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Combined assessment of MHC binding
and antigen abundance improves
T cell epitope predictions

Zeynep Kosxalo�glu-Yalçın,1 Jenny Lee,1 Jason Greenbaum,1 Stephen P. Schoenberger,2,3 Aaron Miller,2,3

Young J. Kim,4 Alessandro Sette,1,5 Morten Nielsen,6,7 and Bjoern Peters1,5,8,*

SUMMARY

Many steps of theMHC class I antigen processing pathway can be predicted using
computational methods. Here we show that epitope predictions can be further
improved by considering abundance levels of peptides’ source proteins. We uti-
lized biophysical principles and existing MHC binding prediction tools in concert
with abundance estimates of source proteins to derive a function that estimates
the likelihood of a peptide to be an MHC class I ligand. We found that this combi-
nation improved predictions for both naturally eluted ligands and cancer neoan-
tigen epitopes. We compared the use of different measures of antigen abun-
dance, including mRNA expression by RNA-Seq, gene translation by Ribo-Seq,
and protein abundance by proteomics on a dataset of SARS-CoV-2 epitopes.
Epitope predictions were improved above binding predictions alone in all cases
and gave the highest performance when using proteomic data. Our results high-
light the value of incorporating antigen abundance levels to improve epitope pre-
dictions.

INTRODUCTION

Presentation of peptides on the cell surface by major histocompatibility complex (MHC) class I molecules is

crucial for CD8+ T-cell-mediated immune responses, including those against viral infections and tumors.

The MHC class I antigen processing and presentation pathway consists of multiple steps during which pro-

teins are degraded into peptides, loaded on MHC class I molecules, and presented on the cell surface

(Leone et al., 2013). Recognition of these peptide-MHC complexes on the cell surface as foreign by

CD8+ T cells prompts an immune response, which can lead to the eradication of affected cells. Accurate

identification of which specific peptides are presented on MHC class I has applications in developing di-

agnostics and therapeutic interventions for infectious diseases and cancer (Soria-Guerra et al., 2015; Pa-

tronov and Doytchinova, 2013; Schumacher et al., 2019).

Numerous computational tools have been developed to predict the various steps in the MHC class I anti-

gen processing and presentation pathway (reviewed in Peters et al. (2020)), including prediction of protea-

somal cleavage (Nielsen et al., 2005; Eggers et al., 1995), transport into the ER by the transporter associated

with antigen processing (TAP) (Peters et al., 2003; Bhasin and Raghava, 2004), peptide-MHC binding (re-

viewed in Nielsen et al. (2020)), and predicting the stability of the peptide-MHC complex (Rasmussen

et al., 2016; Jorgensen et al., 2014). Among these, tools predicting peptide-MHC binding has been proven

to be the most discriminative in predicting immunogenic epitopes, i.e. presented peptides that are recog-

nized by T cells (Kosaloglu-Yalcin et al., 2018; Bjerregaard et al., 2017; Nielsen et al., 2020; Peters et al.,

2020; Paul et al., 2020). These tools generally consist of machine learning methods that have been trained

with experimentally generated peptide-MHC binding data. Such experimental data are, for example, avail-

able in the Immune Epitope Database (IEDB) (Vita et al., 2019).

One drawback of using predictions solely based on peptide-MHC binding data is that it ignores the anti-

gen processing and presentation pathway. This drawback can be overcome by using ligand elution data for

training. These ligands are naturally found presented by MHC molecules on the cell surface, which means

they passed through the natural antigen processing and presentation pathway. Ligand elution data inher-

ently contain information on sequence motifs associated with processing that is not available when only
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peptide-MHC binding is considered (Peters et al., 2020). Recent advances in high-throughput ligand

elution assays allow identifying thousands of natural ligands with a single experiment (Shao et al., 2018;

Vaughan et al., 2017). Importantly, the eluted ligands are not biased by any pre-selection using prediction

methods. These large and unbiased datasets of eluted ligands provide more power when training machine

learning methods. In fact, machine learning methods that have been trained on a combination of peptide-

MHC binding and ligand elution data outperform methods that have been trained on peptide-MHC bind-

ing data alone in predicting epitopes (Jurtz et al., 2017; O’Donnell et al., 2020; Kosaloglu-Yalcin et al., 2018;

Nielsen et al., 2020; Peters et al., 2020).

One aspect in the antigen processing and presentation pathway that is still often ignored by epitope pre-

diction methods is the abundance of epitope source proteins. Proteomic studies have previously reported

correlations between protein abundance and MHC-peptide presentation (Juncker et al., 2009; Hickman

et al., 2004; Milner et al., 2006), and more recently, it was reported that MHC-peptide presentation is

strongly correlated with mRNA expression of the ligand’s source protein (Abelin et al., 2017; Fortier

et al., 2008; Bassani-Sternberg et al., 2015; Juncker et al., 2009), underlining the potential value of including

information about source protein abundance into epitope predictions.

Some might argue that MHC ligand elution data already contain information about antigen abundance.

However, it is the hallmark of multicellular organisms to have tissue- and cell-type-dependent expression

patterns of genes. Ligand elution data are typically generated from cell lines or specifically isolated tissues

and therefore only reflects the expression patterns of the specific cell type from which ligands were eluted.

Although a significant subset of genes, such as actin or ubiquitin, are expressed across all cell and tissue

types at comparable levels, other genes such as insulin or keratin are only expressed by specific cell types

in specific tissues (Uhlen et al., 2015).

Cell type and tissue-specific expression patterns can, for example, be better captured by RNA sequencing

(RNA-Seq). Abelin et al. and Sarkizova et al. reported increased performance in predicting eluted ligands,

Sarkizova et al. additionally reported increased performance in predicting peptides that were observed

experimentally in patient-derived tumor cell lines, and Bulik-Sullivan et al. reported increased performance

in predicting immunogenic neoantigens when they included RNA expression of epitope source antigens in

their respective machine learning models (Bulik-Sullivan et al., 2018; Abelin et al., 2017; Sarkizova et al.,

2020).

In this study, we wanted to formally describe the interplay of peptide-MHC binding and the abundance of

the peptide’s source protein. We took advantage of the publicly available, highly accurate peptide-MHC

binding prediction tool NetMHCpan 4.0 and developed a model that combines these predictions with the

RNA expression of the peptide’s source protein in a biophysically meaningful fashion to estimate the likeli-

hood of the peptide being presented on a givenMHC class I molecule. Our model named Antigen eXpres-

sion based Epitope Likelihood-Function (AXEL-F) outperformed NetMHCpan 4.0 in discriminating eluted

ligands from random background peptides as well as in predicting neoantigens that are recognized by

T cells. We also showed that in cases where cancer-patient-specific RNA-Seq data is not available, can-

cer-type-matched expression data from TCGA can be used to accurately estimate patient-specific gene

expression. Using AXEL-F together with TGCA expression data, we were able to improve the prediction

of neoantigens that are recognized by T cells. We furthermore showed that SARS-CoV-2 epitopes can

bemore effectively predicted when abundance levels of virus proteins are taken into account. Epitope pre-

dictions were improved when we used AXEL-F together with RNA-Seq of SARS-CoV-2 infected cells, and

predictions were even further improved when ribosome profiling or proteomic data was utilized tomeasure

antigen abundance.

AXEL-F is publicly available and free to use for the academic community at http://axelf-beta.iedb.org/axelf.

RESULTS

HLA class I eluted ligands originate from highly expressed genes and are predicted good HLA

binders

Wewanted to assess the performance of expression level, predicted binding affinity, and their combination

in distinguishing eluted ligands from a set of random background peptides. We utilized a previously pub-

lished dataset of 15,090 HLA class I ligands eluted from five different HLA class I alleles (hereafter referred
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to as Trolle set) (Trolle et al., 2016). Importantly, this dataset was not preselected or filtered in any way. We

compared the eluted ligands against a set of background peptides. The background dataset was gener-

ated as follows: for each peptide in the Trolle set, ten peptides were randomly picked from the human pro-

teome. As RNA expression data were not included in the Trolle study, we retrieved RNA-Seq data of HeLa

cells from another previously published study (Cantarella et al., 2019) and used the provided UniProt iden-

tifiers of the ligand source proteins to annotate the corresponding expression level measured as transcripts

per million (TPM). Next, we performed HLA class I binding predictions for each ligand and random back-

ground peptide using the NetMHCpan 4.1 algorithm (Jurtz et al., 2017). For each peptide, we retrieved the

predicted binding affinity provided in IC50 together with the corresponding percentile rank (BA_Rank), as

well as the eluted ligand score (EL_Score) and the corresponding percentile rank (EL_Rank). The complete

Trolle dataset is provided in Table S1.

We compared RNA expression levels of the genes from which eluted ligands originated with expression

levels of the genes from which background peptides were retrieved. We analyzed each of the five alleles

separately (Figure 1A). As expected, this analysis showed that RNA expression levels of ligands are signif-

icantly higher than those of random background peptides (p < 2.2 3 10�16, Wilcoxon Test). These results

confirm that MHC I eluted ligands are preferentially derived from abundant proteins, as previously re-

ported (Abelin et al., 2017). We next compared predicted IC50 values of eluted ligands with background

peptides separately for each of the five alleles and found that eluted ligands were predicted to bind at

significantly higher levels (p < 2.2 3 10�16, Wilcoxon Test, Figure 1A). These results are in concordance

with previously reported studies (Bulik-Sullivan et al., 2018; Abelin et al., 2017; Sarkizova et al., 2020). Similar

results were obtained when this analysis was performed based on BA_Rank and EL_Rank (Figure S1). Re-

sults were also similar when we only used the subset of ligands and background peptides that were pre-

dicted binders (IC50 < 500 nM, Figure S2).

As a next step, we wanted to further investigate the relationship and interplay between HLA binding and RNA

expression levels. Directly comparing HLA binding and RNA expression showed that there is no correlation (R =

0.17, Pearson’s correlation, Figure S3). To further investigate this, we separated the binding affinity and TPM

values in our dataset into ranges to create a 2-dimensional matrix with the TPM on the x axis and the predicted

binding on the y axis, analogous to what was reported by Abelin et al. (Abelin et al., 2017) (Figures 1B and S4).

Visual inspection of the resulting matrix revealed that certain IC50 and TPM ranges were enriched for eluted li-

gands, namely the part of the matrix representing high binding affinity and substantial RNA expression, as

already discussed earlier. The matrix, however, showed additional interplay between IC50 and TPM: ligands

originating from lower expressed RNA transcripts seemed to bind HLA strongly, whereas ligands that were

not able to strongly bind HLA seemed to be derived from highly expressed RNA transcripts.

These observations, which are in concordance with others (Abelin et al., 2017), indicated that HLA binding

of a ligand and the expression of its source protein might compensate for each other. Abundant expression

of a source protein will generate more peptides, which in turn might enhance the chances of these abun-

dant peptides to bind HLA even if their HLA binding capacity is weak, simply by being available in high

numbers. Conversely, a peptide with high binding affinity might still be presented on HLA even if it is

not abundantly expressed by outcompeting other more abundant peptides available for HLA binding.

HLA binding and expression level are independent predictors of HLA class I eluted ligands

Having established that eluted ligands are highly expressed and are predicted good binders, we analyzed

the predictive performance of thesemetrics in distinguishing ligands (positives) from background peptides

(negatives). We considered all four metrics provided by NetMHCpan as well as the TPM of the source pro-

tein as a measure of expression and performed a receiver operating characteristic (ROC) analysis to assess

prediction performance in terms of the area under the ROC curve (AUC) as well as partial AUC at 10% false

positive (pAUC). All NetMHCpan metrics were excellent predictors of eluted ligands: all AUC and pAUC

values were above 0.99. With an AUC value of 0.812 and a pAUC of 0.629, TPM alone was also a good pre-

dictor for eluted ligands (Figure 2).

Integrating HLA binding of the ligand and expression of its source protein using a Boltzmann

distribution improves prediction of eluted ligands

To integrate the HLA binding capacity of the ligand and the abundance of its source protein into a function

to more accurately predict ligand elution, we first applied a naive approach to combine HLA binding and

ll
OPEN ACCESS

iScience 25, 103850, February 18, 2022 3

iScience
Article



RNA expression by simply assigning a poor predictive value to each peptide that was derived from a non-

expressed source protein (i.e. TPM = 0). This approach was based on the biological assumption that a pep-

tide cannot be an eluted ligand if its source protein is not expressed. We considered all peptides from the

Trolle set and the background peptides and assigned each peptide the worst possible prediction score if

the corresponding source protein was not expressed. An ROC analysis was performed for each metric pro-

vided by NetMHCpan, and corresponding AUC values summarized in Table S2 clearly indicated that this

naive method does not improve predictive performance across NetMHCpan predictions.

Next, we tested a more complex model to capture the effect of quantitative expression differences and

combine them with peptide-HLA binding using the Boltzmann distribution, which is often used to describe

Figure 1. HLA binding and abundance of source proteins of HLA class I eluted ligands

(A) HLA class I eluted ligands originate from highly expressed genes and are predicted good HLA binders. The quartile

ranges and density of TPM (top) and predicted IC50 (bottom) values are displayed for the five alleles included in the

dataset. Ligands (displayed in tan) are expressed at significantly higher levels than random background peptides

(displayed in green) and are predicted to bind at significantly higher levels (p < 2.2 3 10�16, Wilcoxon Test). Dashed lines

indicate TPM 10 and IC50 500 nM, respectively.

(B) Interplay between HLA binding of eluted ligands and expression of their source proteins. The binding affinities and

TPM values were separated into ranges to create a 2-dimensional matrix with the TPM on the x axis and the IC50 on the y

axis. Each peptide was assigned to a cell in this matrix according to its IC50 and TPM values. For each cell, the percentage

of ligands among all peptides that fall into the corresponding IC50 and TPM ranges was determined, and the cell was

colored accordingly.
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biophysical systems (Moore, 1972). We adapted the Boltzmann formalism by empirically adding parame-

ters to describe peptide presentation (described in detail in the methods section). Our final model esti-

mates, for a given peptide with IC50 and TPM value, its likelihood of being presented on HLA and being

an epitope. We named this model AXEL-F, standing for Antigen eXpression based Epitope Likelihood-

Function.

The model had three free parameters, namely a, which is a scaling factor for TPM, kT, which is a scale that

mimics the product of the Boltzmann’s constant k and the thermodynamic temperature T, and minTPM,

which is a parameter that accounts for the detection limit of RNA-Seq. We used the Trolle dataset to iden-

tify the optimal value for these free parameters based on the predictive performance measured by AUC.

The parameters obtained in this way fell into a consistent range between the five subsets corresponding

to the five alleles in the Trolle set (Table S3).

AXEL-F outperformed IC50 consistently for all five alleles as well as for the complete dataset (p value =

0.002, De-Long’s test), as shown by increased AUC values (Table S3). AUC values for AXEL-F scores

were also slightly higher than those for EL_Rank for most alleles and were on par when applied to the com-

plete dataset. As the gain in performance was significantly higher when parameters were trained on the

complete dataset (p value < 2.2 3 10�16, De-Long’s test), we decided to present subsequent analyses

for the complete dataset only.

It is widely known (Jurtz et al., 2017) that the NetMHCpan EL_Rank and EL_Score predictions generally

perform better in predicting eluted ligands than predicted IC50. The neural network that performs these

EL predictions has been trained on eluted ligand data and is thusmore capable of capturing eluted ligands.

We thus used EL_Rank instead of IC50 in our model and fit the free parameters as described earlier. This

model had lower AUC and pAUC values than the model using IC50 in predicting the ligands in the Trolle

dataset (Table 1). This might be due to the fact that the EL_Score is an output score of the neural network

architecture and is an abstract value that cannot be directly translated into a biological context. IC50 values

in contrast are defined as the concentration that inhibits 50% binding of a labeled reference peptide, and if

the assay is performed under appropriate conditions, the log(IC50) values are proportional to binding free

energies and can be directly used in our biological model. We still wanted to take advantage of the known

superior predictive performance of EL_Rank and incorporate it into our model. To achieve this, we mapped

each EL_Rank to a corresponding IC50 value by comparing the percentile ranks of the two metrics. This

Figure 2. Performance of different predictors in identifying HLA class I eluted ligands in the Trolle dataset

(A and B) Receiver operating characteristic (ROC) curves (A) and ROC curves at 10% false-positive rate (B) for different NetMHCpan predictors, TPM and

AXEL-F scores are displayed
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allowed us to use the improved performance of EL predictions while still being able to biologically explain

the scores and integrate them into our model. We named this new metric EL_to_IC50 and used it as an

input for AXEL-F instead of the IC50 values we used earlier and again used the Trolle dataset to train

the parameters a, kT, and minTPM. The values we obtained were very similar to those obtained when using

IC50: awas fit to 1.228, kT to 0.222, andminTPM to 0.544. We were able to further boost the performance of

AXEL-F and achieved an AUC of 0.994 and a pAUC of 0.974 (Table 1, Figure 2). AXEL-F (EL_to_IC50) signif-

icantly outperformed all NetMHCpan predictions (p value < 2.2 3 10�16, De-Long’s test).

To compare AXEL-F performance, we also performed predictions using three additional state-of-the-art

prediction tools, MHCflurry 2.0 (O’Donnell et al., 2020), MixMHCpred 2.0 (Bassani-Sternberg et al.,

2017), and HLAthena (Sarkizova et al., 2020). All tools were trained with eluted ligand data, and HLAthena

also included antigen RNA expression levels in its machine learning model. Importantly, the Trolle dataset

was part of the training data of all tools, including NetMHCpan. As expected, all tools perform well in pre-

dicting eluted ligands from the Trolle dataset; however, HLAthena only supports predictions for peptides

of length 8–11 which left �2,500 ligands of length 12–14 (16%) without predictions, resulting in lower per-

formance (Table 1). AXEL-F outperformed MHCflurry, MixMHCpred, and HLAthena significantly (p value <

2 3 10�13, De-Long’s test).

As our model is based on the biophysical principles of antigen presentation, it should be applicable to any

method predicting HLA binding. To demonstrate this, we used MHCflurry predictions and fitted the free

parameters of AXEL-F a, kT, and minTPM in the same way we did earlier for NetMHCpan predictions.

The values we obtained were very similar to those obtained when using NetMHCpan: a was fit to 1.296,

kT to 0.119, and minTPM to 0.533. Importantly, with an AUC of 0.991, AXEL-F (MHCflurry) significantly out-

performed MHCflurry alone (p value < 2 3 10�13, De-Long’s test, Table 1).

Model evaluation on independent datasets of eluted ligands

We next validated our results with an independent dataset (Abelin et al., 2017) that contained 26,089 eluted

ligands from 16 HLAs, with only four overlapping with those present in the Trolle dataset. Abelin et al. used

mono-allelic cell lines to elute ligands from and also performed RNA-Seq and provided the data in the form

of TPM values. We again generated a background dataset and performed NetMHCpan predictions for all

260,890 peptides. The complete Abelin dataset is provided in Table S4.

We calculated AXEL-F likelihood scores by using both IC50 and EL_to_IC50 as inputs and compared the

performance with NetMHCpan predictions in discriminating eluted ligands from the random background

set. The performance metrics summarized in Table 1 and the ROC curves shown in Figure S5 indicate that

AXEL-F likelihood scores significantly outperformed IC50 and BA_Rank when likelihood scores are calcu-

lated using IC50 (AXEL-F (IC50), p value < 2.2 3 10�16, De-Long’s test). When likelihood scores were

Table 1. Prediction performance of different predictors for ligand elution datasets

Predictor

Trolle

AUC

Trolle

pAUC

Abelin

AUC

Abelin

pAUC

Pyke cell line

AUC

Pyke cell line

pAUC

Pyke

tissue

AUC

Pyke

tissue

pAUC

TPM 0.812 0.629 0.763 0.607 0.704 0.583 0.694 0.580

IC50 0.990 0.955 0.969 0.940 0.951 0.932 0.961 0.870

EL_Rank 0.991 0.963 0.977 0.961 0.965 0.940 0.979 0.932

AXEL-F (IC50) 0.993 0.971 0.976 0.949 0.954 0.924 0.965 0.883

AXEL-F (EL_Rank) 0.992 0.964 0.980 0.960 0.959 0.916 0.967 0.865

AXEL-F

(EL_to_IC50)

0.994 0.974 0.980 0.961 0.964 0.941 0.978 0.925

MHCflurry 0.986 0.957 0.988 0.969 0.969 0.936 0.970 0.909

AXEL-F

(MHCflurry)

0.991 0.970 0.989 0.975 0.941 0.824 0.974 0.918

MixMHCpred 0.990 0.959 0.975 0.963 0.909 0.900 0.969 0.923

HLAthena 0.869 0.899 0.911 0.926 0.960 0.934 0.955 0.920
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calculated using EL_to_IC50 (AXEL-F (EL_to_IC50)) it also significantly outperformed EL_Score and EL_

Rank (p value < 2.23 10�16, De-Long’s test). We again considered the three tools MHCflurry, MixMHCpred,

and HLAthena, and AXEL-F (EL_to_IC50) outperformedMixMHCpred and HLAthena significantly, whereas

MHCflurry performed significantly best on this dataset (p value < 2.2 3 10�16, De-Long’s test, Table 1).

Again, AXEL-F using MHCflurry also slightly improved performance of MHCflurry alone. Importantly, the

Abelin dataset was also included in the training of all tools.

To further validate our results, we obtained two additional datasets from a recently published study (Pyke

et al., 2021). Pyke et al. used mono-allelic cell lines to elute ligands from 25 different HLA. As no expression

data was provided for these cell lines, we obtained precalculated TPM values for the corresponding cell line

(K562) from the Cancer Cell Line Encyclopedia (Ghandi et al., 2019). Pyke et al. also eluted ligands from 12

tissue samples of colorectal and lung cancer patients. As it was not indicated which tissue sample corre-

sponded to which cancer type, we used the TCGA pan-cancer expression dataset to estimate antigen

abundance in this set.

Interestingly, although AXEL-F using IC50 significantly outperformed IC50 alone in predicting eluted li-

gands from the Pyke datasets (p value < 2.2 3 10�16, De-Long’s test), AXEL-F (EL_to_IC50) performed

slightly worse than EL_Rank alone (Table 1). Similarly, MHCflurry alone performed significantly better

than AXEL-F (MHCflurry) on the Pyke cell line dataset. (p value < 2.2 3 10�16, De-Long’s test, Table 1).

On the Pyke cancer patients dataset, however, AXEL-F (MHCflurry) significantly outperformed MHCflurry

predictions alone (p value < 2.2 3 10�16, De-Long’s test, Table 1).

Overall, these data showed that AXEL-F outperformed all NetMHCpan predictions alone on both the orig-

inal Trolle dataset and the independent Abelin dataset. On the Abelin dataset, AXEL-F even performed

well for alleles that were not included in the training dataset (Table S5). We also achieved similar results

when using AXEL-F with MHCflurry instead of NetMHCpan predictions, highlighting that our model is

potentially applicable to any HLA binding prediction method. When tested on two additional independent

elution datasets, AXEL-F improved NetMHCpan IC50 predictions but EL predictions were not improved,

whereas MHCflurry predictions were only improved in one of the datasets.

Cancer neoantigens can be more accurately predicted by integrating cancer expression data

We next wanted to analyze how our model AXEL-F performed in predicting epitopes, specifically cancer

neoepitopes that arise from somatic mutations. We utilized a previously published study by Parkhurst

et al. (Parkhurst et al., 2019) that reported immunogenicity screening results of neoantigens from 75 pa-

tients with various gastrointestinal cancers. The group performed whole-exome sequencing to detect so-

matic mutations and determined which neoantigens were recognized by tumor-infiltrating lymphocytes

(Parkhurst et al., 2019). We chose this dataset, as unlike many other studies, Parkhurst et al. did not prese-

lect the peptides for immunogenicity screening based on binding predictions or expression thresholds,

and the group also provided some RNA-Seq information that we wanted to explore with our model.

As our study is based on HLA class I predictions, we only considered the 54 neoantigens that were recog-

nized by CD8+ T cells and the 7,529 peptides that were not recognized at all. We further filtered the dataset

by only retaining peptides for which RNA-Seq information was provided, which resulted in a final set of 46

patients with 28 recognized neoantigens and 1,298 peptides that were not recognized. We named this da-

taset the NCI dataset (Table S6) and wanted to compare the performance of NetMHCpan predictions alone

and in combination with neoantigen source protein abundance in distinguishing immunogenic neoanti-

gens (positives) from peptides that were not recognized by tumor-infiltrating lymphocytes (negatives).

To do so, we first performed NetMHCpan predictions on the complete dataset and found that both IC50

and EL_Rank could discriminate immunogenic neoantigens with AUC values of 0.698 and 0.688, respec-

tively (Table 2). The RNA-Seq information that was provided with the NCI dataset included the number

of reads overlapping the mutation site (tumor_rna_depth), the number of reads overlapping the mutation

site and confirming the mutation (tumor_rna_alt_reads), and the relative frequency of reads confirming the

mutation among all reads overlapping the mutation site (tumor_rna_alt_freq). Unfortunately, TPM values

were not provided as part of the dataset. As a first analysis, we assessed the predictive performance of

these RNA metrics in predicting immunogenic neoantigens and found that all three metrics had some pre-

dictive value (Table 2 and Figure S6). With an AUC of 0.642, the number of reads supporting the mutation
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(tumor_rna_alt_reads) had the best performance among the three RNA metrics. We presumed that the tu-

mor_rna_alt_reads could be used as a proxy for describing the expression of mutated transcripts and used

this metric instead of a TPM together with the EL_to_IC50 to calculate AXEL-F likelihood scores. The AUC

values for AXEL-F scores that were obtained this way (AXEL-F (tumor_rna_alt_reads)) were higher than

those of both NetMHCpan predictions as well as the tumor_rna_alt_reads alone, with an AUC of 0.753 (Ta-

ble 2). The difference in AUC, however, was not significant (De-Long’s test).

TPM values from TCGA can be used to accurately estimate gene expression in a given patient

sample

As TPM values were not provided as part of the NCI dataset, we wanted to analyze whether it is possible to

estimate RNA expression levels in a given patient sample by using expression data retrieved from The Can-

cer Genome Atlas (TCGA). We downloaded precalculated TCGA TPM values, and for each cancer type

included, we calculated the median RNA expression for each gene across all samples in the corresponding

cancer-type-specific subset. We utilized in-house RNA-Seq data of 25 patients with nine different cancer

types and analyzed how well gene expression of these patients can be estimated by using the gene expres-

sion data retrieved from TCGA. For each patient from our in-house cohort, we matched the TPM from

in-house RNA-Seq with TPM values from TCGA. This was done for each cancer type separately so that

our in-house data was matched with all available cancer types from TCGA. We then analyzed how well

TCGAmedian TPM values correlate with the in-house RNA-Seq TPM values. This analysis showed that can-

cer-type-matched TPM values correlate very well (Pearson’s r2 > 0.6, Figure S7).

Having established that TPM values from TCGA can be used to estimate RNA expression in a given patient

sample, we proceeded to utilize this approach to estimate TPM values for the NCI dataset. Wematched the

cancer type and gene name for each peptide in the NCI dataset and assigned the corresponding cancer-

type-specific median TPM from TCGA. With an AUC of 0.641, this TCGA_TPM alone was almost as predic-

tive for immunogenic neoantigens as tumor_rna_alt_reads alone. When we used the TCGA_TPM together

with the EL_to_IC50 as inputs for AXEL-F, we achieved the best performance reaching AUC values of 0.754

(Table 2 and Figure S6). Of note, when we did not match the cancer types and used TPM values calculated

from the entire TCGA dataset (TCGA PANCAN), the AUC was 0.735 and thereby lower compared with

when cancer types were matched. When we furthermore mismatched cancer subtypes, the AUC dropped

Table 2. Prediction performance (AUC) of different predictors in predicting immunogenic neoantigens

Predictor NCI set Literature set

tumor_rna_alt_freq 0.593 –

tumor_rna_depth 0.586 –

tumor_rna_alt_reads 0.642 –

TCGA_TPM_subtype_matched 0.641 0.641

TCGA_TPM_pancancer 0.613 0.613

TCGA_TPM_subtype_mismatched 0.520 0.541

IC50 0.723 0.628

EL_Rank 0.729 0.614

AXEL-F (EL_to_IC50, tumor_rna_alt_reads) 0.753 —

AXEL-F (EL_to_IC50, TCGA_TPM_pancancer) 0.735 0.632

AXEL-F (EL_to_IC50,

TCGA_TPM_subtype_mismatched)

0.669 0.606

AXEL-F (EL_to_IC50,

TCGA_TPM_subtype_matched)

0.754 0.646

MHCflurry 0.779 0.639

AXEL-F (MHCflurry,

TCGA_TPM_subtype_matched)

0.799 0.659

MixMHCpred 0.659 0.645

HLAthena (TCGA_TPM_subtype_matched) 0.756 0.657

ll
OPEN ACCESS

8 iScience 25, 103850, February 18, 2022

iScience
Article



significantly to 0.669 (p value < 0.01, De-Long’s test), highlighting the potentially cancer and tissue-specific

expression patterns of neoantigen source proteins.

We also applied HLAthena to the NCI dataset together with the cancer-type-matched TCGA data, and the

tool achieved an AUC of 0.757, outperforming AXEL-F, however not significantly (De-Long’s test, Table 2).

Interestingly, MHCflurry alone already outperformed all other prediction tools, and performance was

further improved when AXEL-F was applied with MHCflurry predictions and the cancer-type-matched

TCGA data (Table 2).

To validate these results we assembled an additional dataset of neoantigens from the literature, not

considering if they were preselected based on binding or not. This dataset consisted of 222 validated neo-

antigens and 1,918 negatives (Table S7). As expression data were not provided, we again used the TCGA

expression data to assign TPM values to each peptide. As expected, prediction performance on this set

was slightly lower for all tools. Overall, the results mimicked what we observed on the NCI neoantigen

dataset.

These results underline the general applicability of our model and furthermore, its potential to predict can-

cer neoantigens accurately. Even when patient-specific expression data are not available, which often oc-

curs due to the many technical challenges of RNA-Seq, it is possible to estimate the expression of neoan-

tigen source proteins from TCGA and perform more accurate predictions.

Prediction of SARS-CoV-2 epitopes can be improved by considering the abundance of viral

proteins

The public health importance of the SARS-CoV-2 pandemic has led to the rapid generation of high-quality

datasets on the T cell epitopes targeted by infected individuals, as well as the antigen expression and

abundance associated with this virus, which makes it an ideal test case for our prediction approach. We

used the most comprehensive map available for CD4+ and CD8+ T cell epitopes that Tarke et al. (Tarke

et al., 2021) identified across the entire SARS-CoV-2 viral proteome. Tarke et al. used NetMHCpan EL pre-

dictions to select 5,600 peptides corresponding to the top 200 predicted binders for the most common 28

HLA class I (Tarke et al., 2021) alleles and ultimately discovered 523 peptide epitopes that elicited CD8+

responses. As expected (Kim et al., 2014), given that the peptides chosen for testing were based on the

EL predictions, a post-hoc evaluation of the predictive performance of NetMHCpan EL_Rank on this data-

set in discriminating epitopes from the other 5,047 peptides was low with an AUC of 0.521 (Table 3). Simi-

larly, the performance of MHCflurry and MixMHCpred was also low (Table 3).

We retrieved SARS-CoV-2 RNA expression data from another previously published study. Finkel et al. (Fin-

kel et al., 2021) transfected Vero E6 cells with SARS-CoV-2 and performed RNA-Seq 5 and 24 h posttrans-

fection. We chose to present results using data from 5 h posttransfection. Our results showed that SARS-

CoV-2 epitopes are originating from significantly higher expressed RNA transcripts than peptides that

were not recognized by CD8+ T cells (p < 2.2 3 10�16, Wilcoxon Test, Figure S8). Furthermore, TPM values

alone were predictive for epitopes with an AUC of 0.682. However, AXEL-F combining these expression

values with binding predictions did not further improve AUC (Table 3, Figure 3).

Finkel et al. (Finkel et al., 2021) also performed ribosome profiling (Ribo-Seq) of the same SARS-CoV-2

transfected Vero E6 cells. As Ribo-Seq was designed to capture ORFs that are being actively translated (In-

golia, 2014), we hypothesized that it might measure antigen abundance more accurately than RNA-Seq. In

fact, with an AUC of 0.683, TPM values derived from Ribo-Seq performed slightly better than those derived

from RNA-Seq in predicting epitopes. AXEL-F combining Ribo-Seq and binding predictions improved per-

formance to an AUC of 0.695.

Having observed the improvement from RNA-Seq to Ribo-Seq, we wanted to investigate the next step in

the translation process and obtained SARS-CoV-2 proteomic datasets to measure the abundance of viral

source proteins. We utilized data from a study by Poran et al. (Poran et al., 2020) that provided quantifica-

tion of SARS-CoV-2 proteins from three publicly available proteomic datasets. With an AUC of 0.710, this

proteomic quantification performed significantly better than TPM values derived from RNA-Seq and Ribo-

Seq (p value < 2.23 10�16, De-Long’s Test). Again, Axel-F combining proteomic quantification and binding

predictions slightly improved performance to an AUC of 0.715 (Table 3, Figure 3).

ll
OPEN ACCESS

iScience 25, 103850, February 18, 2022 9

iScience
Article



Whenwe used HLAthena and AXEL-F (MHCflurry) with RNA-Seq, Ribo-Seq, and Proteomic data, prediction

performance consistently dropped below the performance of AXEL-F and the abundance measures alone

(Table 3). On this dataset, AXEL-F significantly outperformed all other tools (p value < 1.2e-10, De-Long’s

Test).

As mentioned earlier, Tarke et al. selected all peptides based on binding predictions. To simulate a more

realistic scenario of the SARS-CoV-2 proteome, we randomly selected 1,000 peptides from the proteome

and added them to the negatives. As expected, prediction performance of EL_Rank and AXEL-F improved

(Table 3).

To validate these results, we used a second dataset of validated SARS-CoV-2 epitopes. Peng et al. tested

18-mer peptides spanning the SARS-CoV-2 proteome and identified 11 unique peptide-HLA with

confirmed CD8+ T cell responses (Peng et al., 2020). We used these 11 peptide-HLA as positives and the

remaining 18-mer peptides spanning the SARS-CoV-2 proteome together with the 36 HLA from the cohort

used in the study as negatives and assessed prediction performance using the same abundance measure-

ments as discussed earlier. As expected, all tools performed better on this set, as peptides were not pre-

selected using any prediction tools (Table 3). AXEL-F using RNA-Seq again outperformed EL_Rank alone,

and AXEL-F using Ribo-Seq and proteomics data performed slightly better. We observed similar results for

AXEL-F (MHCflurry). Surprisingly, HLAthena using proteomics data significantly outperformed all other

methods (p value = 0.02, De-Long’s Test) in this dataset (Table 3).

DISCUSSION

In this study, we used a biophysically inspired model to describe how antigen abundance and peptide-

MHC binding affinity interact to drive MHC peptide presentation. We developed our model AXEL-F based

on the hypothesis that the likelihood of a peptide being presented on HLA class I and subsequently being

recognized by CD8+ T cells is dependent on both the abundance of its source protein and its HLA binding

capacity. AXEL-F clearly improved NetMHCpan predictions for predicting neoantigens that are recognized

by T cells. We also showed that SARS-CoV-2 epitopes can be more effectively predicted when abundance

levels of virus proteins are taken into account. Epitope predictions were improved when we combined

binding predictions with RNA-Seq of SARS-CoV-2-infected cells, and predictions were even further

improved when ribosome sequencing or proteomic data were utilized to measure antigen abundance.

We showed that the expression level of source proteins alone is already a good predictor of ligand elution.

The predictive value is even more pronounced in the case of neoantigens: even though patient-specific

expression data were not available and we used publicly available cancer type matched expression data

Table 3. Prediction performance (AUC) of different predictors in predicting SARS-CoV-2 epitopes

Predictor Tarke Tarke with random Peng

TPM_RNASeq 0.682 0.703 0.766

TPM_RiboSeq 0.683 0.649 0.776

Proteomic 0.710 0.681 0.773

EL_Rank 0.521 0.606 0.808

AXEL-F (RNA-Seq) 0.663 0.722 0.866

AXEL-F (Ribo-Seq) 0.695 0.749 0.867

AXEL-F (Proteomic) 0.715 0.766 0.892

MHCflurry 0.514 0.599 0.733

AXEL-F (MHCflurry, RNA-Seq) 0.561 0.524 0.791

AXEL-F (MHCflurry, Ribo-Seq) 0.614 0.520 0.794

AXEL-F (MHCflurry, Proteomic) 0.602 0.509 0.808

HLAthena (RNA-Seq) 0.575 0.565 0.727

HLAthena (Ribo-Seq) 0.633 0.613 0.727

HLAathena (Proteomic) 0.629 0.670 0.916

MixMHCpred 0.528 0.610 0.798
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from TCGA, the predictive performance of this estimated TPM was almost on par with NetMHCpan pre-

dictions. Importantly, neoantigens included in the NCI dataset were not prefiltered based onMHC binding

or expression (Parkhurst et al., 2019), which makes it possible to accurately compare the performance of

thesemetrics. Currently, many epitope prioritization algorithms only use expression data to filter out candi-

date neoantigens that do not meet a specified gene expression threshold (Garcia-Garijo et al., 2019). Our

results indicate that the value of antigen expression levels has potentially been underestimated, and rather

than using expression as a filtering step, it might be used in combination with HLA binding predictions to

more efficiently identify neoantigens.

TPM values describe the transcript abundance of the corresponding gene normalized against the length of

the gene and the total reads available in the RNA-Seq experiment. Unfortunately, TPM values were not

available for the NCI neoantigen dataset, and we first used tumor_rna_alt_reads, i.e. the number of reads

overlapping the mutation site and confirming the mutation, to estimate RNA expression of the neoantigen.

The predictive performance of TCGA_TPM and tumor_rna_alt_reads alone was comparable, and when we

used these metrics in our model, the model using TCGA_TPM clearly outperformed the model using tu-

mor_rna_alt_reads. One reason for this might be that we trained our model using TPM values of source pro-

teins of eluted ligands, and the parameters might have been fitted differently when trained with a neoan-

tigen-specific dataset using tumor_rna_alt_reads. However, neoantigen datasets that provide expression

details are still limited, and we are unfortunately not able to further explore this approach at this point.

Another complication with using tumor_rna_alt_reads to estimate the expression of mutated transcripts

is that this metric directly counts the RNA-seq reads that support the mutation and is, in contrast to

TPM, not normalized considering the total number of mapped reads. As more datasets become available,

we will further explore how to best specifically estimate the abundance of mutated transcripts.

Due to time or financial limitations and given the many challenges of obtaining, preserving, and

sequencing RNA samples, RNA-Seq data are often not available in a clinical setting. Here, we have shown

that expression data publicly available from TCGA can be used to effectively estimate patient-specific gene

expression values. Our results also highlight the importance of considering tissue-specific expression pat-

terns. Using TPM values derived from all TCGA cancer types or from mismatched cancer subtypes for neo-

antigen prediction was less accurate than using cancer-type-matched TCGAdata. We have included TCGA

expression values for 35 different cancer types in the current implementation of AXEL-F and plan to extend

the available expression datasets to cell lines and different cell types.

Figure 3. Performance of different predictors in identifying SARS-CoV-2 epitopes

Receiver operating characteristic (ROC) curves are displayed for NetMHCpan predictions (EL_Rank), and predictions using AXEL-F combining binding

predictions with abundance measurements of viral proteins utilizing RNA-Seq, Ribo-Seq, and Proteomics.

(A and B) Tarke SARS-CoV-2 epitopes dataset; (B) Peng SARS-CoV-2 epitopes dataset.

ll
OPEN ACCESS

iScience 25, 103850, February 18, 2022 11

iScience
Article



HLA loss or downregulation is a major tumor escape mechanism that has been described in several cancer

types (Garrido and Algarra, 2001). Ourmodel could be further refined to incorporate HLA expression levels.

Our model will, however, not be able to capture the complex interaction of the microenvironment that are

known to bias antigen presentation and recognition (Murciano-Goroff et al., 2020).

Many factors during an RNA-Seq experiment can affect gene expression and thus the TPM of a specific

gene. In our model, we introduced the parameter ‘‘minTPM’’ to avoid dropping transcripts not detected

at all. This was necessary because RNA-Seq has a detection limit, so no result is ever truly ‘‘zero.’’ Also,

we are typically working with RNA-Seq data from different samples than what was used in the ligand elution

experiment. Using a minimal value for TPM will also ensure that our model always has a minimal number of

peptides to work with. This also allows our model to detect cases of high binding affinity-low TPM and vice-

versa. In such cases, the likelihood scores will be low, reflecting the biology, as peptides with strong bind-

ing affinity and high TPM will always be more likely to be presented than the cases mentioned earlier. The

optimal value we obtained for minTPM was 0.567, which implicitly states that lower measured TPM values

do not add any additional confidence that the antigen was actually not expressed. Biologically speaking,

there is no definitive TPM threshold that determines which gene is or is not expressed. Technically

speaking, however, a TPM cutoff is often utilized to select genes that are considered ‘‘significantly’’ ex-

pressed. The EMBL-EBI Expression Atlas, for example, uses a default minimum expression level of 0.5

TPM (Papatheodorou et al., 2020). This value is very close to the minTPM value that our training determined

and thus supports the biological relevance of this value.

We used a dataset of eluted ligands to train our model. Such data are generated by eluting ligands from

MHC molecules and then sequencing the eluted peptides, typically by tandem mass spectrometry (MS/

MS). Just as any quantification methods, these assays have a limit of detection, which is the lowest quantity

of a substance that can be distinguished from system noise. The limit of detection can be influenced by

several factors, such as the instrument background signal and noise, the analyte signal, and the signal-

to-noise ratio. As we used published datasets and did not perform the MS/MS assays in-house, we did

not have any of this information available, and our model does not take the limit of detection of MS/MS

into account. Accordingly, we could also not investigate whether our observation that HLA ligands origi-

nated from highly expressed transcripts were biased by the limit of detection and the sensitivity of the

MS/MS assays. It was, however, previously demonstrated in proteomic studies that MHC-peptide presen-

tation is strongly correlated with mRNA expression levels, as well as with protein abundance, length, and

half-life (Bassani-Sternberg et al., 2015; Abelin et al., 2017).

We demonstrated that the abundance of viral antigens also improved the prediction of viral epitopes in the

case of SARS-CoV-2. Interestingly, epitope predictions became most accurate when using proteomic data,

which is largely reflecting the protein content in viral particles. This could suggest that the antigen sources

of peptides driving epitope recognition are not intracellular proteins expressed in an infected cell but rather

uptake of viral particles by professional antigen-presenting cells. Although it is interesting to examine different

measures of antigen abundance, for the vast majority of applications where epitope predictions come into

play, the onlymeasure available will be RNA-Seq data. Thus, althoughwe encourage utilizing Ribo-Seq or pro-

teomic data for predicting epitopesmore accurately if available, in most practical and/or clinical settings, they

will not be, which is why we are focusing most of our study on mRNA expression.

The performance of NetMHCpan and AXEL-F was higher in the eluted ligand datasets compared with the

cancer and SARS-CoV-2 epitope datasets. As there was no dataset of ‘‘noneluted peptides’’ available, we

used random peptides that were drawn from the proteome with a ratio of 1:10 (ligand: background). As

shown in Figure 1, many of the random background peptides are not expressed or are only expressed

at low levels, and the majority of the peptides are also not predicted to bind, which makes it easier for

the classifiers to predict. In the cancer and SARS-CoV-2 epitope datasets, all peptides have been tested

for immunogenicity, so we know for each peptide if it is a ‘‘real’’ positive or negative. In the epitope data-

sets, positives are more highly expressed than negatives and are also better binders; the difference is, how-

ever, not as drastic as it was the case when comparing eluted ligands with random background peptides

(Figures 1A and S8). This makes it harder for the classifiers to distinguish positives from negatives. An

added challenge for the cancer dataset was that the provided peptides were mainly 29mer peptides

with the mutation in the center of the peptide. When performing predictions, we considered all contained

8–12mer peptides and all HLA class I alleles provided for the corresponding patient. For each 29mer
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peptide, we then assigned the best prediction scores among all its k-mer and HLA combinations. Distin-

guishing a positive long peptide from a negative long peptide is intrinsically harder than distinguishing

positive versus negative short peptides, as it is not known what the actual recognized minimal epitope

within the long peptide is. The SARS-CoV-2 peptides were preselected for testing based on the EL predic-

tions in the original study (Tarke et al., 2021). Hence, it was expected that a post-hoc evaluation of the pre-

dictive performance in detecting epitopes is systematically lower.

How the interplay between source antigen abundance and peptide-MCH binding can be utilized to more

efficiently predict epitopes for other viruses remains to be further investigated. During infection, viruses

hijack host cells to express genes necessary for virus propagation. Which genes are expressed and at

what level depends on several factors (Cohen and Kobiler, 2016). The kinetics of the viral infection play

an important role, as different genes are expressed during different stages of the viral infection (Assarsson

et al., 2008), and importantly, many viruses subvert the MHC processing and presentation pathway at later

stages of the infection. Hence, to include source antigen expression data for viral epitope prediction, it

would be necessary to know the kinetic class of the antigen of interest. The genes in each kinetic class, how-

ever, are different for each viral family and are not well known for many viruses. In addition, viral gene

expression varies significantly among genetically identical cells, and the source of these variations is still

not well understood (Cohen and Kobiler, 2016; Cheng et al., 2017).

AXEL-F combining NetMHCpan HLA binding predictions and RNA expression, i.e. AXEL-F (IC50), outper-

formed binding predictions alone in discriminating eluted ligands from random background peptides in all

tested ligand elution and epitope datasets. We observed similar results when we combined MHCflurry af-

finity predictions and RNA expression, highlighting the general benefit of integrating antigen abundance

for different HLA binding prediction tools. We furthermore wanted to improve NetMHCpan EL predictions

by combining them with antigen abundance measures. EL predictors are trained with eluted ligand data

and were proven to perform better than affinity predictors that are usually trained on HLA-peptide binding

data. AXEL-F (EL_to_IC50) outperformed NetMHCpan EL_Rank alone in all tested epitope sets and in two

of the four tested ligand elution datasets. For the two ligand elution sets Pyke Cell Line and Pyke Tissue,

AXEL-F did not improve EL_Rank predictions, and AXEL-F improved MHCflurry predictions only in the

Pyke Tissue set and not in the Pyke Cell Line set. More peptidomics datasets from both cell lines and tissue

samples, ideally together with matched expression data, will be necessary to further validate and investi-

gate the effect of integrating antigen abundance to better predict eluted ligands.

There have been other publications of epitope prediction tools that consider RNA expression levels and

that showed significant improvements in predicting eluted ligands and neoantigens (Sarkizova et al.,

2020; Bulik-Sullivan et al., 2018). Those tools, however, use complex machine learning methods that do

not reveal how antigen abundance impacts ligand presentation or epitope recognition. AXEL-F, in

contrast, only includes two features, HLA binding and antigen abundance. In this study, we also analyzed

the performance of HLAthena, a publicly available tool that combines HLA binding prediction and RNA

expression levels. Sarkizova et al. used a large dataset of ligands eluted from mono-allelic cells to train

a neural network predictor (Sarkizova et al., 2020). The final model includes several features, including

HLA binding, transcript expression, peptide cleavability, and gene presentation bias. The performance

of AXEL-F and HLAthena was mostly comparable, with AXEL-F outperforming HLAthena on the eluted

ligand datasets and the Tarke SARS-CoV-2 epitope dataset using RNA-Seq, Ribo-Seq, and Proteomic

data. In contrast, HLAthena outperformed AXEL-F on the neoantigen datasets and the Peng SARS-CoV-

2 epitope dataset using Proteomic data, whereas performance was lower when using RNA-Seq or Ribo-

Seq on this dataset. More datasets will be necessary to further evaluate these findings.

Finally, we did not address the prediction of MHC class II-restricted epitopes presented to CD4+ T cells,

which play an important role in autoimmunity and antitumor immunity. Although MHC class I binding pep-

tides are mainly derived from endogenous proteins, peptides bindingMHC class II are mainly derived from

extracellular proteins. Our model needs to be adjusted to describe the MHC class II antigen presentation

pathway, and the cellular location of the source antigen might be one variable to consider. Unfortunately,

the quality of eluted ligands fromMHC class II is still lacking as ligand elution experiments fromMHC class II

are more complex when compared with MHC class I. Due to the open binding groove of MHC class II, li-

gands are variable in length, and it is challenging to deconvolute multiallelic ligand data. Recently, more

computational methods to accurately deconvolute multiallelic ligand data are becoming available (Racle
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et al., 2019; Alvarez et al., 2019; Reynisson et al., 2020a; 2020b) and also more ligands eluted from mono-

allelic cell lines are being published. We will take advantage of these experimental and computational ad-

vances to retrieve quality datasets that we can use to train a model for MHC class II presentation.

Taken together, we have, to our knowledge, for the first time developed a biophysically motivated model

to combine peptide-MHC binding and abundance of the peptide’s source protein and showed that RNA-

Seq, as well as Ribo-Seq and proteomics data, can be used to measure antigen abundance and improve

epitope predictions. AXEL-F is freely available and should be useful for predicting and selecting epitopes

more efficiently.

Limitations of the study

Our model does not take the limit of detection of MS/MS into account, and we could not investigate

whether our observation that HLA ligands originated from highly expressed transcripts were biased by

the limit of detection and the sensitivity of the MS/MS assays.

We utilized the interplay between source antigen abundance and peptide-MCH binding tomore efficiently

predict eluted ligands, neoantigens, and epitopes from SARS-CoV-2; we did, however, not investigate any

other viruses. We did also not address the prediction of MHC-class II-restricted epitopes presented to

CD4+ T cells
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dr. Bjoern Peters

(bpeters@lji.org).

Materials availability

This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Trolle Ligand Dataset IEDB (Vita et al., 2019) http://www.iedb.org/subID/1000685

HeLa RNA-Seq GEO GSM3899456

Abelin Ligand Dataset Abelin et al. (Abelin et al., 2017) Table S1

Abelin RNA-Seq GEO GSE93315

Pyke Ligand and Neoantigen Datasets Pyke et al. (Pyke et al., 2021) Tables S1 and S5

K562 RNA-Seq Cancer Cell

Line Encyclopedia

(Ghandi et al., 2019)

CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz

https://depmap.org/portal/download/api/download?

file_name=ccle%2Fccle_2019%2FCCLE_RNAseq_rsem_

genes_tpm_20180929.txt.gz&bucket=depmap-external-

downloads

TCGA PANCAN RNA-Seq Dataset TCGA https://tcga-pancan-atlas-hub.s3.us-east-1.

amazonaws.com/download/EB%2B%2BAdjustPANCAN_

IlluminaHiSeq_RNASeqV2.geneExp.xena.gz

NCI Dataset of Neoantigens Parkhurst et al.

(Parkhurst et al., 2019)

Table S3

Literature Dataset of Neoantigens IEDB (Vita et al., 2019;

Kosaloglu-Yalcin et al., 2021)

using the following filters: Epitope Structure:

Linear Sequence, Included Related Structures:

Only neoepitopes, Include Positive Assays, Include

Negative Assays, No B cell assays, No MHC

assays, MHC Restriction Type: Class I, Host:

Homo sapiens (human), Organism: Homo

sapiens (human) (ID:9606, human)

Tarke Dataset of SARS-CoV-2 Epitopes Tarke et al. (Tarke et al., 2021) Table S5

Peng Dataset of SARS-CoV-2 Epitopes Peng et al. (Peng et al., 2020) Table S2

SARS-CoV-2 Proteome UniProt UP000464024

SARS-CoV-2 RNA-Seq and Ribo-Seq data GEO GSE149973

SARS-CoV-2 Proteomic Dataset Poran et al. (Poran et al., 2020) Table S10

Software and algorithms

NetMHCpan 4.1 Reynisson et al. (Reynisson et al., 2020b) http://tools.iedb.org/mhci/

IEDB Vita et al. (Vita et al., 2019) http://tools.iedb.org/mhci/

MHCFlurry O’Donnell et al.

(O’Donnell et al., 2020)

https://openvax.github.io/mhcflurry/intro.html

MixMHCPred Gfeller et al. (Gfeller et al., 2018) https://github.com/GfellerLab/MixMHCpred

HLAathena Sarkizova et al. (Sarkizova et al., 2020) http://hlathena.tools

R R https://www.r-project.org

Python Python https://www.python.org
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Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table. This paper does not report original code. The formula to integrate antigen abun-

dance estimates with binding predictions from any tool is described in STAR Methods. An implementation

of AXEL-F integrating NetMHCpan 4.1 predictions with antigen abundance estimates is freely available un-

der http://axelf-beta.iedb.org/axelf. Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.

METHOD DETAILS

Training dataset of eluted ligands

For our initial analysis and as the training set for model development, we used a previously published data-

set of 15,090 HLA class I ligands eluted from five different HLA class I alleles: HLA-A*01:01, HLA-A*02:01,

HLA-A*24:02, HLA-B*07:02, and HLA-B*51:01 (Trolle et al., 2016). We downloaded this dataset from the

IEDB under the accession number 1000685 (http://www.iedb.org/subID/1000685). The length of the li-

gands in this set ranged from 8 to 14 residues. Eluted ligands were retrieved from 4,831 different source

proteins for which UniProt identifiers were also provided.

As expression data was not included in the Trolle study, we retrieved expression data of HeLa cells from

another previously published study (Cantarella et al., 2019). We downloaded raw read data from the

Gene Expression Omnibus database under accession number GEO: GSM3899456 and used an in-house

pipeline to process the raw RNA-Seq data and calculate gene expression as transcripts per million (TPM).

Validation dataset of eluted ligands

We retrieved a second dataset of eluted ligands to validate our findings (Abelin et al., 2017). The dataset

was provided as Supplementary tables and contained 26,089 eluted ligands from 16 HLA class alleles: HLA-

A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:04, HLA-A*02:07, HLA-A*03:01, HLA-A*24:02, HLA-

A*29:02, HLA-A*31:01, HLA-A*68:02, HLA-B*35:01, HLA-B*44:02, HLA-B*44:03, HLA-B*51:01, HLA-

B*54:01, and HLA-B*57:01. Abelin et al. also performed RNA-Seq and provided the data in the form of

TPM values from four cell lines (GSE93315). We averaged TPM values from those four cell lines.

We obtained two additional datasets from a recently published study (Pyke et al., 2021). Pyke et al. used

mono-allelic cell lines to elute ligands from 25 different HLA. As no expression data was provided for these

cell lines, we obtained pre-calculated TPM values for the corresponding cell line K562 from the Cancer Cell

Line Encyclopedia (Ghandi et al., 2019). Pyke et al. also eluted ligands from 12 tissue samples of colorectal

and lung cancer patients. As it was not indicated which tissue sample corresponded to which cancer type,

we used the TCGA pan-cancer expression dataset to estimate antigen abundance in this set. When per-

forming predictions, for each peptide, predictions were performed for all 6 HLA class I of the correspond-

ing patient and the best prediction was selected for the peptide.

Background data generation

To compare the set of eluted ligands against, we sampled sets of random background peptides from the

human proteome. It is common practice to utilize such decoy ligands/epitopes with unknown recognition

status and expression level to test the performance of models in detecting ligands/epitopes (Bulik-Sullivan

et al., 2018; Chen et al., 2019; Racle et al., 2019; Sarkizova et al., 2020). For each peptide in the training or

validation dataset, 10 peptides were randomly picked from the human proteome. The lengths of the

random peptides and the assignment of HLA class I alleles were chosen in a way that the total number

of background peptides was uniformly distributed across all alleles and peptide lengths.

For the 15,090 ligands in the Trolle dataset, a total of 15,090 * 10 = 150,900 random background peptides

needed to be generated. To be uniformly distributed over the 7 length options 8-14, 150,900 / 7 = 21,557

peptides of each length were generated. To be uniformly distributed over the 5 alleles, 150,900 / 5 = 30,180

peptides were assigned to each allele. As a result, for each length:allele combination, 150,900 / 7 / 5 = 4,312

random background peptides were generated. While picking random peptides, we ensured that no known

ligands were selected. The same procedure was applied to generated random background peptides for

the Abelin dataset.
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Dataset of validated immunogenic neoantigens

We used data from a previously published study by Parkhurst et al. (Parkhurst et al., 2019) that reported

immunogenicity screening results of neoantigens from 75 patients with various gastrointestinal cancers.

The group performed whole-exome sequencing to detect somatic mutations, transfected autologous den-

dritic cells with tandem minigenes encoding these mutations, and determined which neoantigens were

recognized by tumor-infiltrating-lymphocyte cultures (Parkhurst et al., 2019). The results were provided

as a supplemental table to the study, listing all tested neoantigens and corresponding screening results

(CD4+ and/or CD8+ or negative, (Supplementary Table S3 in original publication (Parkhurst et al., 2019)).

The peptides provided in this dataset were mainly 29mer peptides with the mutated residue located in the

center of the peptide. When performing predictions, we considered all contained 8-14mer peptides and all

HLA class I alleles provided for the corresponding patient. For each peptide, we then assigned the best

prediction scores among all its k-mer and HLA combinations.

We retrieved an additional set of validated neoantigens from the literature using the IEDB (Kosaloglu-Yal-

cin et al., 2021; Vita et al., 2019). We queried the database in July 2021 using the following filters: Epitope

Structure: Linear Sequence, Included Related Structures: Only neoepitopes, Include Positive Assays,

Include Negative Assays, No B cell assays, No MHC assays, MHC Restriction Type: Class I, Host: Homo sa-

piens (human), Organism: Homo sapiens (human) (ID:9606, human). After downloading the results, we only

retained peptides for which the cancer type and the HLA restriction was known. This dataset is provided as

Supplementary Table S7.

TCGA expression data analysis

We downloaded pre-calculated TPM values for the TCGA Pan-cancer cohort from UCSC Xena data pages

(Goldman et al., 2020). For each of the 35 cancer types included, we calculated the median expression for

each gene across all samples. We utilized in-house RNA-Seq data of 25 patients with 9 different cancer to

analyze how well patient-specific gene expression can be estimated by using the gene expression data ob-

tained from TCGA. For each patient from our in-house cohort, we matched the TPM from in-house RNA-

Seq with the calculated cancer type-specific median TPM values from TCGA. We then analyzed, how well

TCGA median TPM values correlated with patient-specific TPM values.

Dataset of validated SARS-CoV-2 CD8+ epitopes

We used data from a previously published study by Tarke et al. (Tarke et al., 2021) that reported a compre-

hensive map of epitopes recognized by CD4+ and CD8+ T cell responses across the entire SARS-CoV-2 viral

proteome. Tarke et al. used NetMHCpan to predict binding for the most common 28 HLA class I and syn-

thesized the top 200 predicted binders for each allele for experimental validation. As a result, the group

reported 523 HLA class I epitopes that elicited CD8+ responses (Table S5 in original publication). We

retrieved the list of 523 epitopes (Table S8 in the original publication) to be used as an additional validation

dataset. This dataset is provided in Table S7.

As a second dataset, we used data from another previously published study (Peng et al., 2020). Peng et al.

tested 18-mer peptides spanning the SARS-CoV-2 proteome and identified 11 unique peptide-HLA with

confirmed CD8+ T cell responses (Supplementary Table S2 in original publication). We used these 11 pep-

tide-HLA as positives and the remaining 18-mer peptides spanning the SARS-CoV-2 proteome together

with the 36 HLA from the cohort used in the study as negatives. We downloaded the SARS-CoV-2 proteome

(UniProt: UP000464024) from the UniProt database (UniProt, 2019; Wu et al., 2020) and generated all over-

lapping 18-mer peptides. When performing predictions, we considered all contained 8-14mer peptides

and all 36 HLA class I alleles provided for the cohort. For each 18-mer peptide we then assigned the

best prediction score among all its k-mer and HLA combinations.

SARS-CoV-2 antigen abundance datasets

We retrieved SARS-CoV-2 expression data from another previously published study. Finkel et al. (Finkel

et al., 2021) transfected Vero E6 cells with SARS-CoV-2 and performed RNA-Seq as well as ribosome

profiling (Ribo-Seq). Ribo-seq libraries were prepared from cells treated with the translation elongation in-

hibitor cycloheximide (CHX) and provide a snapshot of actively translating ribosomes across the body of

the translated viral ORFs. We downloaded raw read data from the Gene Expression Omnibus database
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under accession number GEO: GSE149973 and used an in-house pipeline to process the raw RNA-Seq and

Ribo-Seq data and calculate gene expression as transcripts per million (TPM). The genomic sequence of

SARS-CoV-2 (RefSeq: NC_045512.2) was used as the reference.

In addition to RNA-Seq and Ribo-Seq, we additionally wanted to evaluate SARS-CoV-2 proteomic datasets

to measure the abundance of viral antigens. Poran et al. (Poran et al., 2020), obtained three publicly avail-

able proteomic datasets (Bezstarosti et al., 2020; Bojkova et al., 2020; Davidson et al., 2020) and used a

custom pipeline to re-analyze the datasets. Datasets were searched against the SARS-CoV-2 proteome

and peptide-spectrum matches (PSMs) for SARS-CoV-2 proteins were provided (Table S10 in original pub-

lication). We used the ’PSMs / Length – Relative’ value provided in that table as a measure for SARS-CoV-2

antigen abundance.

HLA class I binding predictions

NetMHCpan version 4.1 as hosted on the IEDB Analysis Resource (IEDB-AR) was used to perform binding

predictions (Dhanda et al., 2019; Jurtz et al., 2017). We also used MHCFlurry 2.0 (O’Donnell et al., 2020),

MixMHCpred 2.0 (Bassani-Sternberg et al., 2017; Gfeller et al., 2018) and HLAthena (Sarkizova et al.,

2020) to perform predictions.

Model development using the Boltzmann formalism

We developed a model to capture the effect of quantitative expression differences and combine themwith

peptide-HLA binding using the Boltzmann distribution, which is often used to describe biophysical systems

(Moore, 1972). The Boltzmann distribution is a probability distribution that predicts, in an ensemble of par-

ticles, the proportion of particles that will be in a certain state with a specific energy (Sevcik, 2017). This

function can be adapted to describe peptide presentation, as we want to detect, among all available pep-

tides, the ones that are in a state bound to HLA with a specific binding free energy. We adapted the Boltz-

mann formalism by empirically adding parameters to describe peptide presentation.

In this context, the number of all available peptides of a certain species was considered proportional to the

RNA expression values of its source protein (TPM), and the binding free energy can be inferred from bind-

ing affinities (IC50). Combining these considerations with the Boltzmann distribution function yields:

#peptides = a � TPM � e�logðIC50Þ=kT

Where a is a scaling factor for TPM and kT is a scale that mimics the product of the Boltzmann’s constant k

and the thermodynamic temperature T, as adapted from the original Boltzmann distribution function. To

account for the detection limit of RNA-Seq, we additionally introduced a parameter minTPM and modified

the function to select for the higher value between minTPM and the input TPM value:

#peptides = a �maxðminTPM; TPMÞ � e�logðIC50Þ=kT

This function will estimate the number of peptides for a given species that are bound to MHC. We want to

know the likelihood of finding at least one of these peptides when performing a mass spectrometry exper-

iment and/or when a T cell scans a cell:

P
�
p> 0

�� #peptides
�
= 1� e� #peptides

Our final model estimates, for a given peptide with IC50 and TPM value, its likelihood of being presented

on HLA and being an epitope. We named this model AXEL-F, standing for Antigen eXpression based

Epitope Likelihood-Function.

Transforming EL_Rank to IC50 values

EL_Score and EL_Rank are output values of the neural networks the NetMHCpanmethod consists of. These

values are abstract and cannot be directly used in the biological context of our model like IC50. We there-

fore translated the EL_Rank values to IC50 values by comparing the percentile ranks of the two metrics in

the Trolle dataset. To do so, we first calculated the global percentile rank of each IC50 value within the

Trolle set. We then defined an interpolation function that maps each of these percentile ranks to the cor-

responding IC50 value. This interpolation function was then used to map each EL_Rank to IC50 values to

obtain our newmetric EL_to_IC50. The same interpolation function based in the Trolle dataset was used to
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calculate AXEL-F scores for the validation datasets Abelin and NCI and the function is implemented as part

of the AXEL-F method.

Performance evaluation

We used AUCs as well as partial AUCs (pAUC) to measure performance. We calculated pAUC at false pos-

itive rate (FPR) of 10% as this would be considered an acceptable FPRs in subsequent experimental valida-

tions of predicted peptides. The R package pROC was used for performing ROC analysis and calculating

AUC and pAUC values, packages plotROC and ggplot 2 were used to plot ROC curves. DeLong’s test was

used to compare ROC curves (DeLong et al., 1988).

Model training

We used the R function optim that implements an optimization method based on Nelder–Mead (Nelder

and Mead, 1965). The parameters a, minTPM, and kT were fitted concurrently to maximize the AUC value

for predicting eluted ligands in the Trolle dataset. To avoid overfitting, we performed 5-fold-cross-valida-

tion: the dataset was split randomly into 5 parts using R package caret, the optimization was performed for

all parameters concurrently on 4/5 of the data and tested on the remaining 1/5 of the data by calculating

AUC. This was done 10 times and the median of the fitted parameters was used for a, minTPM, and kT.

The parameters obtained in this way fell into a consistent range between the five subsets corresponding to

the five alleles in the Trolle set (Table S3).

Visualizations

All figures in the results and supplemental sections were generated using R and Python software. The

graphical abstract was created using BioRender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

R software was used to perform data and statistical analyses. Statistical details are provided in the respec-

tive figure legends. Statistical analyses were performed using Wilcoxon tests and DeLong’s tests for

comparing ROC curves. Details pertaining to significance are also noted in the respective figure legends.
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