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Simple Summary: Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a
consequence of radiation therapy, for which there is currently no effective treatment. In order to test
new drugs in the hope of finding more effective therapies, we need mouse models that faithfully
replicate human RIG. Our laboratory collected tumour cells at autopsy from a paediatric patient with
RIG following treatment for a different brain tumour. Using these cells, we created a mouse brain
tumour model that retains all the characteristics and features of the original patient tumour from
which it was derived. This unique model allowed us to study the progression of RIG in the brain,
and to identify drugs that may be effective in the treatment of this disease. This mouse model will
also allow us to test the efficacy of new treatments, with the hope of improving the prognosis for
patients diagnosed with this disease.

Abstract: Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence
of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for
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paediatric medulloblastoma, and the development and characterisation of a matched orthotopic
patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using
DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially
thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from
methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering
analyses based on RNA expression suggested the tumours were distinct from primary DIPG.
Additional gene expression analysis demonstrated concordance with a published RIG expression
profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were
discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA
and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally,
deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed.
Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway
and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the
patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation
of this model has enabled the identification of potential therapeutic vulnerabilities in this currently
incurable disease.

Keywords: diffuse midline glioma; radiation-induced glioma; diffuse intrinsic pontine glioma;
patient-derived xenograft; medulloblastoma; radiation; paediatric cancer; brain cancer

1. Introduction

Tumours arising in the brain stem, including diffuse midline glioma (DMG) with histone H3 K27M
mutation, often referred to as diffuse intrinsic pontine glioma (DIPG), are among the most aggressive
types of paediatric brain cancer. Recent molecular characterisation of paediatric high grade gliomas [1–3]
led to the World Health Organisation (WHO) redefining central nervous system (CNS) diagnostic
criteria and diffuse gliomas (including DIPG) were reclassified into more precise entities including
‘DMG, H3 K27M-mutant’, ‘Glioblastoma (GBM), IDH1-mutant’ and ‘GBM, IDH1-wildtype’ [4,5].
Despite these new diagnostic entities there are still no effective treatments for brain stem glioma
and most children with this disease will pass away within a year of diagnosis, with only 2.6% of
patients surviving more than five years [6]. Gliomas can occur as primary brain tumours but may
also arise as a consequence of radiation therapy in survivors of other paediatric brain tumours, such
as medulloblastoma or ependymoma. Radiation-induced gliomas (RIGs) are at least as, if not more,
aggressive than spontaneously occurring gliomas [7–9], and are invariably fatal, with a cumulative
incidence ranging from 0.3% to 3.96% following radiation treatment for paediatric brain tumours [8,10].

A small study of five RIGs reported that these tumours are histologically and cytogenetically
indistinguishable from de novo paediatric high-grade gliomas [7]. Indeed, the current clinical standard
of care is identical for these two tumour types. There is developing evidence that the mutational and
gene expression profiles of paediatric RIGs are distinct from their primary counterparts, suggesting
clinical care may need to reflect this. Unfortunately, extensive investigations into the genetic alterations
that define paediatric RIGs are limited. This is partly due to the rarity of this tumour type and the
paucity of biological material available. Understandably, biopsies have been particularly rare for RIGs
located within the critical brain stem region in favour of a radiographic diagnosis [11], although this
may be slowly changing [12,13]. RIGs have also been mistakenly diagnosed as relapses of the primary
tumour [14,15], further reducing the availability of correctly identified RIG samples for analysis.

Studies investigating molecular alterations in paediatric RIGs are few and report small numbers
of patient samples. These studies suggest that paediatric RIGs demonstrate more overlap with
pilocytic astrocytomas (PAs) [7] and adult primary GBMs [8] than with paediatric high-grade gliomas.
Overexpression of ERBB3, SOX10 and PDGFRA has been reported in paediatric RIG [7,14], as well as
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mutations in TP53, PDGFRA and PIK3CA, homozygous deletion of CDKN2A and MTAP, and alterations
in multiple receptor tyrosine kinase and Ras-Raf-MAPK genes [8,14,16–20]. Of note, RIGs lack genetic
alterations characteristic of major diffuse glioma subtypes including mutations in IDH1, IDH2, H3F3A,
HIST1H3B HIST1H3C, ACVR1 or TERT [8,14,18,21,22], although EGFR amplifications and mutations
or deletions in PTEN have been reported in a small number of cases [7,8,14,16,18].

The limited molecular data available precludes any real ability of researchers and clinicians to
definitively characterise and understand these tumours. In order to discover more effective treatments
and to improve survival rates for these patients, we need models through which we can identify
potential molecular targets and then test appropriate therapeutics preclinically. Whilst in vitro models
are useful, there is a limit to their translational utility, and indeed variation in culture methods can
have a significant impact on gene expression and drug responses [23]. The most robust, efficient and
effective models are orthotopic patient-derived xenograft (PDX) models.

PDX models are the gold-standard in cancer research for understanding disease progression and
for preclinical testing of new therapies. Although they can be challenging to establish, PDX models
reward researchers by closely recapitulating the heterogeneity of different individual cancers [24,25],
particularly in comparison to genetically-engineered models of human cancer that rely on a small
number of significant genetic alterations to drive tumour development [26]. Once established, rigorous
molecular characterisation of PDX models is essential to understand in detail the disease that the
PDX represents. The only reported PDX mouse models of RIG were very recently published and
were derived from biopsy and autopsy tissue samples from a single patient [15]. Here, we describe
and characterise a PDX model of a RIG following treatment for medulloblastoma, which faithfully
recapitulates the patient disease and is molecularly distinct from primary DMG.

2. Results

2.1. Case Report

A previously well four-year-old male presented with a one-week history of vomiting and headache.
Magnetic resonance imaging (MRI) of the brain revealed the presence of a large posterior fossa mass
with accompanying hydrocephalus (Figure 1a). There was evidence of leptomeningeal spread over the
surface of the cerebellum and drop metastases in the distal spinal cord (Figure 1a,b). There was no
history of cancer in other family members.

The patient underwent resection of the majority of the mass; however, residual disease was evident
within the left cerebello-pontine angle on the post-operative MRI (Figure 1c). Histopathology reporting
at the time recorded a nodular medulloblastoma; however, independent pathological review since
reclassified this tumour histologically as classic medulloblastoma and molecularly as Group 4 (case 6
in [8]). Haematoxylin and eosin (H&E) staining showed a tumour composed of small, round, blue cells
with both compact and nodular architecture. The malignant cells were positive for neuronal marker
synaptophysin and negative for glial marker glial fibrillary acidic protein (GFAP), which stained
background astrocytic processes only. Absence of reticulin staining, and β-catenin staining confined
to tumour cell cytoplasm was in keeping with a non-SHH, non-WNT medulloblastoma subtype.
The proliferation index as measured by Ki-67 was approximately 30% (Figure 1d).

The patient was treated as per the Children’s Oncology Group (COG) protocol CCG-99701 Arm
B, with radiation and chemotherapy [27]. Radiation dose was 36 Gy to the craniospinal axis with
boost doses to the posterior fossa of 19.8 Gy, to the optic chiasm of 14.4 Gy, to the lower thoracic
spine up to the sacrum of 9 Gy and to the cauda equina of 14.4 Gy. Carboplatin and vincristine were
used as radiosensitising agents. The patient further received six cycles of chemotherapy consisting of
cyclophosphamide, cisplatin and vincristine. An MRI performed at the end of therapy nine months
later showed no evidence of residual or recurrent disease. The patient was followed up regularly with
clinical examination and MRI scans. Late effects of therapy included neuro-cognitive impairment,



Cancers 2020, 12, 2937 4 of 24

bilateral hearing loss, panhypopituitarism, bilateral cataracts and scoliosis/kyphosis, which were
appropriately managed.
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Figure 1. Diagnostic and post-operative magnetic resonance imaging (MRI) and histological 
characterisation of the primary medulloblastoma. (a) Diagnostic cranial MRI depicting posterior fossa 
mass (dashed line) and accompanying hydrocephalus (H). White arrow indicates leptomeningeal 
spread. (b) Spinal MRI revealed drop metastases in distal spinal cord. Inset: arrows indicate metastatic 
lesions. (c) Post-operative MRI showed residual disease within the left cerebello-pontine angle 
(dashed line) and hydrocephalus (H). (d) Histological staining of patient cerebellar tumour tissue. 
Haematoxylin and eosin (H&E) shows small, round, blue cells arranged in a compact and nodular 
fashion. Tumour cells were positive for synaptophysin on a background of glial fibrillary acidic 
protein (GFAP)-positive astrocytic processes. The tumour cells were negative for reticulin and 
showed only cytoplasmic staining for β-catenin, consistent with a non-SHH, non-WNT 
medulloblastoma. Ki-67 proliferative index was 30%. 

At nearly 16 years of age, and 11 years after the initial diagnosis of medulloblastoma, the patient 
presented with a two-week history of left hand and left foot numbness. Clinical examination revealed 
a new left-sided seventh cranial nerve palsy and mild left upper limb weakness with reduced 
sensations in a glove and stocking distribution. An MRI showed an enlarging mass within the pons 
and upper medulla with an expanding lesion showing an area of cavitation and rim enhancement at 
its posteroinferior margin (Figure 2a). These imaging characteristics were suggestive of a high-grade 
glioma rather than relapsed metastatic medulloblastoma. As a biopsy of this lesion was considered 
inappropriate with the risks involved, a diagnosis of DIPG was delivered based on clinical and 
radiological features alone. He commenced treatment as per the COG clinical trial ACNS0927 [28] 
and received 54 Gy of focal radiation therapy with vorinostat. He showed some clinical improvement 
with reduction in the size of the pontine lesion after radiation; however, within three months multiple 
punctate and ring-enhancing lesions developed in the supra- and infratentorial regions of the brain 
(Figure 2b). A biopsy of one of the lesions indicated inflammatory changes but could not determine 
the cause of the lesion. There were also multiple bilateral lung nodules present and a lung biopsy 
performed at the same time indicated a fungal infection. This suggested that the lesions in the brain 

Figure 1. Diagnostic and post-operative magnetic resonance imaging (MRI) and histological characterisation
of the primary medulloblastoma. (a) Diagnostic cranial MRI depicting posterior fossa mass (dashed
line) and accompanying hydrocephalus (H). White arrow indicates leptomeningeal spread. (b) Spinal
MRI revealed drop metastases in distal spinal cord. Inset: arrows indicate metastatic lesions.
(c) Post-operative MRI showed residual disease within the left cerebello-pontine angle (dashed line)
and hydrocephalus (H). (d) Histological staining of patient cerebellar tumour tissue. Haematoxylin and
eosin (H&E) shows small, round, blue cells arranged in a compact and nodular fashion. Tumour cells
were positive for synaptophysin on a background of glial fibrillary acidic protein (GFAP)-positive
astrocytic processes. The tumour cells were negative for reticulin and showed only cytoplasmic staining
for β-catenin, consistent with a non-SHH, non-WNT medulloblastoma. Ki-67 proliferative index
was 30%.

At nearly 16 years of age, and 11 years after the initial diagnosis of medulloblastoma, the patient
presented with a two-week history of left hand and left foot numbness. Clinical examination revealed a
new left-sided seventh cranial nerve palsy and mild left upper limb weakness with reduced sensations
in a glove and stocking distribution. An MRI showed an enlarging mass within the pons and
upper medulla with an expanding lesion showing an area of cavitation and rim enhancement at its
posteroinferior margin (Figure 2a). These imaging characteristics were suggestive of a high-grade
glioma rather than relapsed metastatic medulloblastoma. As a biopsy of this lesion was considered
inappropriate with the risks involved, a diagnosis of DIPG was delivered based on clinical and
radiological features alone. He commenced treatment as per the COG clinical trial ACNS0927 [28]
and received 54 Gy of focal radiation therapy with vorinostat. He showed some clinical improvement
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with reduction in the size of the pontine lesion after radiation; however, within three months multiple
punctate and ring-enhancing lesions developed in the supra- and infratentorial regions of the brain
(Figure 2b). A biopsy of one of the lesions indicated inflammatory changes but could not determine
the cause of the lesion. There were also multiple bilateral lung nodules present and a lung biopsy
performed at the same time indicated a fungal infection. This suggested that the lesions in the brain
were likely to be fungal in nature secondary to his immunocompromised state from steroids and
vorinostat, and this was later confirmed at autopsy. The patient was treated with voriconazole; however,
during this period there was further progression of the glioma and he passed away eight months after
the diagnosis of DIPG.
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Figure 2. Magnetic Resonance Imaging (MRI) indicated midline glioma and fungal lesions within the
brain. (a) MRI performed 11 years after initial medulloblastoma diagnosis depicting mass within the
pons and upper medulla (dashed line). (b) MRI performed three months after initial diffuse intrinsic
pontine glioma diagnosis depicting midline glioma (dashed line) and one of multiple suspected fungal
lesions (solid line).

2.2. Development of a PDX Model of RIG Following Medulloblastoma that Histologically Recapitulates the
Patient Tumour

A PDX model (TK-RIG915) of this disease was successfully generated by implanting tumour
cells isolated post-mortem into the brains of immunodeficient mice. Upon tumour-related morbidity,
tumours were removed, dissociated and reimplanted into the brains of successive recipient animals
(Figure 3a). Initially, mice implanted with the patient cells had a median time to morbidity of
approximately 170 days, which reduced to approximately 78 days and 100 days in the secondary and
tertiary implant generations, respectively (Figure 3b). Whilst 100% of mice implanted with the patient
tumour cells developed tumour-related morbidities, tumour penetrance of successive generations was
difficult to accurately calculate due to a significant number of immunocompromised recipient mice
requiring euthanasia due to non-tumour-related complications common to this strain, including rectal
prolapse or serious skin conditions (Table S1). Once established, we confirmed that the PDX tumour
was derived from the matched patient tumour via Short Tandem Repeat (STR) analysis (Table S2).

Histological assessment of the patient tumour and matched PDX tumours was performed in order
to characterise the model and ensure that the PDX faithfully recapitulated the original patient tumour
(Figure 3c,d). H&E staining showed a highly cellular neoplasm composed of compact cells with oval
nuclei, moderate nuclear pleomorphism and predominantly fibrillary cytoplasm. Both the patient and
the PDX tumours were positive for OLIG2, nestin, vimentin and GFAP, with focal Ki-67 proliferative
indices of up to 25% in the patient tumour and 40% in PDX tumours, respectively. This staining pattern
was consistent with a glial phenotype and demonstrated that the PDX faithfully recapitulated the
patient tumour histologically.



Cancers 2020, 12, 2937 6 of 24

Cancers 2020, 12, x 6 of 24 

 
Figure 3. Development, survival characteristics and histological features of TK-RIG915. (a) Schematic 
depicting the generation of TK-RIG915. Where possible, tumour tissue was stored for genetic 
analyses. (b) Time to morbidity in the TK-RIG915 patient derived-xenograft (PDX) model for mice 
implanted with patient tumour cells (black), or serially transplanted with PDX tumour cells 
(secondary implant, blue; tertiary implant, red). Subjects euthanised due to non-tumour-related 
reasons were censored (vertical black dash). Histological assessment of (c) patient tumour tissue 
obtained at autopsy and (d) tumour tissue from TK-RIG915 PDX demonstrates that the PDX 
recapitulates the patient tumour histologically. Haematoxylin and eosin (H&E) staining depicts a 
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performing methylation profiling, RNA sequencing (RNAseq), and whole genome sequencing 
(WGS) analysis. Using methylation arrays, we attempted to determine the best-fit tumour subclass 
using the Molecular Neuropathology (MNP) 2.0 classifier [29]. Neither the patient nor the PDX 
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in the MNP database, including ‘DMG with H3 K27M mutation’. The patient tumour sample best 
matched the class “Control tissue, inflammatory tumour microenvironment” with a calibrated score 

Figure 3. Development, survival characteristics and histological features of TK-RIG915. (a) Schematic
depicting the generation of TK-RIG915. Where possible, tumour tissue was stored for genetic analyses.
(b) Time to morbidity in the TK-RIG915 patient derived-xenograft (PDX) model for mice implanted with
patient tumour cells (black), or serially transplanted with PDX tumour cells (secondary implant, blue;
tertiary implant, red). Subjects euthanised due to non-tumour-related reasons were censored (vertical
black dash). Histological assessment of (c) patient tumour tissue obtained at autopsy and (d) tumour
tissue from TK-RIG915 PDX demonstrates that the PDX recapitulates the patient tumour histologically.
Haematoxylin and eosin (H&E) staining depicts a highly cellular tumour and immunohistochemistry
(IHC) for Ki-67 confirms active proliferation. Positivity for OLIG2, nestin, vimentin and glial fibrillary
acidic protein (GFAP) by IHC support a glial phenotype.

2.3. TK-RIG915 is Molecularly Distinct from Primary DMG and Matches a RIG Expression Profile

We sought to fully molecularly characterise TK-RIG915 and the matched patient tumour by
performing methylation profiling, RNA sequencing (RNAseq), and whole genome sequencing (WGS)
analysis. Using methylation arrays, we attempted to determine the best-fit tumour subclass using
the Molecular Neuropathology (MNP) 2.0 classifier [29]. Neither the patient nor the PDX tumours
successfully classified (calibrated score ≥ 0.9) with one of the > 80 known tumour subclasses in the
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MNP database, including ‘DMG with H3 K27M mutation’. The patient tumour sample best matched
the class “Control tissue, inflammatory tumour microenvironment” with a calibrated score of 0.63.
The PDX sample had no matching scores above 0.3. Whilst the brain stem tumour did not classify as
the primary diagnosis of Group 4 medulloblastoma, the MNP2.0 classifier failed to identify which
tumour type it was. It is important to note that a RIG subgroup does not currently exist in the MNP2.0
classifier. The finding that this tumour was not DMG supports a previous report where whole exome
sequencing suggested this patient’s tumour may be molecularly distinct from primary DMG (case 6
in [8]).

In the absence of a clear CNS tumour classification based on methylation profiling, we performed
clustering analysis using RNA expression data to determine which brain tumour subtype our samples
most closely related to. We compared the expression profile of the patient and the PDX model against
a cohort obtained through the ZERO childhood cancer precision medicine program of high-risk
paediatric cancers (ZERO, n = 229) [30]. Both the patient and the PDX tumours clustered close to each
other, highlighting retention of the molecular characteristics of the patient tumour in the PDX model
(Figure 4). The PDX and matched patient tumours clustered most closely with high grade gliomas and
other gliomas in the reference cohort, concordant with the nature of these tumours. Of note, the patient
and PDX samples did not cluster with other DMG samples in this cohort, again supporting previous
findings that this case is distinct from primary DMG [7,8].
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Figure 4. TK-RIG915 and the matched patient tumours do not cluster with diffuse midline
gliomas (DMGs) by RNA expression. T-distributed Stochastic Neighbour Embedding (tSNE)
analysis was performed using RNA sequencing data from ZERO with patient primary
sample (labelled 738,889 Patient tumour) and patient-derived xenograft (PDX) sample (labelled
TK-RIG915 PDX tumour). tSNE-1 and tSNE-2 refer to the first two dimensions of the tSNE.
ZERO cohort consists of high-risk paediatric tumours. Legend: AML—acute myeloid leukaemia,
BALL—B-cell acute lymphoblastic leukaemia, DMG—Diffuse Midline Glioma, EPD—Ependymoma,
EWS—Ewing Sarcoma, HGG—High-Grade Glioma, HM other—other Haematological Malignancies,
MB—Medulloblastoma, MPNST, Malignant Peripheral Nerve Sheath Tumour, NBL—Neuroblastoma,
OST—Osteosarcoma, Rhabdoid ATRT—Rhabdoid Atypical Teratoid Rhabdoid Tumour, Rhabdoid
MRT—Rhabdoid Malignant Rhabdoid Tumour, RMS FN—Rhabdomyosarcoma Fusion Negative,
RMS FP—Rhabdomyosarcoma Fusion Positive, TALL—T-cell acute lymphoblastic leukaemia,
WT—Wilms Tumour.
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We compared the patient’s clinical history with the criteria defined by Cahan et al. [31], which is
currently being used as the standard to define radiation-induced malignancies [32]. The patient had
no genetic predisposition for the development of secondary tumours, and the brainstem tumour arose
within the irradiated field, occurred more than four years after the delivery of radiation, and was
histologically distinct from the primary medulloblastoma, thereby satisfying all criteria to be considered
a radiation-induced secondary tumour. Given this clinical history, we compared the gene expression
of the patient and PDX samples to a previously published, independent subset of genes reported to be
overexpressed in RIGs [7]. High expression levels of the majority of the RIG-associated genes were
observed in both the patient and PDX tumours in comparison to the reference cohort, supporting the
finding that this case and the TK-RIG915 PDX model are mostly likely RIGs (Figure 5).
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Figure 5. Gene expression in the patient tumour tissue and TK-RIG915 correlated with a
radiation-induced glioma (RIG) expression profile. Transcript abundance from RNAseq data (y axis,
log 10 scaled transcripts per million, TPM) for genes reported to be upregulated in RIG [7] (x axis) were
determined from (a) patient and (b) TK-RIG915 tumours (black). By way of comparison, the mean
(red) and median (blue) transcript abundance for these genes was lower in the ZERO reference cohort
consisting of various high-risk paediatric tumours indicating less concordance with the RIG expression
profile for other paediatric cancers.

2.4. TK-RIG915 Genetically Recapitulates the Original Patient Tumour and Does Not Harbour a Number of
Key Glioma-Associated Genetic Alterations

At the time of diagnosis, the patient tumour from which TK-RIG915 was derived was diagnosed
and treated as DIPG; however, our analysis of DNA methylation and RNA expression suggested that
this disease, and the subsequent derived PDX model, is a RIG and molecularly distinct from primary
DIPG. Therefore, we sought to characterise the molecular mechanisms driving tumour growth in
TK-RIG915 by interrogating the DNA methylation and RNAseq data further, as well as performing
WGS analysis on the tumour and matched germline DNA from this patient.

Copy number analysis (using methylation array data [29] and WGS) of both the patient and PDX
tumours revealed hemizygous loss of chromosome 1p and homozygous deletions on chromosome
9p including a segment containing CDKN2A/B, MTAP and multiple interferon genes (Figure 6a–d).
WGS revealed that no pathogenic or likely pathogenic single nucleotide variants affecting childhood
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cancer predisposition genes were present in the germline and no clinically reportable somatic fusions
were found. CIRCOS plots generated from the WGS data visually demonstrate the overarching
similarities between the genetic profiles of the patient tumour and TK-RIG915 (Figure 6c,d and
Figures S1 and S2). The variant allele frequency for somatic variants (second circle) was more varied in
the patient tumour data compared to TK-RIG915, reflecting contaminating normal DNA due to the
diffuse nature of this glioma (52% tumour, 48% non-tumour brain tissue) compared to TK-RIG915
(100% tumour purity after removal of mouse-specific reads during analysis).
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Figure 6. Genomic DNA analyses demonstrate concordance between the patient tumour and
patient-derived xenograft (PDX) TK-RIG915. (a,b) Copy number variant plots for (a) the patient
tumour and (b) the matched PDX TK-RIG915 tumour depicting loss of CDKN2A/B and hemizygous
loss of chromosome 1p. Selected glioma-associated genes are indicated. (c,d) CIRCOS plots for (c) the
patient tumour and (d) the PDX TK-RIG915 tumour show the range of molecular alterations observed
in these tumours. Key to the CIRCOS plots: Outermost circle indicates the chromosomes, where darker
shading represents large gaps in the human reference genome (e.g., centromeres). Second circle (grey
shading) shows the somatic variants. These are divided into an outer ring of single nucleotide variants
where each dot represents a single variant coloured as shown with allele frequencies (corrected for
tumour purity and scaled from 0–100%) and an inner ring of short insertions and deletions (yellow and
red, respectively). Third circle (red and green shading) shows all observed tumour purity-adjusted
copy number changes (losses and gains indicated in red and green, respectively, scale ranges from
0 (complete loss to 6 (high level gains)). Fourth circle (orange and blue shading) represents the
observed ‘minor allele copy numbers’ across the chromosome, ranging from 0 to 3. The expected
normal minor allele copy number is 1. Values below 1 are shown as a loss (orange) and represents a
loss of heterozygosity event, whilst values above 1 (blue) indicate amplification events of both alleles at
the indicated locations. Innermost circle displays the observed structural variants within or between
the chromosomes. Translocations are indicated in blue, deletions in red, insertions in yellow, tandem
duplications in green and inversions in black.

Of note, no mutations in histone H3 were observed. Immunohistochemistry (IHC) for H3
K27 tri-methylation (H3K27me3) confirmed this, with both the patient and PDX tumours staining
positively (Figure 7a), supporting that they did not harbour the characteristic K27M variant observed
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in the majority of paediatric DIPGs [33,34]. Given that these cases clustered more closely with other
high-grade gliomas upon tSNE analysis, and that paediatric RIGs share common mutational events
with adult GBM [8], we investigated genes commonly mutated in adult high-grade glioma, namely
EGFR, TP53 and PTEN [35,36]. EGFR was not amplified (Figure 6a,b), and no mutations or deletions
were found in either the patient or PDX tumours by WGS. EGFR expression was undetectable using
IHC and transcript levels were very low in both cases compared to the reference datasets (Figure 7).
Copy number profiling indicated that TP53 and PTEN were not deleted in either the patient tumour
or the PDX tumours (Figure 6a,b), and mutations in these genes were not observed by WGS. RNA
expression analysis demonstrated unremarkable levels of TP53 and PTEN transcripts relative to
both the reference subset of high-risk paediatric brain tumours and the reference set of all high-risk
paediatric tumours (Figure 7b). These data were further supported by negative staining for p53 by
IHC and weakly positive staining for PTEN typical of astrocytic tumours (Figure 7a).
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Figure 7. Immunohistochemistry (IHC) and RNA expression levels of glioma-associated genes in
the patient tumour and matched TK-RIG915 patient-derived xenograft (PDX). (a) Both the patient
and matched TK-RIG915 PDX tumour tissues were wildtype for Histone H3, supported by positive
H3K27me3 staining. IHC for EGFR and p53 was negative, and tumours were weakly PTEN positive.
Scale bar represents 50 µm. (b) Gene expression levels (y axis: transcripts per million, TPM) for the
indicated genes. The patient tumour (yellow) and TK-RIG915 (red) are compared with two subsets
of a reference cohort containing only high-risk paediatric brain tumours (top panel) or all high-risk
paediatric tumours (bottom panel). Diffuse midline gliomas (DMGs) from the reference cohort are
indicated in green, all other cancers are black. Solid black line shows the mean TPM of the reference
cohort, and dashed line shows the TPM values that are two standard deviations away from the mean.
TK-RIG915 exhibits low transcript levels of EGFR, which matches protein expression by IHC in (a)
and unremarkable transcript levels of TP53 and PTEN, concordant with whole genome sequencing
and IHC.
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2.5. Mutations that Activate PI3K/AKT and Ras/Raf/MEK/ERK Signalling Are Present in TK-RIG915

A number of mutations known to drive PI3K/AKT and Ras/Raf/MEK/ERK signalling were observed
in both the patient tumour and TK-RIG915. A known pathogenic activating mutation in PIK3CA [37]
was observed (H1047L, Table 1). Missense mutations at this hotspot location of the catalytic subunit
(p110) of PI3K have been reported in a number of cancer types [38–40] and result in increased kinase
activity [38,41]. This finding is concordant with one of ten mutations previously reported for this
case [8]. The remaining nine mutations reported by Gits et al. [8] were either found to be present in the
germline DNA, or not detected in our sample (Table S3).

Table 1. TK-RIG915 harbours pathogenic mutations in PIK3CA, NF1 and PTPN11. Allelic frequencies
for both TK-RIG915 and the matched patient tumour calculated from whole genome sequencing data
are shown.

Gene Coding
Mutation

Impact Likely
Effect

Amino Acid
Alteration

Allelic Frequency

Patient Tumour TK-RIG915

PIK3CA c.3140A > T Missense Activating p. His1047Leu 24% 43%

NF1 c.3367G > T Stop-gain Inactivating p.Glu1123Ter 32% 45%

NF1 c.233dupA Frameshift Inactivating p.Asn78LysfsTer29 20% 62%

PTPN11 c.854T > C Missense Gain of
function p. Phe285Ser 2% 55%

Pathogenic mutations in two key genes that drive the Ras/Raf/MEK/ERK pathway were identified
in both the patient and PDX tumours. Neurofibromin (NF; encoded by the NF1 gene) negatively
regulates cellular proliferation by downregulating RAS activity [42]. NF1 was found to harbour a
pathogenic stop-gain truncation mutation in exon 26 (p.Glu1123Ter) as well as a frameshift mutation in
exon 3 (p.Asn78LysfsTer29), neither of which were previously reported from exome sequencing [8].
Both mutations are expected to result in loss of NF1 function [43–45] (Table 1). Additionally, TK-RIG915
harbours a pathogenic gain-of-function (GOF) mutation in Protein Tyrosine Phosphatase Non-Receptor
Type 11 (PTPN11) (p. Phe285Ser) [46], which encodes SHP2. SHP2 plays an essential role in the
activation of RAS following growth factor receptor activation [47] and GOF mutations have long been
associated with childhood leukaemia and other solid tumours [48,49]. While the allelic frequency was
high in the PDX (55%), the GOF mutation was rare in the patient tumour (one read out of 50, Table 1),
suggesting that a selected subpopulation of tumour cells engrafted and proliferated in mouse brain.
Taken together, it appears that activation of the PI3K/AKT and Ras/Raf/MEK/ERK pathways, combined
with the loss of the CDKN2A/B tumour suppressor locus, drove the growth of this tumour.

2.6. RNA Expression Analysis Supports Over-Activation of PI3K/AKT/mTOR and Ras/Raf/MEK/ERK
Pathways in TK-RIG915

Since WGS suggested PI3K/AKT/mTOR and Ras/Raf/MEK/ERK activation were key mechanisms
driving the growth of this tumour, we further explored the RNAseq data to validate these findings.
We identified over- or under-expressed genes in the patient tumour and matched PDX relative to
either the entire ZERO reference dataset, or just the CNS tumours, using a z-score approach (Methods).
NF1 transcript levels were significantly lower in both the primary and matched TK-RIG915 PDX
tumours compared to both reference sets, consistent with other tumours in the reference cohorts that had
homozygous deletion of NF1 (Figure 8a). In addition to low NF1 expression, we identified significantly
lower levels of AT-rich interactive domain 1A (ARID1A) transcripts in TK-RIG915 compared to both
reference sets (Figure 8a). ARID1A is a key subunit of the SWI/SNF chromatin remodelling complex [50]
and can indirectly inhibit the PI3K/AKT/mTOR pathway [51–53]. As such, loss of this gene may
contribute to the overactivation of this pathway already observed in this tumour.

Further evidence that the PI3K/AKT pathway is driving growth of TK-RIG915 is supported by the
high levels of AKT2 and IDH1 transcripts compared to both reference sets (Figure 8a). AKT2 plays a
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role in the migration and invasion of glioma cells and expression correlates with the malignancy of
gliomas [54]. Similarly, overexpression of wildtype IDH1 has been associated with driving the migration
of primary GBM cells via the production of alpha-ketoglutarate, resulting in PI3K/AKT/mTOR pathway
activation [55]. Furthermore, tumours with wildtype IDH1 have a poorer prognosis than WHO-grade
matched tumours that harbour IDH1 mutations [56], suggesting that high expression of the wildtype
form of IDH1 may drive TK-RIG915 tumour progression. High levels of PDGFRA RNA expression,
which encodes platelet derived growth factor receptor alpha (PDGFRα), compared to both reference
sets were also detected in TK-RIG915 (Figure 8b) and confirmed at the protein level by IHC (Figure 8c).
Of note, despite low levels of PDGFRα transcripts in the RNAseq data from the patient tumour
(Figure 8b), IHC confirmed high PDGFRα protein expression in the tissue (Figure 8c).
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the tumours to look for activation of downstream effectors of both of these pathways—
phosphorylated ribosomal protein S6 and phosphorylated 4EBP1 for the PI3K/AKT/mTOR pathway, 
and phosphorylated ERK1/2 for the Ras/Raf/MEK/ERK pathway. Both the PDX and the patient tissue 
were strongly positive for phosphorylated ERK1/2 (Figure 9), confirming Ras/Raf/MEK/ERK 
pathway activation. Positive staining was also detected for phosphorylated 4EBP1 threonine (T) 37/46 
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Figure 8. PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathway genes are over-expressed in TK-RIG915.
Gene expression levels for the indicated genes in the patient and matched TK-RIG915 patient-derived
xenograft (PDX) tumour tissues (y axis: transcripts per million, TPM). The patient tumour (yellow)
and TK-RIG915 (red) are compared with two subsets of a reference cohort containing only high-risk
paediatric brain tumours (top panel) or all high-risk paediatric tumours (bottom panel). Diffuse midline
gliomas (DMGs) from the reference cohort are indicated in green, all other cancers are black. Solid black
line shows the mean TPM of the ZERO cohort, and dashed line shows the TPM values that are two
standard deviations away from the mean. (a) TK-RIG915 exhibits low NF1 and ARID1A transcript
levels, and high IDH1 and AKT2 levels. (b) High PDGFRA transcript levels in TK-RIG915 correlated
with (c) high PDGFRα protein expression detected by IHC (lower panel). PDGFRα protein expression
was also high in the patient tumour (upper panel).
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2.7. IHC Confirms Activated PI3K/AKT/mTOR and Ras/Raf/MEK/ERK Signalling in TK-RIG915

WGS and RNAseq analyses strongly suggested that both the PI3K/AKT/mTOR and
Ras/Raf/MEK/ERK pathways were over-active in TK-RIG915. To confirm this, we performed IHC on
the tumours to look for activation of downstream effectors of both of these pathways—phosphorylated
ribosomal protein S6 and phosphorylated 4EBP1 for the PI3K/AKT/mTOR pathway, and phosphorylated
ERK1/2 for the Ras/Raf/MEK/ERK pathway. Both the PDX and the patient tissue were strongly
positive for phosphorylated ERK1/2 (Figure 9), confirming Ras/Raf/MEK/ERK pathway activation.
Positive staining was also detected for phosphorylated 4EBP1 threonine (T) 37/46 and phospho-S6
serine (S) 240/244, with minimal staining for phospho-S6 (S235/236) in TK-RIG915. The preferential
phosphorylation of S6 S240/244 also supports PI3K/AKT/mTOR pathway activation as S240/244 are
known targets of S6K1/2 downstream of mTORC1 activation. Limited staining for phospho-4EBP1 or
phospho-S6 was observed in the primary patient tumour. Given that the genetic alterations driving the
PI3K pathway in TK-RIG915 were generally also observed in the patient tumour, it is possible that the
lack of staining was due to technical issues, such as the degradation of the phosphorylated epitopes
post-mortem prior to tissue fixation.
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Figure 9. Downstream effectors of the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways are activated
in TK-RIG915. Immunohistochemistry for the phosphorylated proteins indicated was performed on
the patient tumour and TK-RIG915. The patient-derived xenograft was positive for S6 phosphorylated
on residues S240/S244, and to a lesser extent S235/S236, and phosphorylated 4EBP1 T37/46, while only
mild staining for phosphorylated S6 S240/244 was seen in the patient tumour. Both tumours were
strongly positive for phosphorylated ERK1/2. Scale bar represents 50 µm.

3. Discussion

Medulloblastoma is the most common malignant brain cancer of childhood. A major component
of conventional medulloblastoma therapy is craniospinal irradiation, which is subsequently associated
with a risk of radiation-induced secondary neoplasms. Here we describe a case of RIG in a male
survivor of medulloblastoma, and the molecular and phenotypic features of the PDX model generated
from this case. To our knowledge this is among one of the first PDX models of RIG described, and the
first with matched germline DNA available. PDX models are valuable tools for preclinical testing
of new therapies, but their full translational potential can only be realised if the underlying genetic
landscape of these models is comprehensively understood. Analysis of germline DNA facilitates
this by providing confidence in somatic variant calls and allowing identification of any inherited
cancer predispositions. In the patient tumour described here, having matched germline DNA was
highly valuable for identifying true somatic driver mutations. This tumour was previously reported
in Gits et al. [8] where ten mutations were described; however, our analyses revealed that only one
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of these was a true somatic mutation. This highlights the value of collecting and analysing germline
DNA where possible in reporting tumour-associated mutations.

The patient tumour from which this PDX was derived fulfilled the criteria defined by
Cahan et al. [31] for being a radiation-induced secondary tumour. Additionally, the features of
this tumour in terms of age of diagnosis of the primary medulloblastoma, latency to development of
the RIG and overall survival fit well with patterns reported in other cases of RIG following treatment
for medulloblastoma [57], and indeed high RNA expression levels of RIG-associated genes were
observed [7].

The patient was diagnosed as harbouring a DIPG, according to the WHO-based criteria of the
time and based on the MRI characteristics of the tumour. However, our analyses have revealed that
the patient tumour and corresponding PDX are molecularly distinct from typical diffuse brain stem
gliomas. Specifically, a number of recurrent genetic alterations have been reported for primary DMG
including the hallmark H3 K27M mutation, as well as mutations in TP53, ACVR1 and PDGFRA,
and amplifications of EGFR and PDGFRA [3,58–61]. None of these characteristic genetic alterations
were observed in the patient tumour or in TK-RIG915 (although high levels of PDGFRA transcript and
protein were observed), further supporting that this tumour is distinct from the original diagnosis of
primary DIPG.

Donson and colleagues [7] proposed that RIGs closely resemble PAs, with a 39% overlap in highly
expressed genes between these two tumour types. TK-RIG915 reflects these similarities, with high
expression of SOX10, ERBB3, PDGFRA, OLIG2, NKX2.2 and BRINP3 (Figure 5), which have been
reported for PAs [7,62–64]. It was acknowledged in that report, however, that given the significant
differences in WHO grade and clinical outcomes for these patients, these expression profiles may
simply indicate that RIGs and PAs share a common precursor cell [7]. Indeed, genetic alterations
commonly reported in PAs such as gain of chromosome 7q34 [65] and mutations or fusions involving
BRAF, KRAS, FGFR1 or NTRK [66] were not observed in TK-RIG915. Furthermore, while mutations in
NF1 are observed sporadically in PA, these are almost exclusively associated with optic nerve glioma
in patients with inherited germline NF1 mutation, rather than somatically acquired as observed in
TK-RIG915 [66,67].

Other than PA, it has been suggested that paediatric RIGs are molecularly similar to adult GBM [8].
Recurrent genetic alterations observed in adult primary GBM include mutations in PIK3CA and/or NF1,
TERT promoter alterations, deletion of CDKN2A/B, mutation and/or deletion of PTEN, mutation and/or
amplification of EGFR and PDGFRA, and overexpression of wildtype IDH1 [35,68–71]. In TK-RIG915,
we indeed observed several of these alterations, including PIK3CA and NF1 mutations, overexpression
of IDH1 and CDKN2A/B deletion (with CDKN2A/B loss also reported in the only other published RIG
PDXs [15]). That said, there remains a number of hallmark genetic alterations in primary GBM that
were not observed in TK-RIG915, and indeed are not observed in the majority of RIGs reported in
the literature. For example, most RIGs have normal expression of EGFR and PTEN and lack TERT
promoter mutations [7,14,17,18,21,22]. In addition, the majority of published RIGs report mutations in
TP53 [8,14,16–20], which are not normally associated with adult primary GBM although this was also
not observed in TK-RIG915.

DNA methylation-based classification has become a widely-accepted method to aid in molecular
identification of CNS tumours [29]. Interestingly, the methylation profile of the tumours described here
did not match with any known subclass in the MNP2.0 classifier, consistent with the only other reported
RIG PDX derived from an autopsy sample [15]. The best match for our patient tumour sample by
methylation profiling was “Control tissue, inflammatory tumour microenvironment”. As mentioned,
the patient had fungal lesions adjacent to the tumour site, which may indeed have resulted in an
inflammatory microenvironment. Furthermore, it is possible that the quality of tissue collected at
autopsy, the presence of necrosis and/or the amount of contaminating normal tissue (48% in our
case) may affect methylation-based CNS tumour classification of the patient sample [29]. Collectively,
our data indicate that whilst some genetic overlap with other tumour types exists, RIGs may be a
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genetic entity unto themselves, perhaps due in part to sharing a common causative event through
radiation exposure. In order to determine if RIGs truly are their own disease entity, extensive molecular
characterisation of a large number of RIGs is required to robustly define these tumours in future.

In the case of the RIG we describe here, there were multiple molecular alterations identified that
are targetable and may have therapeutic benefit. Firstly, increased activation of the PI3K/AKT/mTOR
pathway was identified as a driver of TK-RIG915 pathogenesis. The mutation in PIK3CA observed
in TK-RIG915 occurs at a cancer-associated hotspot known to upregulate kinase activity [40,41].
Consistent with GBM, the PIK3CA mutation in TK-RIG915 was mutually exclusive with PTEN
mutation/deletion [35]. Other alterations we observed that would be expected to cooperate with PI3K
activation included AKT2 and PDGFRA over-expression, both also frequent aberrations observed in
glioma [72,73]. Although high transcript levels of these genes were only observed in TK-RIG915, these
changes may have been masked in the patient tumour by contaminating normal tissue, rather than
these differences being the result of sub-clonal selection in the PDX. Indeed, protein levels of PDGFRα in
the patient tumour and TK-RIG915 were concordant. Taken together, these findings suggest inhibitors
of the PI3K pathway such as PI3K/mTOR inhibitors or AKT inhibitors may have therapeutic benefit in
this PDX [74].

Overexpression of IDH1 was observed in TK-RIG915 and is also consistent with observations
in primary GBM [68]. GBM with wildtype IDH1 have a worse prognosis than IDH1-mutant
GBM [56], and it has been recently reported that IDH1 overexpression, and the subsequent increase
in α-ketoglutarate (α-KG), is associated with increased migration of GBM cells and enhanced
PI3K/AKT/mTOR pathway activity [55]. Encouragingly, there is evidence to suggest that reducing
IDH1 expression may sensitise GBM cells to radiotherapy, a core clinical treatment for paediatric brain
tumours [75].

TK-RIG915 also demonstrated low RNA expression of the SWI/SNF complex component ARID1A.
Inactivating mutations or reduced ARID1A expression is common in multiple cancer types including
glioma where it is associated with poorer prognosis [76,77]. There is a significant correlation between
loss of ARID1A and activating mutations in PIK3CA [78], and ARID1A can indirectly inhibit the PI3K
pathway via transcriptional regulation of PIK3IP1 (a negative regulator of the PI3K pathway) and
Annexin A1 (an activator of AKT) [51–53]. As a result, loss of ARID1A in TK-RIG915 may contribute to
the network of genetic alterations already driving activation of PI3K signalling. Of note, the regulation
of PIK3IP1 is dependent on EZH2 methyltransferase and inhibition of EZH2 activity combined with
loss of ARID1A expression is synthetically lethal [52], highlighting a potential therapeutic vulnerability
through the use of EZH2 inhibitors in this tumour.

Lastly, hyperactivation of the Ras/Raf/MEK/ERK pathway was identified in TK-RIG915, where
NF1 loss together with a PTPN11/SHP2 GOF mutation was observed with concomitant upregulation
of ERK1/2 phosphorylation. In terms of disease initiation, inherited germline mutations in PTPN11 are
associated with Noonan syndrome, where patients have increased risk of cancer development [79].
As it has been shown that PTPN11 mutations can increase susceptibility to DNA-damage-induced
malignancies [80], it is conceivable that this mutation may have been an early somatic event that
contributed to the initiation of this RIG. Hyperactivation of the Ras/Raf/MEK/ERK pathway in
TK-RIG915 suggests that this tumour may be targetable with MEK inhibitors. NF1-deficient GBMs
are sensitive to MEK inhibition, although disease control may require simultaneous PI3K pathway
inhibition as has been observed in a subset of NF1-deficient GBMs [81]. Given that both the PI3K and
MEK pathways are upregulated in TK-RIG915, this dual inhibition approach may be a promising
option in treating this tumour.

The patient from which TK-RIG915 was derived was offered treatment as part of a clinical trial for
DIPG; however, this was ultimately ineffective. Through genomic and transcriptomic analyses we
understand now that this tumour was a RIG and is molecularly distinct from typical DIPGs; moreover,
this study identified genetic drivers and potential therapeutic targets. The cooperative nature of
the genetic alterations driving the PI3K and MEK signalling pathways in TK-RIG915 is summarised
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in Figure 10. Understanding how these genetic changes drive growth in this tumour provides an
opportunity to investigate potential therapeutic targets for RIG. Based on our findings, it is possible
that co-administration of inhibitors of MEK, PI3K, mTOR, IDH1, EZH2 or CDK4/6 (to target CDKN2A
deletion) may have been effective in slowing or reducing tumour progression [52,68,81–85]. Even the
use of a different antifungal agent in this patient to treat the fungal brain and lung lesions (for example
a dual antifungal agent and mTOR inhibitor such as rapamycin instead of voriconazole) could have
potentially had a positive effect. At the time that this patient was diagnosed, biopsies were not routinely
performed for brain stem glioma, but a number of clinical trials are demonstrating the feasibility of
this approach, and the value that the analyses performed on the biopsy tissue can afford [12,13,86].
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Shown are a selection of the genetic aberrations observed in this case study and the pathways
in which they act (blue indicates genes with downregulated function, red indicates genes
with upregulated function or increased expression/phosphorylation). Dashed lines represent
indirect effects. 4E-BP—Eukaryotic translation initiation factor 4E-binding protein, AKT—Protein
kinase B, ARID1A—AT-Rich Interaction Domain 1A, eIF-4E—Eukaryotic Translation Initiation
Factor 4E, ERK—Extracellular signal-regulated kinase, GRB2—Growth Factor Receptor Bound
Protein 2, IDH1—Isocitrate dehydrogenase 1, MEK—MAPK/ERK Kinase, mTORC—mammalian
target of rapamycin complex 1, NF1—Neurofibromin 1, p16INK4A—cyclin-dependent kinase
inhibitor 2A, CDKN2A, p90RSK—90 kDa ribosomal s6 kinase, PDGFRA—platelet-derived growth
factor receptor-alpha; PI3K—Phosphoinositide 3-kinase, RAF—Rapidly Accelerated Fibrosarcoma,
RAS—Rat sarcoma, S6—Ribosomal protein S6, S6K—Ribosomal protein S6 kinase, SHP2—Src homology
region 2, SOS1—SOS Ras/Rac Guanine Nucleotide Exchange Factor 1.
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This case has uncovered novel insights into radiation-induced brain cancer secondary to
medulloblastoma and highlights the importance of enhancing our understanding of these cancers.
Most importantly, we have developed and characterised one of the first PDX models of paediatric RIG.
The only other reported PDX mouse models of paediatric RIG were derived from a single patient [15],
highlighting how rare these models are. In order to facilitate thorough and rigorous preclinical testing
of new therapies that these patients may ultimately benefit from, an international effort is required to
collect these specimens and expand the number of paediatric RIG PDXs available for research. With the
advent of the molecular genetic era, it is abundantly clear that further in-depth characterisation of RIGs
is critical in not only building on our understanding of the mechanisms driving disease progression
but also in uncovering potential therapeutic vulnerabilities for this universally fatal disease.

4. Materials and Methods

4.1. Human Samples

The parents/guardians of the patient gave their informed consent before donation of the autopsy
tissue for research purposes, and for retrospective research access to relevant medical records and
previously obtained pathology samples for the same patient. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the
Child and Adolescent Health Service, Western Australia (HREC: 1769/EP (PRN 0000002372) A Perth
Children’s Hospital Oncology Protocol for Collecting and Banking Paediatric Research Specimens;
approved 21/08/2003).

4.2. Implantation of Patient Autopsy Tumour Cells and In Vivo Serial Transplantation

Animal experiments were approved by the Animal Ethics Committee of the Telethon Kids Institute
and performed in accordance with Australia’s Code for the Care and Use of Animals for Scientific
Purposes (AEC#242 approved 21/2/2012, AEC#263 approved 1/9/2013, AEC#300 approved 18/4/2016,
AEC#362 approved 24/4/2020). Immunodeficient BALB/c nude mice were obtained from the Animal
Resources Centre (Murdoch, Western Australia, Australia). Approximately 17 h post-mortem, tumour
tissue from the patient (ID 738889) was mechanically dissociated, filtered through a 100 µm cell strainer,
and suspended in matrigel (BD Biosciences, San Jose, CA, USA). Cells (4 × 106 per mouse) were
implanted into the brains of four 8-week-old mice using a Hamilton syringe. Upon tumour-related
morbidity, the brain was bisected sagittally at the implantation site and one half of the brain containing
the tumour was kept for histology. The remaining tumour was removed, dissociated and reimplanted
into the brains of successive recipients as described above.

4.3. Histochemical Staining

Tissue samples were fixed in 4% paraformaldehyde or neutral buffered formalin and embedded
in paraffin. Patient medulloblastoma samples were stained with H&E, GFAP (Dako, Santa Clara,
CA, USA, Z0344; 1:3000), Ki67 (Ventana, Oro Valley, AZ, USA, 3O-9, neat), β-catenin (Cell Marque,
Rocklin, CA, USA, 14, 224M-15, 1:50) and synaptophysin (Ventana, SP11, neat) and patient autopsy
RIG tissue was stained with H&E, GFAP, Ki67 and p53 (Dako, DO-7; 1:200) using the Benchmark
Ultra Immunostainer using DAB as a substrate (Roche, Basel, Switzerland). Reticulin staining was
performed as per Gordon and Sweet’s reticulin staining method. All other tissue sections (5 µm)
underwent microwave antigen retrieval in a citrate buffer before immunostaining with the following
antibodies and dilutions: Olig2 (Millipore, Burlington, MA, USA, MABN50; 1:200), Nestin (Millipore,
MAB5326; 1:200), Vimentin (Cell Signaling, Beverly, MA, USA, 5271; 1:200), Tri-methyl-histone H3
(K27) (Cell Signaling, 9733; 1:200), EGFR (Cell Signaling, 4267; 1:50), PTEN (Cell Signaling, 9559; 1:200),
PDGFRα (Cell Signaling, 5241; 1:200), phosphorylated S6 (S235/S236) (Cell Signaling, 2211; 1:400),
phosphorylated S6 (S204/S244) (Cell Signaling, 5364; 1:1000), phosphorylated 4EBP1 (T37/T46) (Cell
Signaling, 2855; 1:1600), phosphorylated ERK1/2 (T202/Y204) (Cell Signaling, 9101; 1:100). Additionally,
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mouse PDX tumour samples were stained with GFAP (Sigma Aldrich, St Louis, MO, USA, G3893-2ML;
1:200), Ki67 (Cell Signaling, 9027; 1:400), and p53 (Cell Signaling, 2527: 1:160). Sections were incubated
with species-specific biotinylated goat anti-IgG secondary antibodies, followed by detection with
an Elite ABC kit and NovaRED peroxidase substrate, then counterstained with Gill’s haematoxylin
according to manufacturer’s instructions (Vector Laboratories, Burlingame, CA, USA). H&E staining
was performed as per standard protocols using a Leica Autostainer XL.

4.4. DNA and RNA Extraction

Genomic germline DNA was prepared from peripheral blood mononuclear cells using a QIAamp
DNA Mini Kit (Qiagen, Hilden, North Rhine-Westphalia, Germany, 51304) as per the manufacturer’s
instructions for DNA extraction from lymphocytes. Genomic tumour DNA and RNA were prepared
from fresh frozen patient and PDX tumour samples using an All Prep DNA/RNA Mini Kit (Qiagen,
80204) as per the manufacturer’s instructions. DNA quality was determined by gel electrophoresis
and spectrophotometry (Nanodrop, Thermo Fisher Scientific, Waltham, MA, USA), and quantified
using fluorometry (Qubit, Life Technologies, Waltham, MA, USA, Q32851). RNA quality and quantity
were determined using the LabChip GX nucleic acid analyser (Perkin Elmer, Waltham, MA, USA)
(performed by the Australian Genome Research Facility, Perth, Western Australia, Australia).

4.5. Short Tandem Repeat Analysis

DNA from patient tumour and PDX tumours were compared using STR analysis performed at the
Genetics Resources Core Facility at Johns Hopkins University (Baltimore, MD, USA) using a PowerPlex
18D kit (Promega, Madison, WI, USA), PCR product electrophoresed on an ABI Prism 3730xl Genetic
Analyzer and data analysed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA,
USA) as per their standard protocols.

4.6. Methylation Array

Genomic DNA (500–1000 ng) was treated with sodium bisulphite using the EZ DNA methylation
kit (Zymo Research, Orange, CA, USA) and bisulphite conversion was confirmed by methylation
specific PCR. Quantification of DNA methylation was performed at the Australian Genome Research
Facility (Melbourne, Victoria, Australia) using the Human Methylation EPIC (EPIC) BeadChip run on
an Illumina iScan System using the manufacturer’s standard protocol (Illumina, San Diego, CA, USA).
Raw idat files were uploaded to an online DNA methylation-based classification of CNS tumours
platform (www.molecularneuropathology.org, version 11b4 v2.1) [29] and basic copy number variant
profiles from methylation array data analysed using the output generated from this classifier.

4.7. Whole Genome Sequencing

WGS data obtained from the patient germline and tumour DNA samples were analysed as
reported in [30]. For the PDX tumour sample, an additional step to remove mouse reads using BBSplit
ver 11 June 2018 [87] was done prior to the previously described method. Default parameters were
used except for ambiguous2 that was set to ‘toss‘ in order to conservatively exclude ambiguously
mapped reads to either the mouse or human reference genomes. WGS data generated by this study are
available from the European Genome-phenome Archive under accession number EGAS00001004709.

4.8. RNA Sequencing, Clustering Analysis and Expression Profiling

RNAseq analysis and expression profiling was performed as reported in [30]. Clustering analysis
was performed using R package Rtsne by combining the transcripts per million (TPM) values from the
ZERO cohort [30] with the primary tumour and PDX model TPM values. RIG signature analysis was
performed on the genes identified in [7] where the cohort median and mean values were computed
and either the patient tumour TPM or PDX model TPM of the genes specified were compared to the

www.molecularneuropathology.org


Cancers 2020, 12, 2937 19 of 24

cohort mean and median. RNAseq data generated by this study are available from the European
Genome-phenome Archive under accession number EGAS00001004709.

5. Conclusions

To date, the genetic and molecular alterations underpinning RIG have not been well-characterised.
We have added to this limited body of knowledge through extensive characterisation of one of the first
PDX models of paediatric RIG. The case report we describe here and TK-RIG915 were molecularly
distinct from typical paediatric brain stem glioma and instead showed some genetic overlap with adult
primary GBM, concordant with other reports. Whilst some similarities between these tumour types
exists, there remain key differences between patterns of genomic and transcriptomic alterations between
adult primary GBM and TK-RIG915, and indeed the majority of RIGs previously reported, suggesting
that perhaps RIGs may form their own CNS tumour subtype. Extensive characterisation of an increased
number of RIGs is crucial to definitively address this possibility and increase our understanding
of these tumours. Interrogation of the genetic alterations present in this case revealed a number of
potential therapeutic targets that may be effective against this disease including inhibitors of MEK,
PI3K, AKT, mTOR, IDH1, EZH2 or CDK4/6. Through the development of a rare RIG PDX, we have
created an important tool to help facilitate both drug discovery and novel therapeutic preclinical testing
for this highly aggressive and currently fatal disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2937/s1.
Table S1: Penetrance and median survival rates of the TK-RIG915 patient-derived xenograft model, Table S2: Short
Tandem Repeat (STR) analysis demonstrated that the patient-derived xenograft (PDX) tumours were derived from
the patient tumour, Table S3: The majority of the mutations reported in Gits et al. [8] were found in the patient’s
germline DNA, Figure S1: Enlarged CIRCOS plot for patient tumour 738889, Figure S2: Enlarged CIRCOS plot for
PDX TK-RIG915.
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