% missing data. This was primarily due to 
ambiguity in documentation of medical data, where positive data is often recorded while negative data is left blank. It is important to 
note that, in EMRs, missing data is often informative and carries meaning [28]. In this study, we took a different approach to handling 
missing data, compared to the common practice of removing all incomplete cases and performing complete cases analysis. Instead, we 
performed multiple imputation using random forest, allowing us to generate imputed datasets with low variability. The high per-
formance of our models suggest that our imputation approach is robust and efficient. 

Another challenge we encountered was data imbalance in EMRs. In our database, we found that the two strategies to solve this 
problem did not have a significant impact on the performance of the machine learning models. The best performing models maintained 
their predictive capacity regardless of the data balancing methodology used. Conversely, the models that exhibited poor performance 
did not demonstrate improvements and even showed signs of overfitting when applying the SMOTE approach. Additionally, no sig-
nificant in performance was observed between the Training_SMOTE_20 and Training_SMOTE_50 sets, indicating that it was not 
necessary to equalize the percentage of cases and controls, which is typically done when using SMOTE [29,30]. It worth noting that 
numerous studies reporting improved performance after balancing the data with SMOTE may misinterpret the model metrics (higher 
AUC, precision, recall, or F1) by adjusting and evaluating the model using the same data set [31], rather than testing the model with an 
independent dataset. This practice is not recommended as it can lead to the contamination of the test set with some of the training set 
data, resulting in overestimated values of the model metrics [31]. Based on our results, we conclude that it is more effective to identify 
the best machine learning model and optimize it accordingly, rather than solely relying on data balancing techniques to favor any 
specific model. Furthermore, while the EMRs allowed us to design machine learning models, it is important to acknowledge that the 
predictive models obtained are specific to the population of travelers within our hospital. Nevertheless, this study demonstrates that 
models with high predictive capacity can be generated based on relatively simple questionnaires requested from travelers. More 
accurate models could be obtained with the incorporation of more precise localizations, complemented by up-to-date malaria 
epidemiology. 

In this study, we present guidelines for data processing and model development based on real world data from clinical practice. Our 
successful achievement was the development a five-question machine learning model capable of identifying travelers at high risk of 
acquiring malaria during their trip, utilizing information gathered during the traveler consultation visit. 

Our model holds the potential to personalize travel risk assessment and minimize unnecessary prescription of malaria chemo-
prophylaxis. We aim to implement this model to assist in the traveler’s consultation of Hospital Clínic. By doing so, we can enhance 
personalized malaria risk assessment for travelers and promote better preventive measures. This, in turn, can lead to increased 
adherence to malaria chemoprophylaxis and ultimately save lives. 
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