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Abstract

Background: Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics.
They are broadly composed of two repetitive structures namely a-helices and b-sheets, apart from turns, and the rest is
associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties.
PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with
stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an
important role in protein – protein interactions.

Methodology/Principal Findings: A major factor that limits the study of PPII is that its assignment cannot be carried out
with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a
PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the
ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most
consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule
was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to
the assignment and only PPII helices of at least 2 residues length are defined.

Conclusions/Significance: The simple rules designed in this study for characterizing PPII conformation, lead to the
assignment of 5% of all amino as PPII. Sequence – structure relationships associated with PPII, defined by the different
SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was
carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and
thus opens a simple way for further analysis in this field.
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Introduction

The three dimensional structures of proteins are of great help to

understand the precise details of its biological function. Contrary

to the earlier views, the first low resolution model of myoglobin

exhibited high complexity and a definite lack of symmetry [1]. In

spite of the global complexity, Pauling and Corey had proposed

two types of regularities in the local backbone conformation [2,3].

The first one constitutes the a-helix conformation which was

estimated to be stable and favorable on the basis of accurate

geometrical parameters derived from small molecule crystal

structures [4]. The second one is the b-sheet which was made of

extended anti-parallel or parallel strands stabilized by backbone

hydrogen bonds between them [5]. The high frequency of a-

helices and b-sheets observed in experimentally determined

structures [6] has led to the concept of ‘secondary structures’

which describes these local backbone regularities in the protein

structure. Basically the secondary structure description is com-

posed mainly of a-helix, b-strand and a state corresponding to

other regions in the backbone, the coil. The structure descriptions

are often limited to these three classes. With availability of a large

number of experimentally determined protein structures, it is

becoming obvious that other backbone conformations are also

favored in proteins. The a-helices are not the only helical

conformation and are often not linear [7,8], the b-sheets also

show irregularities [9,10] and the coil is in fact, not strictly

random.

The class of b-turns is of particular interest. In the late 60 s,

Venkatachalam discovered the existence of these small local folds

that are characterized by the reversal of polypeptide chain and

stabilized by a hydrogen bond between the first and the last

residue [11]. These b-turns are part of a more general class, known

as tight turns, which are characterized by precise dihedral angle

values of their central residues and a short distance between the
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extremities [12]. The latter has been shown to play important

structural and functional roles [13].

Apart from turns, the other characterized secondary structure is

the PolyProline II (PPII) helix. The PPII helices correspond to a

unique local fold [14]. They were discovered more than 50 years

ago in fibrous proteins [15,16], as they contribute to coiled coil

supersecondary structures formation . Later they were also found

to occur in numerous globular proteins. PPII helix is a left-handed

helical structure with an overall shape resembling a triangular

prism [17,18]. With a helical pitch of 9.3 Å/turn, each turn

constituting of 3 residues, it forms an extended helix. This

conformation is characterized by recurrent trans isomers of

peptide bonds and (w, y) values of 275u and +145u respectively,

the dihedral angles being a characteristic of b-strands As noted by

G. Rose, considering the hydrogen-bonded b-turns [11] and PPII

[16] along with the classical secondary structure result in the

assignment of 80% of the all amino acids to a regular backbone

conformation [19].This rises to 90%, in a more recent study where

the turns are defined in slightly different way [20].

Nonetheless, when compared to a-helices, b-sheets and turns,

analysis of PPII has not gained wide interest, mainly due to three

factors: (i) PPII has a low frequency of occurrence, (ii) PPII

conformation is not stabilized by a strong hydrogen bond pattern,

thus considered as an unstable conformation and, (iii) only a few

methods for PPII assignment are available and these methods use

different assignment parameters resulting in variable assignments.

Also, PPII helices are not assigned by the widely used Secondary

Structure Assignment Method (SSAM): DSSP [21].

Adzhubei and Sternberg in their first systematic search, found

96 PPII helices in a databank of 80 proteins [22]. They were

surprisingly common. Even if they are called polyproline for

historical reasons, they are not only composed of Proline

successions, some PPII helices have no Proline at all

[22,23,24,25,26] , e.g., short stretches of poly-glutamines were

found to form PPII conformation [27]. Hollingsworth, Berkholz

and Karplus recently proposed that its common name could be

changed to a more general form, i.e., ‘‘polypeptide-II’’. This would

maintain the familiar acronym, avoid the misleading association

with only Proline, and be consistent with the observation that it is a

prominent conformation in unfolded polypeptide chains [28].

These PPII helices are highly solvent-exposed and tend to have

high crystallographic temperature factors [22]. Moreover PPII are

not stabilized by salt bridges [29]. It has been suggested that PPII

helices could be stabilized by water mediated main chain hydrogen

bonds (in the absence of main chain-main chain H-bonds), as they

also tend to have a regular pattern of hydrogen bonds with water

[30]. Several studies suggest that peptide-solvent interaction is a

major determinant of PPII conformation [31,32,33]. However, the

preference for polyproline II conformation is also reported to be

independent of the degree of solvation [34]. Avbelj and Baldwin

noticed that solvation strongly affects preferences for different

backbone conformations. The dependence of backbone preference

on solvation might explain why Alanine favors PPII conformation

whereas Valine favors extended structure [35]. Stapley and Creamer

suggested that local side-chain to main-chain hydrogen bonds are also

important in stabilizing PPII helices [24]. Cubellis and co-workers

recently highlighted that PPII helices are stabilized by non-local

interactions [36]. PPII do not display strong sequence propensities in

contrast to the other extended conformations, such as b-strands [37].

The non-local stabilization of hydrogen-bond donors and acceptors

does, however, result in PPII conformations being well suited for

participating in protein-protein interactions. They are also suspected

to have a role in amyloid formation [38,39] and nucleic acid binding

[40]. Hence, a recent study shows its importance in Duchenne

muscular dystrophy [41]. Several studies have also focused on the

extremities of PPII. It has been proposed that PPII might interrupt in

the formation of b-sheet which is prone to aggregation [42], due to its

particular geometry with the neighboring amide bond [43]. They

could have a key role in the folding process [44]; the concentration of

residues in the PPII conformational space lowers the entropy of the

unfolded protein chain and thus facilitates folding (under appropriate

conditions) [45,46]. Recently, the number of studies on PPII

conformations has increased [19,36,47,48,49], especially in the field

of molecular dynamics [19,32,45,50].

Numerous approaches for secondary structure assignment that

rely on different descriptors, exist (see Table 1 of [51]). DSSP [21]

remains the most widely used SSAM. It identifies the secondary

structures on the basis of particular hydrogen bond patterns

detected from the protein geometry, with the help of an electrostatic

model. DSSP is used for assigning secondary structures for the

protein structures deposited in the Protein DataBank (PDB) [6,52].

Currently, only three publicly available SSAMs assign PPII,

namely XTLSSTR [53], PROSS [54] and SEGNO [55].

XTLSSTR uses all the backbone atoms to compute two angles

and three distances [53], which forms the basis of assignments.

Assignments made by PROSS and SEGNO are based solely on

backbone angles, mainly involving the Q and y dihedral angles.

The purpose of this work is to propose simple rules to assign

PPII based on a classical secondary structures assignment carried

out using DSSP. We have compared the assignment of the three

available PPII assignment methods and specifically analyzed the

distribution of PPII based on these assignments. Then, we propose

a rule to assign PPII within the coil assigned by DSSP; such that

there is a good concordance with the other assignments. Sequence

– structure relationships of these PPIIs are also analyzed to study

amino acid preferences and to ensure a good agreement with the

previous studies [56]. In the same way, a specific analysis of

sequence-structure relationships on capping regions was also

carried out. Residue accessibility and contacts in the PPII helices

were also studied as they are considered to be accessible for

different interactions. The behaviour of PPII has also been

analyzed at the light of a structural alphabet [56,57] named

Protein Blocks [58,59,60]. This gives a more accurate picture on

the local structures associated with PPII.

Results

Comparison of the different SSAMs
A non-redundant databank of protein structures has been

extracted from the PDB [6]. The list of protein structures has been

obtained from PISCES database [61,62], which is generated based

on the following criteria : resolution less than 2.5 Å, R factor

Table 1. Analysis of PPII properties.

f(PPII) all (%) in DSSP coil (%) av. len. in PPIIDSSP (%)

PROSS 10.10 6.70 1.35 65.9

XTLSSTR 6.80 4.18 2.63 56.0

SEGNO 3.97 2.58 2.58 45.6

mean 6.95 4.48

DSSP with PPIIDSSP 5.11 5.11 3.24 100.0

The PPII frequency of the 3 SSAMs (see Figure 1) and the novel PPIIDSSP are
given with their average PPII length (av. len.) and the percentage of PPII
assigned by PPIIDSSP which are in common with the other SSAM assignments.
doi:10.1371/journal.pone.0018401.t001
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below 0.2 and no proteins share more than 30% sequence identity.

As assessed earlier [51], SSAMs have only about 80% of consensus

between them. We have re-computed an agreement rate C3

between the four SSAM assignments used in this study (see Figure

S1). The results were in agreement with previous studies

[51,55,63,64]: the secondary structure assignment by XTLSSTR

had the lowest concordance with others, having C3 values of 77.4,

73.5 and 73.8% with DSSP, PROSS and SEGNO respectively

(mainly due to the highest frequency of assigned a-helices, as

already observed in [65]). The assignment made by SEGNO

remains closest to DSSP with a C3 of 88.9%. For PROSS, which

was not used in the earlier analysis, the C3 values are around 82%

(corresponding to classical values [51,66,67]). These results show

that the two closest SSAMs are DSSP and SEGNO while PROSS

is a little far away and XTLSSTR is even more distant.

PPII
Figure 1 summarizes most of the information on PPII

distribution (see also Table 1). The frequencies of classical

secondary structures (see Figure S2 and S3) and especially of

PPII are rather different for each SSAM. Frequencies of secondary

structures assigned by DSSP and SEGNO are quite similar (except

that SEGNO does not assign turns). Assignments made by PROSS

have relatively similar frequencies when compared to that of

DSSP, with a slightly lower frequency of turns [65]. XTLSSTR

assigns more coil and less repetitive structures when compared to

DSSP.

The percentage of PPII is quite significant, starting from 3.97%

for SEGNO, 6.80% for XTLSSTR and 10.10% for PROSS. A

ratio of 2.5 is thus observed between PPII assignments. However

1/3rd of the PPII assigned by each SSAM is not associated to

DSSP coil, but is shared between turns and b-strands. Considering

only the DSSP coil regions, the PPII frequencies range only from

2.58% for SEGNO to 6.70% for PROSS. As seen in the Venn

diagram, the consensus of PPII assignment is more limited, i.e.,

only 1.35% of the residues amino acids are assigned as PPII by all

the 3 SSAMs. It represents 52% of PPII assigned by SEGNO,

32% by XTLSSTR and 20% by PROSS. If only two SSAMs are

taken into account, the consensus in the region of DSSP coil goes

up to 3.25%. Thus the average frequency of PPII is about 6.95%,

Figure 1. PPII distribution. The Venn diagram gives the confusion between PPII assignments by the three SSAMs, namely PROSS, XTLSSTR and
SEGNO. Inside different regions of the diagram is given two percentages x.xx(y.yy), the first percentage x.xx% correspond to the PPII frequency
observed while y.yy gives the frequency in the DSSP coil alone. The secondary structure frequencies are given as a barplot in 4 states for DSSP, and 5
states for the other three assignments. The correspondence of PPII residues with the assignments by DSSP is also given.
doi:10.1371/journal.pone.0018401.g001
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and it is about 4.48% in the DSSP coil. Hence, no simple

consensus emerges from the analysis of the different PPII

assignments (see [51,63,65,67]).

Definition of the PPII assignment based on DSSP
Choice of dihedrals. Seeking hints from literature [22] [37]

and the above analysis of previous methods [53,54,55], we propose

a simple rule for assigning PPII conformation for the residues in

the coil assigned by DSSP. For this purpose, we have used the

dihedral angles (.w+/2.e, y+/2e) to delineate the PPII space. The

canonical (.w, y) values of 275u and +145u have been selected as

the core of PPII region, and an e increasing by steps of 1u. Mean w
value of PPII assigned by the SSAMs equals 75.6u while mean y
value is slightly different from the canonical value, i.e., 136.9u.

The value of e is chosen such that equilibrium is reached

between the number of amino acids assigned as PPII by one of the

SSAMs and the residues not assigned as PPII in the DSSP coil.

The higher the e, the higher is the number of PPII assigned by one

of the three SSAMs and higher is the number of amino acids not

assigned as PPII by one or another. Figure 2a shows the

distribution of PPII assigned in DSSP coil and Figure 2b gives

the corresponding percentage in DSSP coil. With an e of 17u, we

have the highest percentage of amino acids assigned as PPII by

SEGNO, XTLSSTR and PROSS, within the DSSP coil.

Moreover, the corresponding percentage assigned (i.e., 4.9%) is

close to the average occurrence of PPII (see previous sections).

However, some PPII helices are only one residue long. It is mainly

due to the delimitation of DSSP coil (see Table 1).

Additional constraint. Taking the suggestions by different

groups into account [22,37,55], we have added a second rule to

the PPII assignment approach: at least two consecutive residues

with dihedral angles within the range (.w+/2e, .w+/2e), are

required to form PPII helix. After an iterative search, a new e of

29u was chosen for the assignment, which represents a PPII

frequency of 5.11%. The average length of the PPII assigned

within DSSP coil using this rule equals to 3.24 residues. The

PPII assignment based on DSSP (named hereafter as PPIIDSSP)

corresponds to 56.0%, 45.6% and 65.9% of PPII assignments by

XTLSSTR, SEGNO and PROSS respectively. This threshold e
has been selected by considering the following points: (i) the

percent of amino acids assigned as PPII by one of the three

SSAMs reached a maximum (of 83%), a further increase in e
decreased this percentage, and (ii) it is a good compromise

between the average frequency of PPII observed (6.95%) and

the average frequency of PPII within DSSP coil (4.48%). Mean

w and mean y values of PPIIDSSP are 75.3uand 141.1u
respectively. Hence, this definition of PPII assignment is

compared to the other PPII assignment methods and is

consistent with theoretical definition of PPII. Table 1

summarizes the main results. Figure 3 gives the distribution of

the different secondary structure states in the PPIIDSSP

assignments corresponding to the chosen epsilon while Figure 4

shows the same information for the values of epsilon ranging

from zero to 60u. While looking at XTLSSTR assignments

corresponding to PPIIDSSP residues, the PPII content is

generally high and mainly coil is found for low e values. For

SEGNO, which carries out least number of PPII assignments

(see Figure 1), nearly 20% of the assignments correspond to b-

strands. It must be noted that this SSAM does not assign any

turns. Finally, PROSS shares the maximum number of PPII, the

rest is mainly composed of b-strand and coil at a low

percentage. The assignments are characterized by absence of

helices and only a few turns were seen. Figure 4 shows the

interest in considering a second consecutive dihedral angle (see

Figure 2 to compare). Figure S4 gives the distribution of

distance between extremities of PPII for different PPII lengths.

A striking observation is the low standard deviation of the

distance. It ranges between 1 and 2 Å depending on the length,

while the deviation is 2–3 times higher for the PPII helices

assigned by other SSAMs.

As seen in Figure 5, for PROSS, this assignment criterion results

in a small increase of the average length of PPII, from 1.35 to 1.63

amino acids (mainly due to a significant number of very short

helices outside the DSSP coil). The average length in the case of

SEGNO, decreases from 2.58 to 2.27 while for XTLSSTR, a

decrease from 2.63 to 2.32 was observed.

Analysis of the sequence-structure relationship. As

expected, the amino acid preference for PPIIs differs depending

on the SSAM used for assignment. However, the distribution of

amino acids remains clearly different from that seen in other

secondary structures (see Figure S5). Figure 6 summarizes the over

and under-representation of amino acids in the PPIIs assigned by

Figure 2. Deriving PPII assignment criterion: Choice of epsilon. (a) shows the percentage of residues found for e ranging from 0 to 60u. The
percentage of amino acids associated to DSSP coil is shown in grey, PII assigned by PROSS is indicated in pink, assignment by XTLSSTR is in red and
that of SEGNO in orange. In blue is shown the percentage of residues considered as PPII at least by one of the three SSAMs and the green plot
indicates percentage of common assignments. (b) The same information is given as the percentage of PPII residues (in regards to DSSP coil). In the
initial search, the epsilon chosen corresponds to 17u, it is indicated by a black line.
doi:10.1371/journal.pone.0018401.g002
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different SSAMs (including our new approach). All of them have

about 3–5 over-represented amino acids. The most important one,

as expected, is Proline (P) with a Z-score greater than 100. Then

for all assignments, except PROSS (Z-score less than 210 and p

less than 1025), the other frequent amino acid is Lysine (K). The

third important amino acid is Serine (S) which is seen more or less

over-represented for the assignments by all the four SSAMs. It is

highly preferred with respect to PROSS assignment (Z-score.4.4,

p,1025), considerable over-representation is found with SEGNO

and XTLSSTR (Z-score.1.96, p,2.1023) and in the case of our

DSSP based assignment, occurrence frequency is similar to the

background (Z-score equals to 1.1). Another important amino acid

is Threonine (T), highly over-represented with XTLSSTR;

strongly over-representation is seen with PROSS and DSSP, but

slightly under-represented with SEGNO.

In some cases, the SSAM assignment results in assignment

specific amino acid preferences. Significant preference for

Methionine is found only with DSSP (Z-score equals to 2.44, i.e.

p,1023) while Cysteine (C) is seen strongly over-represented with

PROSS (Z-score equals to 3.73, i.e. p,1023). The hierarchical

clustering based on the relative amino acid distribution frequencies

of the four SSAMs and also the data from the work of Vitagliano’s

group [37], is shown on Figure 6b. DSSP and XTLSSTR show

similar characteristics as in the case of SEGNO and [37]. PROSS

Figure 3. PPIIs distribution with the length constraint. PPII residues assigned in DSSP coil represent 5.1% of all the residues. For these residues
the corresponding assignments by XTLSSTR, SEGNO and PROSS, are given.
doi:10.1371/journal.pone.0018401.g003
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gives the most distant distribution as it shares only 3 common

over-represented amino acids (P, T and S), and has a unique over-

representation of C.

Figure 7 further highlights the characteristics of this distribution,

giving the correlation of the relative preferences associated with

PPIIDSSP with that of the other three SSAMs and also with the

PPII analysis by Berisio et al. based on their assignment [37]. The

correlation coefficients (excluding the Proline frequencies) are 0.89

with PROSS, 0.87 with the analysis of Berisio and co-workers,

0.82 with XTLSSTR, and only 0.53 with SEGNO. Between

PROSS, XTLSSTR and the analysis of Berisio et al., correlation

coefficients range between 0.93 and 0.79. Including SEGNO

reduces this further to about 0.59. This underlines (i) that PPIIDSSP

is consistent with other PPII assignment methods and (ii) some

significant differences can be seen considering one or the other

assignment. The latter is important for the purpose of structure

prediction and analysis, as PPIIs are the repetitive structures with

the most contrasted residue distribution.

Analysis of amino acid preferences in PPII capping

regions. Capping residues of PPIIDSSP (i.e., amino acids before

and after PPIIDSSP) clearly have distinct amino acid preferences

when compared to that of PPIIDSSP associated preferences (cf.

previous paragraph). They are in fact close to coil and turn

associated distributions. Figure 8 shows the amino acid

distribution at the position just before the stretch assigned as

PPIIDSSP (N21) and the one after (C+1). N21 has a high preference

for Glycine (G) and Asparagine (N) and a considerable over-

representation of Histidine (H), Glutamine (Q) and Lysine (K) is

also seen. Histidine (H), Glutamine (Q) and Lysine (K) are also

overrepresented in PPII. Lysine (K) has a Z-score of 1.2 in the N21

and 7.0 within the PPII stretch. The distribution in the C+1 has

more in common with that of PPII, characterized by high over-

representations of G, P and V, strong over-representations of M

and T and a significant representation of S.

Capping amino acids of PPIIDSSP are not only coil or b-sheet

residues (see Figure S6). N21 residues are mainly turn associated

residues (with a frequency of 48.5% which is 2.4 times its expected

frequency) and coil (34.7%, 1.8 times expected). b-sheet represents

only 12.3% (0.55 times expected). For the C+1 residues, the

frequencies are more equilibrated, still showing a considerable over-

representation of turns (28.3%, 1.4 times its expected frequency).

Analysis of local structure features of PPII capping

regions. To obtain a more detailed picture of the local

structures associated with PPII, we have analyzed the capping

regions in terms of a structural alphabet [56,57,60], i.e., a set of

small local protein structures that can be used to approximate

precisely every part of a protein structure. Our structural alphabet,

namely Protein Blocks [58,59,68], is composed of 16 distinct

prototypes that are 5 residues long (see Methods section). It is the

most widely used structural alphabet and has been proved useful in

Figure 4. Secondary structure content in PPII assignments. The fig shows the percentage of residues of PPIIDSSP assigned as helix (red), b-turn
(orange), coil (green), b-strand (blue) and PPII (purple) by (a) XTLSSTR, (b) SEGNO, and (c) PROSS, as a function of e. The chosen e (equals to 29u) is
indicated by a black line.
doi:10.1371/journal.pone.0018401.g004
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approaching several problems in the area of structural

bioinformatics, e.g., to compare protein structures [69,70,71],

analyse sequence-structure specificities [72] or mine protein

binding sites [73,74].

This part of the study focuses on the precise analysis of the local

protein conformations associated with PPII caps. Hence for the

Ncap regions (see Figure S6, bottom left), within the PPIIDSSP, PB

b and PBs i to p (the latter set is largely associated with a-helices

Figure 5. Length of PPIIs. For the three PPII assignment methods and the DSSP based assignment, the distribution across different lengths of PPII
is given. The blue bars correspond to the PPII in coil assigned by DSSP, while the grey ones indicate the residues in all assigned states. For DSSP, the
PPII assignments involving Proline (green) and those without any Proline (yellow) are also plotted.
doi:10.1371/journal.pone.0018401.g005

Figure 6. Amino acid distribution. (a) plot giving the Z-scores associated with the amino acids in the PPII assigned using DSSP (this study),
XTLSSTR, SEGNO and PROSS. (b) Hierarchical clustering of the amino acid distribution frequencies associated with different assignments and the
recent analysis done by Berisio and co-workers [37] (in terms of relative frequencies).
doi:10.1371/journal.pone.0018401.g006

PolyProline II
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[75]), are never seen. To study the PB specificities in the cap

regions, series of two PBs (di-PBs) were considered. Interestingly, 8

series of di-PBs correspond to 78% of all, seen in the Ncap regions

of PPII (see Figure 8). These can be grouped into three main

classes, the first one comprise 6 di-PBs and correspond to half of

the Ncap associated di-PBs, the most important of these is dd.

Many other strands related PBs are also found, which involves PBs

c and e. The second most important series is pa (18.7%), i.e., a series

characterizing transition of a-helix to b-strand. The third one

(8.2%) is ia which is largely associated with b-strand - b-strand

transition [75]. Hence, different neighbourhoods are observed.

The Ccap is more conserved with only 6 di-PBs corresponding

to 87% of the observations. Two main behaviours were observed.

A first cluster is associated with longer PPIIDSSPs, involving series

fk (25.8%), fb (11.5%) and hi (11.6%), while shorter PPIIDSSP are

still strongly linked to beta-like PBs with series dd (19.1%), cd

(13.8%) and df (6.0%). Thus, PPIIDSSP have a strong local

signature depending on the neighbourhood and more complex

than expected.

Analysis of structural properties. PPII are considered as

potential interacting regions, hence an analysis of their solvent

accessibility will be of broad interest. Relative accessibility of

different secondary structures is presented in Figure 9a. PPIIDSSP

is the second most accessible secondary structure, following the

turns and hence they are quite different from b-strands which are

the less accessible (on an average). For a relative accessibility

threshold of 25%, only 46.1% of PPIIDSSP are buried while in the

case of turns, b-strands, a-helices and coils, 35.8%, 72.2%, 55.4%

and 51.9% of residues are buried, respectively. Thus, PPIIDSSP is

more accessible than coils also. Interestingly, PPIIDSSP with

Proline are more accessible than PPIIDSSP without Proline (see

Figure 9b). Accessibility of Proline associated with PPIIDSSP is high

and does not really differ from the average accessibility of Proline.

The average numbers of contacts have been analyzed, using a

classical distance based approach, i.e., a contact is defined if a

distance between atoms is less than 8.0 Å [76,77,78]. Unlike the

accessibility, PPIIDSSP is similar to b-strand in terms of the average

number of contacts. The turn and coil have lesser contacts and the

contacts are more in the case of a-helices. These results are in

accordance with previous studies on PPIIDSSP reflecting the

relevance of the rules used to define it.

A case of molecular modeling. Finally, to study the

dynamic behaviour of PPII (assigned using our approach), we

carried out a Molecular Dynamics simulation. Molecular

dynamics force field parameters seem to underestimate the

polyproline II and thus diminish their frequencies [79]. For this

purpose, we selected Saccharomyces cerevisiae pyruvate decarboxylase

(PDB code 2VK8 [80]) which has a high PPIIDSSP content, about

12% (see Figures 10a and 10b) and one of these PPII helices is

quite long (see Figures 10c and 10d). The simulation has been

carried out using GROMACS 4.0.5 [81,82,83,84] with the OPLS-

AA force field [85], details can be found in Figures S7 and S8.

Figure 11a gives the frequency of PPIIDSSP assignment for each

residue during the simulation. The majority of residues initially

associated to PPIIDSSP stays associated to this state; only 17% of

these residues have a frequency of PPIIDSSP less than 50%. Even,

some residues initially not associated to PPIIDSSP state, becomes

associated to this conformation during the course of the

Figure 7. Amino acid relative frequencies. Plot of the relative frequencies of amino acids associated with PPIIDSSP with that of the PPII assigned
by other SSAMs (red: XTLSSTR, green: SEGNO, black: PROSS) and the distribution obtained from the analysis of Berisio and co-workers [37](blue).
doi:10.1371/journal.pone.0018401.g007
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simulation. It is striking that the long PPII helix is in fact, 2

residues longer than initial. The evolution of the relative frequency

of PPIIDSSP during the simulation shows only a mean loss of 11%

of PPIIDSSP content. This value is not dependant on the time of

the simulation and more interestingly, is equivalent to the mean

loss of other repetitive structures (see Figure 11b). These results

suggest a better conservation of PPII than previously observed in

molecular dynamics simulations [33,86]. This can be explained by

the fact that the previous studies mainly focus on PPII fragments

and not the PPII content with a protein structure. This was also

highlighted in the work of Zagrovic and co-workers [79]. Indeed,

recent studies have shown the crucial impact of related force-fields

Figure 8. Sequence – structure relationship of PPIIDSSP. The central upper part presents the plot of Z-scores associated with the amino acid
distribution in PPIIDSSP and the capping regions (see Figure 3 for details). At its left and right the secondary structure distributions in these capping
regions are shown (assigned by DSSP). The lower half of the figure shows the transitions of Protein Blocks in the Ncap to PPIIDSSP core (left) and from
PPIIDSSP core to Ccap (right) . Only transitions with frequency more than 5% are shown.
doi:10.1371/journal.pone.0018401.g008

Figure 9. PPIIDSSP accessibility. Plots showing the relative accessibility of the different secondary structures (left), and the relative accessibility
ofPPIIDSSP (with and without proline residues) and that of all Prolines.
doi:10.1371/journal.pone.0018401.g009
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on PPII conformation and the beta-strands contents, which also

seem to be associated. AMBER-03 significantly overweighs the

contribution of extended and PPII backbone configurations to the

conformational equilibrium while AMBER-99SB variant shows a

strong bias towards extended beta and PPII conformations [87].

Discussion

A long history of experimental analyses of peptides with PPII

conformation exists. This involved the study of chemical activities

under different conditions [45,88,89]. However, in the field of

structural bioinformatics, PPII has been a subject of only a limited

number of studies. The majority of studies on PPII concern

protein folding [90], while few have focused on model building

and sequence-structure relationships [91].

Pro-rich sequences are common recognition sites for protein–

protein interaction , e.g., the SH3 domain or the WW domain [92].

Hence protein – protein interaction involving PPII is also an

important area of interest [93,94,95]. We can note for instance, the

protein PflI which is a protein involved in flagellar positioning in

Caulobacter crescentus possess a PPII helix, implicated in interactions

[96]. Rath, Davidson and Deber concluded a crucial review on PPII

with these sentences: ‘‘An increasing amount of evidence suggests

that so-called ‘‘random-coil’’ polypeptides may not have completely

irregular structure, but are more accurately described largely as

PPII helices. This observation, along with the importance of PPII

structure in protein– protein recognition elements, implies that the

Polyproline II conformation should be regarded as equally

important to the folding and function of proteins as the classical

a-helix, b-sheet, and b-turn structures.’’ [97].

As observed in many studies, local structure assignment is not

trivial [56]. As these assignment methods are based on various

parameters and definitions for repetitive structures, they often give

different assignments [63,67,68,98]. PPII is an important local

protein structure, but not given enough significance, as noted by

Deber [97] and Rose [19]. Here we propose a simple strategy to

assign PPII on the basis of the most widely used SSAM, i.e., DSSP.

For this purpose, two major points must be considered. The first is

to define a rule that is largely coherent with the available PPII

assignment methods. The second is to assess the sequence –

structure relationship and check if the results are in agreement

with the literature. It would emphasize the quality of our PPII

assignment.

At first, we observe that confusions between the SSAMs (DSSP,

XTLSSTR, SEGNO and PROSS [21,53,54,55]) used in this

study correlate well within the classical C3 values of about 80%

[51,56,63,98].No strange behaviours (e.g., DEFINE [99] that has a

C3 value close to 60% [51]) were observed.

Figure 10. Saccharomyces cerevisiae pyruvate decarboxylase. (a) The structure involving four chains (PDB code 2VK8 [80]). (b) Chain A
represented in cartoon, with a long loop associated with PPII conformation, shown in stick representation. The long loop with both backbone and
sidechain atoms (c) and with only only backbone. The connecting non PPIIDSSP region is shown in green.
doi:10.1371/journal.pone.0018401.g010
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Figure 11. Residues assigned as PPIIDSSP. Frequencies of PPIIDSSP assignments during course of MD simulation shown for (a) the whole protein
and (b) the PPII associated long loop (see Figure 10). The positions initially assigned as PPIIDSSP are shown in purple.
doi:10.1371/journal.pone.0018401.g011
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The analysis of the relative frequency of PPII reveals a complex

issue. As mentioned earlier, a ratio of 2.5 is observed while comparing

the frequencies of occurrence of PPII, based on the assignments by

SEGNO and PROSS, with the occurrence frequencies ranging from

4.0 to 10.1%. The results of works done by other groups also highlight

this issue. Adzhubei and Sternberg found them more common than

expected [91]. Jha and co-workers even ascribed a singular

dominance to PPII based on their coil library [34]. However, the

work of Daggett’s group did not confirm this [100] while Berisio and

co-workers found an occurrence rate of 2% [37].

Another issue is the way turns are treated. In many works on the

analysis of secondary structures, assignment of turns has not been

considered. For instance, SEGNO assigns helices, sheets and PPII,

but not the turns. In a same way, Berisio and co-workers used

PROMOTIF to assign a- and 310-helices and b-strands, and then

assign PPII based on their own rules [37]. As turns are important

and cannot be neglected [65], we have decided to consider them

prior to the PPII assignment.

Using simple rules based on the choice of a set of (w, y) dihedral

angles for assigning PPIIDSSP, led to a good agreement with the

assignment made by other SSAMs. After different tests, we have

selected a range of +/229u around the canonical values of PPII.

This gives a PPII occurrence frequency of 5.1%, representing

about 1/3rd of the coil state and leading to an average length of 3.2

residues per PPIIDSSP helix. This assignment is coherent with

distribution of PPII based on the assignments made by other

SSAMs (see Table 1 for a summary).

Interestingly, our results show a good concordance with recent

studies and also the assignment done by the other SSAMs. It must

be noted that the agreement was poor when compared to the

earlier studies with fewer data [22,24,101], the correlation

coefficients were between 0.1 and 0.3. Moreover, the amino acid

preferences of PPII observed, is similar to that seen in the

assignments made by other SSAMs and published studies. This is

characterized by a strong over-representation of P (as expected),

K, and a considerable preference for M, T and S. Since long, there

has been evidence for the presence of PPII conformations in non-

proline polypeptides [26,102], we observe this predominantly in

the shorter helices (see Figure 2).

PPII helices have been implicated in protein–protein recognition

and folding. PPII conformation in stabilized in the unfolded

polypeptides [97] and polymers of proline in aqueous solution are

known to adopt this conformation as a result of steric interactions

between prolyl rings [23]. Several studies report that PPII helices are

more surface exposed than other repetitive structures [22,24], our

results agree entirely with these findings. Interestingly, its accessibility

is not as high as turns which are more accessible than any other

secondary structures, including coils. Analysis of capping regions of

PPII shows pertinent properties. Especially the Ncap could be

roughly characterized as a ‘turn’ without Proline. Recent studies have

also highlighted the difference in the type of interactions between

secondary structures. nRp* interactions favour contacts between a–

helix and PPII while dipole–dipole interactions are frequent between

b–sheet and PPII and long-range backbone H-bonds bridge a–helix

and b–sheet conformations [103,104].

In conclusion, it can be seen that though our approach is coarse

and simple, it presents considerable insights into the understanding

of PPII. The results are in good agreement with that of the earlier

studies on PPII. Moreover, the PPIIDSSP helices are longer than

PPII helices of the other SSAMs. Implementation of such an

approach is quite easy. However, one must note that an a posteriori

assignment is perhaps not the optimal assignment. The choice of

DSSP is mainly due to its popularity though other methods exists

which are quite efficient, e.g., STRIDE [105]. Assignment made by

STRIDE has 95% agreement with DSSP [51]. Satisfactorily, using

our approach, 96.7% of PPIISTRIDE is also assigned as PPIIDSSP.

Like SEGNO, the assignment rules could be adapted to give

different assignments for the core and extremities of PPII [36].

Nonetheless, our approach could assist in highlighting the

importance of PPII as a repetitive structure and widening the

extent of research carried out on PPII [97].

Materials and Methods

Data sets
The dataset of protein structures is taken from the PISCES

database [61,62] and represents 1,732,996 amino acids from 6,665

proteins chosen based on a pairwise sequence identity cutoff of 30%

with resolution less than 2.5 Å and R factor below 0.2. It is available

at http://www.dsimb.inserm.fr/,debrevern/DOWN/DB/PPII.

Each chain is complete and does not have missing residues [51,68].

Secondary structure assignment
Assignment has been carried out with four different methods:

DSSP [21] (CMBI version 2000), XTLSSTR [53], PROSS [54]

(version September 2004) and SEGNO [55] (version 3.1). DSSP,

PROSS, XTLSSTR and SEGNO assign more than five

secondary structural states, thus we have reduced them as: a-helix

includes a, 3.10 and a- helices, the b-strand contains only the b-

sheet, the turn involves the turn assignments and bends (which are

assigned by DSSP), the PPII corresponds to the PolyProline II

assignments (not assigned by DSSP) and the coil includes the rest

of the assignments (b-bridges and coil). Default settings have been

used for all methods.

Protein Blocks description
Protein Blocks (PBs [60]) correspond to a set of 16 local

prototypes, labeled from a to p (see Figure 1 of [68]), of 5 residues

length, clustered based on w, y dihedral angles description. They

were obtained using an unsupervised classifier similar to Kohonen

Maps [106] and Hidden Markov Models [107]. The PBs m and d

can be roughly described as prototypes for central a-helix and

central b-strand, respectively. PBs a through c primarily represent

the N-cap region of b-strand while PBs e and f correspond to the

C-caps; PBs g through j are specific to coils, k and l correspond to

the N cap region of a-helix, and PBs n through p to that of C-caps.

This structural alphabet allows a reasonable approximation of

local protein 3D structures [59] with an average root mean square

deviation (rmsd) of 0.42 Å [58]. PB [58] assignment was carried out

using an in-house program written in C (available at http://www.

dsimb.inserm.fr/,debrevern/DOWN/LECT/), it follows similar

rules to assignment done by PBE web server (http://bioinformatics.

univ-reunion.fr/PBE/) [71].

Agreement rate
To compare two distinct secondary structure assignment

methods, we used an agreement rate C3, which is the proportion

of residues associated to the same secondary structure state [63].

Note that SEGNO does not assign turns.

Z-score
The amino acid occurrences for each secondary structure have

been normalized to a Z-score [59,108,109,110]:

Z ni,j
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~
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i,jffiffiffiffiffiffi
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where nobs
i,j is the observed occurrence number of amino acid i in

position j for a given secondary structure and nth
ij the expected

number. The expected frequency is given by the product of the

occurrences in position j with the frequency of occurrence of

amino acid i in the entire databank. Positive Z-scores correspond

to overrepresented amino acids and respectively negative z-score

for underrepresented; threshold values of 4.42 and 1.96 were

chosen (probability less than 1025 and 5.1022 respectively) to

assess the significance.
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