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Prediction of perovskite oxygen vacancies
for oxygen electrocatalysis at different
temperatures

Zhiheng Li 1,2,3,10, Xin Mao4,10, Desheng Feng1,10, Mengran Li 5 ,
Xiaoyong Xu 1,6 , Yadan Luo 7 , Linzhou Zhuang8, Rijia Lin1, Tianjiu Zhu1,
Fengli Liang1, Zi Huang 7, Dong Liu3, Zifeng Yan3, Aijun Du4,
Zongping Shao 9 & Zhonghua Zhu 1

Efficient catalysts are imperative to accelerate the slow oxygen reaction
kinetics for the development of emerging electrochemical energy systems
ranging from room-temperature alkaline water electrolysis to high-
temperature ceramic fuel cells. In this work, we reveal the role of cationic
inductive interactions in predetermining the oxygen vacancy concentrations
of 235 cobalt-based and 200 iron-based perovskite catalysts at different tem-
peratures, and this trend can be well predicted from machine learning tech-
niques based on the cationic lattice environment, requiring no heavy
computational and experimental inputs. Our results further show that the
catalytic activity of the perovskites is strongly correlated with their oxygen
vacancy concentration and operating temperatures. We then provide a
machine learning-guided route for developing oxygen electrocatalysts sui-
table for operation at different temperatures with time efficiency and good
prediction accuracy.

Oxygen electrocatalysis predetermines the efficiency of the emerging
electrochemical energy storage and conversion processes involving
either oxygen reduction reaction (ORR) or oxygen evolution reaction
(OER) over electrodes, such asmetal-air batteries1, electrolyzers2,3, and
fuel cells4, These energy technologies are designed to be operated at
different temperatures ranging from room temperature for polymer
exchangemembrane fuel cells5, alkaline water electrolysis6, andmetal-
air batteries1 up to 1000 °C for solid oxide fuel cells and electrolysis
cells7–9. Therefore, matching the oxygen electrocatalyst design to their

targeted operating temperatures is imperative for the development of
efficient and robust electrochemical energy systems at a scale.

Perovskite oxides with a general formula of ABO3 are a versatile
category of functional materials that have been extensively exploited
as electrocatalysts for oxygen activation at a wide range of tempera-
tures towards application in various energy conversion and storage
devices10–13. The promise of these materials is closely related to the
high flexibility of compositional cations at A- andB-sites, leading to the
discovery of a wide range of material candidates for oxygen electro-
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catalysts operating at different temperatures in the past decades14–17.
However, such flexible composition poses a challenge to the
experiment-based catalystmaterial screening process, which is usually
time-consuming and labor-intensive.

More recently, new strategies, such as machine learning and
theory-based descriptors, have attracted considerable research atten-
tion for the rational development of materials, which has the potential
to increase screening efficiency greatly18–22. Due to different reaction
mechanisms, the performance of an electrocatalyst could vary vastly at
different temperatures. For example, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)
was demonstrated to be a benchmark electrocatalyst for ORR at
intermediate temperatures (600−800 °C), while it becomes an OER-
active but ORR-poor electrocatalyst at room temperature in alkaline
solution8,23,24. Nonetheless, the recently reported descriptors are only
limited to a certain temperature or a narrow temperature range, which
remains ineffective in predicting material behaviors at different tem-
peratures. As such, the development of a universal method is in great
demand but remains limited to enable the rational design of catalyst
materials suiting a wide temperature range.

Previous findings have shown that the lattice oxygen (or oxygen
vacancy) in the perovskite bulk can participate in the oxygen electro-
catalysis process even at roomtemperature25, and suchbulkproperties
play a significant role in oxygen electrocatalysis at elevated tempera-
tures. The formationof oxygen vacancies is closely related to the states
of the redox-active transition metals at the B-site. Prior efforts,
including ours8,12,20,26, have shown that the cations at A-sites and
dopants at B-sites can influence the states of these redox-active tran-
sitionmetals27, and thus determine the oxygen vacancy concentration.
Such cation-cation interactions can be interpreted as inductive effects
as proposed by Noll28 in 1963. By taking the inductive effects into
account, we posit that the lattice cationic environment should have an
inverse impact on the states of the catalytically active cations (e.g.,
cobalt and iron), and consequently, determine the formation of oxy-
gen vacancies and oxygen activation kinetics. Hence, opportunities
should exist to predict the oxygen vacancy concentration at different
temperatures by determining the states of their lattice cationic envir-
onment constituted by the B-site dopants and A-site cations.

In this work, we applymachine learning techniques to explore the
relationship between the lattice cationic environment and the con-
centration of oxygen vacancies at a wide range of temperatures. Our
results show that the temperature-dependent concentration of the
oxygen vacancies of cobalt-based or iron-based perovskites can be
easily predicted from the well-established element properties, with no
requirement for heavy computational cost. The oxygen electro-
catalytic activity of perovskite metal oxides presents a “volcano”
dependence on the concentration of oxygen vacancies, where the
optimal oxygen vacancy concentration for electrocatalysis varies with
the operating temperatures. We then used this machine learning-
based strategy to develop new perovskite materials for low-
temperature solid oxide fuel cells (SOFCs). Lowering the operating
temperatures (e.g., ≤ 500 °C) is meaningful to address the challenge
faced by existing high-temperature SOFC technologies, such as ther-
mal cycling stability, sealing, and sluggish start-up/shut-down
procedures29. Combining machine learning prediction with oxygen
vacancy-activity relations, this work provides an alternative route to
efficiently predict perovskite materials for electrocatalysis operated
under a wide temperature range.

Results
Predicting oxygen vacancy concentration in perovskite oxides
at a wide temperature range
Figure 1a presents the overall workflow applied in predicting the
concentration of oxygen vacancies within the perovskite metal oxides
via machine learning. The oxygen non-stoichiometry (denoted as δ)
quantifies the concentration of the oxygen vacancies and thus serves

as the targeted property for the model. We have included seven
inputted features to feed the machine-learning models. Six of the
features, reflecting the intrinsic properties of cations at A-sites and
dopants at B-sites, are used tomap theproperties of the lattice cationic
environment of perovskites, including tolerance factor (τ), electro-
negativity (χ), polarization power (P), charge (Z), and cation sizes for
A-site (rA) and B-site cations (rB)

14,30–32. All these features can be
obtained from the database established by Shannon33, Pauling34, and
Matar35, and their values are weighted by the stoichiometries of the
corresponding cations (see Supplementary Note 1). We also chose the
operating temperature as another input to allow the prediction of the
equilibrium concentration of oxygen vacancies within the oxide lattice
at different temperatures.

To train and validate themodels, we collected reported data from
235 cobalt-based ( > 3000 data points) and 200 iron-based perovskite
oxides ( > 2500 data points) datasets. The collected data can represent
the state-of-the-art perovskite oxides, and all these samples are in
perovskite structures with disordered oxygen vacancies. The machine
learning models randomly selected 80 % of the collected data for
training and the rest 20 % samples for the test. 36 different algorithms
were first implemented to fit the training data and were ranked based
on the averaged coefficient of determination (R2 score) from five
random tests. Detailed ranking of these models is listed in Supple-
mentary Fig. S1. We then selected one of the best-performing algo-
rithms (i.e., the one exhibiting the highest R2 score), the LGBM
regressor, as the model to predict the oxygen vacancies in our study.

Figure 1b and Fig. 1c present an excellent correlation between the
predicted and reported oxygen vacancy concentrations for both
cobalt- and iron-based perovskite oxides, which is evidenced by the
close-to-unity slope of the trendline, high R2 value (0.92 for cobalt-
based and 0.92 for iron-based materials) (Supplementary Fig. S1a) as
well as a low value of Root Mean Square Error (RMSE = 0.044), which
refers to the average magnitude of the difference between predicted
and actual values (Supplementary Fig. S1b). Interestingly, other
regression algorithms, such as the Hist-Gradient-Boosting regressor,
Random Forest Regressor and XGB-regressor (Supplementary
Fig. S1a), can also achieve a good prediction (R2 > 0.90, RMSE <0.05).
These good predictions confirm that the lattice cationic environment
plays a vital role in predetermining the concentration of oxygen
vacancies at a wide temperature range, even though they are not
directly involved in the formation of oxygen vacancies. Note that Co-
and Fe-based oxides are mainly explored in this work because of their
large dataset size, and other active metal-containing perovskites
should also show similar prediction trend if sufficient data are avail-
able. The ML model in this work is thus limited in predicting the oxy-
gen vacancies for other transition metals (e.g., Cr, Mn) containing
perovskites.

To further elucidate the role of the lattice cationic environment in
the oxygen vacancy formation, we evaluated the correlation of each
inputted feature with the oxygen vacancies by using partial depen-
dence analysis from the LGBM regressor (Supplementary Fig. S2) and
Shapley Additive Explanations (SHAP) feature importance analysis
(Supplementary Fig. S3). The results reveal that the creation of the
oxygen vacancies is more dependent on the electronegativity, polar-
ization power, charge, and temperature than the tolerance factor,
A-site cation and B-site dopant sizes for cobalt-based perovskites.
More importantly, the identified correlation from the analyzes mat-
ches well with previously reported strategies effective for the creation
of oxygen vacancies. For example, the oxygen vacancies can be cre-
ated if the temperature increases36 or if the lattice cationic environ-
ment shows a low charge37,38, high polarization power14, low
electronegativity39, and large A-site or B-site cations40. In the following
section, we applied density functional theory (DFT) to explain how the
lattice cationic environment predetermines the formation of oxygen
vacancies.
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Elucidating the role of the lattice cationic environment on oxy-
gen vacancy formation
In most of the perovskite oxides, the oxygen vacancies are usually
created close to the redox-active elements such as cobalt41, iron42,
chromium43, and copper44. The lattice cationic environment should
determine the concentration of oxygen vacancies by affecting the
states of the active metal centers. To further probe the impacts of the
lattice cationic environment on the state of the active metal centers,
we performed DFT calculations over three cobalt-based perovskite
models with different lattice cationic environments: LaCoO3,
SrNb0.2Co0.8O3, and SrCoO3. The simulation results shown in Supple-
mentary Fig. S4 reveal a delocalization of the electrons at the cobalt
centers for all three models. We also confirmed this delocalized fash-
ion of electron distribution from the results obtained through Good-
enough’s approach45 (Supplementary Fig. S5). Both results imply that
the cobalt state in the lattice is a collective property, which can be
profoundly influenced by the surrounding lattice cationic
environment.

The interactions between the active metal centers and the lattice
environment originate from the orbital overlaps (e.g., p-d and d-d
orbitals) between cation and oxygen ions. Taking the three studied
models as an example, if the lattice cationic environment is weak in
attracting electrons (e.g., Sr2+ c.f. La3+ as A-site host orNb5+ atB-site), the
cobalt tends to share electrons with the oxygen ions, leading to a high
cobalt-oxygen covalency and thereby an easy charge transfer from
oxygen to the cobalt to create oxygen vacancy (see Eq. (1)). This trend
is consistent with our simulation results as shown in Supplementary
Fig. S4d: oxygen vacancy is more easily created, as evidenced from the
upshift of oxygen p-band center to the Fermi level, in the order of
LaCoO3-δ < SrNb0.2Co0.8O3-δ < SrCoO3-δ. The strong interaction

between the active metal centers and lattice cationic environment
could be the main reason to enable us to predict the concentration of
oxygen vacancies of the perovskite oxides at different temperatures.

2Co×
Co +O

×
O ! 2Co0Co +V

00
O +

1
2
O2 ð1Þ

where Co×
Co is a cobalt cation at the lattice site with a neutral charge,

Co0Co is a cobalt ion at a lattice site with one negative charge, O×
O is

oxygen ion at lattice with a neutral charge, V 00
O is oxygen vacancy with

two positive charges, and O2 is molecular oxygen.

The correlation between oxygen vacancy and activity for per-
ovskite electrocatalysis
It iswell known at elevated temperatures, the oxygen vacancies usually
directly participate in the catalysis, so the concentration of oxygen
vacancies serves as an important factor in predetermining the catalyst
activity. In addition to the elevated temperature oxygen electro-
catalysis, oxygen vacancies may also play an important role in room
temperature oxygen electrocatalysis. Actually, many researches have
demonstrated the lattice oxygen participation in room-temperature
electrocatalytic water oxidation46–48. Based on the literature results, as
shown in Supplementary Fig. S6, we found that the intrinsic activity of
the state-of-the-art perovskite oxides for water oxidation showed a
volcano trend as a function of the oxygen vacancies. This observed
trend strongly supports the direct participation of the lattice oxygen in
the OER, even at room temperature.

With the increase in operating temperature, an enhanced role of
oxygen vacancies in the electrocatalytic process is expected. Here, we
chose cobalt-based perovskites as the model catalyst to illustrate the
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dominant contribution of oxygen vacancies to the oxygen-reduction
catalytic activity at elevated temperatures. The catalytic activities of
the perovskite materials are commonly evaluated at the symmetrical
cells, as illustrated in Fig. 2a, where the targeted materials are depos-
ited on both sides of dense electrolyte disks, such as gadolinium-
doped ceria (GDC). The activity is described by the area-specific
polarization resistance (ASPR) determined from the Nyquist plot
shown in Fig. 2a. A low ASPR value indicates a high ORR activity.

As compared to room temperature electrocatalysis, the elevated
temperature electrocatalysis is more complicated, because the elec-
trocatalyst should be fabricated into porous electrodes. The measured
ASPR value for elevated temperature electrocatalysis is not only a result
of the material’s intrinsic activity but also affected by the electrode
microstructures, the electrode-electrolyte interface, and the operating
conditions (e.g., temperatures and oxygen partial pressures). Conse-
quently, the reported ASPR values of the same electrodematerial could
vary vastly when tested by different research groups (see examples in
Supplementary Fig. S7), similar to the results obtained from Jacobs et
al49. Such large variations make it challenging to directly compare the
reported activity in the literature. Therefore, instead of comparing
reported activity from other labs, we synthesized 19 cobalt-based
perovskite oxides and tested theirORR activity on the symmetrical cells
following the same protocol, so as to study the intrinsic activity of the
materials. The samples for the test include 12 reported perovskite
oxides8,12,15,39,50–57 and 7 new oxides, including SrCo0.8V0.2O3-δ,
SrCo0.8TaxV0.2-xO3-δ (x =0.1 and 0.175), LaySr1-yTa0.15V0.05Co0.8O3-δ

(y =0.10, 0.20 and 0. 50), and (La0.2Sr0.8)0.95Ta0.15V0.05Co0.8O3-δ. The
X-ray diffraction (XRD) analysis show that our perovskite oxides are

mainly in Pm�3m cubic structure, with lattice parameters similar to
those of reported perovskites (Supplementary Fig. S8 and Table S1).
The fabricated cathodes for the symmetrical cells are in similar cathode
microstructures (Supplementary Fig. S9 and Fig. S10).

Figure 2b, c show the trend of the ASPR values of the model
materials as a function of the predicted and tested concentration of
oxygen vacancies, respectively. The measured oxygen vacancies are
linearly correlated with the predicted ones (Supplementary Fig. S11).
We experimentally determined the concentration of oxygen vacancies
via a typical chemical titration method for oxygen vacancy estimation
at room temperature cases and thermogravimetric analysis for dif-
ferent temperatures (Supplementary Fig. S12). The temperature-
programmed desorption mass spectrometry (TPD-MS) shows no
peak relevant to CO2 or water at temperatures above 300 °C (Sup-
plementary Fig. S13), illustrating that the oxygen vacancy formation is
the main result of the mass loss. The results are consistent with those
obtained byusingCo-K edgeX-ray absorption near-edge spectroscopy
(XANES) method (Supplementary Fig. S14). The results unveil a strong
volcano correlation, where the catalytic activity varies with the con-
centration of oxygen vacancies to a degree of over three orders of
magnitude. Such a trend implies the dominant role of the oxygen
vacancies in predetermining the oxygen reduction activity.

Although the electron conductivity is also a prerequisite for the
cathode for current collection, it seems not the dominating factor for
the ORR activity as compared to the concentration of the oxygen
vacancies (Supplementary Fig. S15). This observation can be reason-
ably explained by the much higher electronic conductivity than oxy-
gen ion conductivity at elevated temperatures of perovskite oxides.
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Interestingly, we also noticed that an easy formation of oxygen
vacancies in the metal oxides does not always lead to improved activity.
The high-performance perovskites usually contain a moderate level of
oxygen vacancies (e.g., δ=0.2–0.45 for cobalt-based materials at
450 °C). This general relation reflects what we frequently observed in
recent cathode development: the NdBaCo2O5+x

58, PrBaCo1.9Sc0.1O5+x
59,

and SrNb0.1Co0.8Fe0.2O3-δ
60 with δ=0.2–0.45 show superior ORR

activity to the BSCF, SrSc0.2Co0.8O3−δ (SSC) and Ba2Bi0.1Sc0.2Co1.7O5+x
51

with δ =0.45−0.64 at the right branch and the ones (e.g.,
La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF), PrBa0.5Sr0.5Co2O5+x (PBSC) with
δ=0.08−0.15) lying at the left.

Further, the top region of the volcano varies with the operating
temperatures. The concentration of the oxygen vacancy for optimal
oxygen reduction increases from 0.375 at 450 °C to 0.508 at 700 °C
(Fig. 2d), suggesting the enhanced oxygen vacancy participation
within the oxygen electrocatalysis with the increase of operation
temperature, as expected. Synchronously, the optimal oxides for cat-
alysis change from SrCo0.8Ta0.175V0.025O3-δ (SCTV0.175) at below
500 °C to SCTV0.175 and SrSc0.175Ta0.025Co0.8O3-δ (SSTC) at 500-
600 °C, and then to SSTC at 700 °C. This temperature dependency
might also pose significant challenges for one to identify the optimal
catalyst candidates for high-temperature operations purely from the-
oretical calculations. This issue is originated from the prerequisite of
the theoretical models for the precise states of the redox-activemetals
such as cobalt at a specified temperature, which can usually be
determined through time-consuming in-situ measurements and
analyses61,62. Therefore, this step, together with the identified tem-
perature dependency in this study, hinders a quick exploration of the
material space for high-temperature catalysis.

The role of oxygen vacancies in determining catalytic activity
To obtain a deeper understanding of the role of oxygen vacancies in
the catalytic activity, we then calculated the energies of oxygen
vacancy formation andmigration fromDFT calculations. Details of the
calculation are described inMethods and Supplementary Figs. S16-S19.
The simulation results, shown in Fig. 2e, imply that the materials with
low oxygen vacancy formation energies can create oxygen vacancies
easily. By contrast, the oxygen-ion migration is slow within the mate-
rials containing a high concentration of oxygen vacancies (Fig. 2f). We
believe the inverse trend between oxygen vacancy formation and
mobility is likely related to the ionic character of the cobalt-oxygen
bonds. Although an increase in electron density close to cobalt pro-
motes oxygen vacancy formation, it reduces the ionic character of the
bonds and then slows down the oxygen-ion migration by weakening
the electrostatic attraction between negatively charged oxygen ions
and their neighboring positively charged oxygen vacancies63,64.

Further, the simulation results allow us to explain the volcano
dependency of the ORR activity over oxygen vacancy. The right
branches of the volcano trend are essentially controlled by the oxygen-
ion mobility in the lattice. With the high oxygen-ion mobility but low
concentration of oxygen vacancy, on the other hand, the left branches
of the volcano are controlled by oxygen vacancy concentration. The
top of the volcano is the region with an optimal balance between
oxygen vacancy formation and oxygen-ion mobility, which is desired
for efficient oxygen reduction catalysis. However, the models are
limited to elucidating the observed temperature dependency of the
optimal perovskite oxides for catalysis.We envisage such temperature
dependence is likely a result of different levels of participation of the
thermally activatedmaterial bulk ionic transport and surface exchange
in the catalysis process.

Rational design of ORR electrocatalysts for solid oxide fuel cells
The strong activity–oxygen vacancy correlation offers new opportu-
nities to guide the design of newmetal oxides for catalysis at different
temperatures. To prove the concept of rational material design based

on the identified activity-oxygen vacancy correction and prediction of
oxygen vacancies from a lattice cationic environment, we take the
development of cathode materials for low-temperature solid oxide
fuel cells (SOFCs) as an example.

Figure 3a describes the flow chart to design high-performance
cathode materials using SrCoO3-δ (SC) as the model parent oxide. We
chose SC based oxides as the model perovskites to prove our concept
because they represent one of the most active candidates for ORR,
such as BSCF, LSCF, SSC, and SrCo0.8Nb0.1Ta0.1O3−δ (SCNT). The first
step is to apply the machine learning model to predict the con-
centration of the oxygen vacancies of the targeted compositions. An
ideal SC-based cathode composition should lead to a cubic structure
(with a tolerance factor close to unity) and amoderate level of oxygen
vacancies at elevated temperatures. The second step is experimental
verification, which includes material synthesis, characterization, cath-
ode fabrication, and activity evaluation.

From this ML-assisted process, we identified two new perovskite
oxides, SrCo0.8Ta0.16W0.04O3−δ (SCTW) and SrCo0.8Ta0.15V0.05O3−δ

(SCTV), which could meet the criteria as good cathode materials for
SOFC operated at below 500 °C. Bothmaterials show tolerance factors
close to unity, indicating the potential formation of cubic structure
phases. The oxygen vacancy concentration is predicted to be 0.317 for
SCTW and 0.356 for SCTV at 450 °C, which are close to the optimal
oxygen vacancy concentration for ORR at this temperature since they
are located at the top of the volcano as shown in Fig. 3b, c. The two
examples with uncommon dopants at B-sites (e.g., W and V) are pro-
posed to support the validity of the ML-assisted prediction process to
design catalysts that are beyond conventional compositions.

We experimentally synthesized SCTW and SCTV materials and
verified their crystal structure using Rietveld analysis of XRD (Sup-
plementary Fig. S20), with details shown in Supplementary Table S2
andTable S3. The results reveal that both SCTV and SCTWare inPm�3m
space group. The lattice parameters are 3.8916(5) for SCTV and
3.8969(2) for SCTW, consistent with the larger size of W5+ and Ta5+

compared to V5+33. Besides, the concentrations of oxygen vacancies of
both perovskites, determined by using the chemical titration method
at room temperature, are in consistence with our predictions based on
machine learning (Supplementary Fig. S21). We then fabricated the
cathodes with the targeted composition and experimentally tested
their oxygen vacancy concentration and ORR activity as a function of
temperature. As shown in Fig. 3b, c, both tested cathode materials
exhibited very similar concentrations of oxygen vacancies to the pre-
dicted values from our models across a wide temperature range. This
result further validates the effectiveness of the ML model and local
cationic environment in predicting oxygen vacancy with minimal
computation power. When applied as ORR electrocatalysts based on
the symmetrical cells, both perovskite materials showed unprece-
dented activity at reduced temperatures with the ASPR of
0.265 ±0.041 Ω cm−2 for SCTW and 0.165 ± 0.067Ω cm2 for SCTV at
450 °C. These two electrode materials are superior to all the state-of-
the-art ORR electrodes (e.g., LSCF, BSCF, PBSC, SSNC, and SCNT) at
reduced operating temperatures tested under the same conditions
(Fig. 3d and Supplementary Table S4).

We then applied SCTV as the cathode for three solid oxide single
cells for power generation fromhydrogen gas. The cells for the test are
anode-supported in a configuration of the SCTV ( ~ 18μm) ∣ GDC
(13–18μm) ∣ Ni-GDC ( ~ 700 μm) (Fig. 4a, b). As enabled by the ORR-
active electrocatalyst, as shown in Fig. 4c and Supplementary Fig. S22,
all three cells achieved peak power densities (PPDs) above 0.6Wcm−2

at 450 °C. For example, the Cell-1 shown in Fig. 4c achieved a PPD as
high as 1.36Wcm−2 at 500 °C, 0.85Wcm−2 at 450 °C, and 0.45Wcm−2

at 400 °C, surpassingmost of the reported performance of single cells
operated below 500 °C (Supplementary Table S5).

We also evaluated the short-term stability of Cell-1 and Cell-2.
Under a constant current density of 0.272 A cm−2, as shown in Fig. 4h
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and Supplementary Fig. S23, Cell-1 showed a degradation rate of
47.7mV/1000h for the 600h range and 18.3mV/1000 h for the last
350h at 375 °C. Such degradation, especially at the first 250 h, is likely
related to the sealing issue after thermal cycling (Supplementary
Fig. S24) and the susceptibility of the cathode to the CO2 in the
ambient air (Supplementary Fig. S25). In contrast, Cell-2 did not
undergo thermal cycling and thus achieved better durability with
negligible degradation for the first 210 h operation at 0.272 A cm−2 at
500 °C. Although the SCTV is not completely resistant to 1 % CO2 due
to the presence of Sr, it still shows a much better CO2 tolerance than
the benchmark BSCF cathode (Supplementary Fig. S26 and Fig. S27)
and is expected to be further improved by strategies such as altering
A-site cations65 or compositing cathodes with electrolytes53,66.

In summary, this work reports an alternative approach to predict
one of the most important properties of perovskite oxides—con-
centration of oxygen vacancies—across a wide range of temperatures
without the requirement for heavy theoretical computation. Our
results reveal that the successful prediction of the oxygen vacancy
concentrations arises from the important role of the lattice cationic
environment in determining the formation of oxygen vacancies and
the commonly existing delocalized electron distribution over the
active metal centres of the perovskite materials, such as cobalt
and iron.

Based on the prediction of oxygen vacancies, a new approach is
proposed to guide the design of perovskite materials for oxygen

electrocatalysis at different temperatures, where the concentration of
oxygen vacancies predetermines the intrinsic activity. Meanwhile, we
discovered two new perovskite oxides that show unprecedented
activity to reduce oxygen at below 500 °C, enabling sufficient power
generation from solid oxide fuel cells at below 500 °C. Our findings are
anticipated to contribute to the advancement of materials for key
applicationswhereoxygen vacancies play a vital role, such as fuel cells,
electrolysis, energy storage, thermal catalysis, and random-access
memory.

Discussion
Our findings are anticipated to be effective in guiding new material
development for other applications operated at a wide range of tem-
peratures, if there is a strong performance-oxygen vacancy relation-
ship, including solid oxide electrolysis for hydrogen production67, CO2

electrolysis2, thermochemical catalysis68, oxygen storage or
pumping69, thermal energy storage70, and ferroelectric random-access
memory71. The two typical examples (water oxidation at room tem-
perature and SOFC at high temperatures) discussed in this study imply
that the optimal concentration of the oxygen vacancies varies with the
applications and the catalyst operating temperatures. Bearing such
variations in mind, we envision that the performance-oxygen vacancy
relationship could serve as a new avenue for researchers to explore, so
as to achieve an effective prediction of the material performance.
Therefore, the prediction toolkit reported in this study could also help
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chart of proposed ML-assisted rational design of perovskite catalysts for fuel cells.
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measured oxygen vacancy (δM) for two designed catalysts of (b)
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for three times.
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accelerate such a process,whichhas been demonstrated by our case in
SOFC cathode development.

Although our new approach provides an alternative tool for
researchers to explore the compositional space of the materials, it is
also important to note that other non-compositional factors could not
be overlooked when determining the overall performance of the
materials, such as the particle sizes48, dimensionality (i.e., 2D
materials)72, microstructures73,74, interfaces75, and local reaction
environment76. Additionally, the accuracy of the prediction can be
affected by the size and quality of the learning dataset. Besides, this
work relies on comprehensive existing datasets formodel training and
predictions. Due to the limited data available in the literature for other
metal-based perovskite oxides, the models reported here are only
valid for predicting cobalt- or iron-based perovskite oxides at different
temperatures. Hence, these non-compositional factors, as well as large
datasets with high quality, are also highly desired in future efforts and
serve as inputs for the data training processes, which is expected to
further improve the accuracy of the activity prediction and accelerate
the paradigm shift towards the more efficient rational material design
than the conventional trial-and-error approaches.

Methods
Machine learning
We derived a Python-based machine learning (ML) toolbox for auto-
matically predicting oxygen vacancies of Co-based and Fe-based per-
ovskites. Forty-one ML models were optimized and evaluated by five-
fold cross-validation on the test set and were ranked by the R-squared
scores for model selection. Amongst all compared regression models,
ensemble methods have demonstrated a better generalization per-
formance on the test set by combining the predictions of several base

estimators. Representative ensemblemethods can be categorized into
averaging methods, e.g., extremely randomized trees/extra-trees77

(ExtraTreesRegressor), random forests78 (RandomForestsRegressor),
and boosting methods, e.g., Adaboost79 (AdaBoostRegressor), gra-
dient boosting80 (GradientBoostingRegressor). As the LGBMRegressor
model achieved one of the best performances, we chose it to establish
the final predictive model and studied the learning curves and the
partial dependence.

Materials preparation
The solid-state synthesis method81 was applied to synthesize the
perovskite-type oxides of SrCo0.8V0.2O3−δ (SCV), SrCo0.8Nb0.2O3−δ

(SCN), SrCo0.8Ta0.2O3−δ (SCT), SrSc0.2Co0.8O3-δ (SSC), SrSc0.175
Nb0.025Co0.8O3-δ (SSNC), SrSc0.175Ta0.025Co0.8O3-δ (SSTC), SrCo0.8Tax
V0.2-xO3-δ (x = 0.10 and 0.175), SrCo0.8Nb0.1Ta0.1O3−δ (SCNT), LaySr1−y
Co0.8Ta0.15V0.05O3−δ (y = 0.1, 0.2 and 0.5), (La0.2Sr0.8)0.95Ta0.15V0.05

Co0.8O3−δ, SrCo0.8Ta0.16W0.04O3−δ (SCTW), and SrCo0.8Ta0.15V0.05O3-δ

(SCTV). Taking SCTV as an example, the stoichiometric mixtures of
SrCO3 (Sigma, ≥ 99.9 %), Co3O4 (Sigma, ≥ 99.5 %), V2O5 (Sigma, ≥ 99.6
%) and Ta2O5 (Alfa Aesar, ≥ 99.0 %) were ball-milled at 260 rpm for
20 h, dry-pressed in a die under ~180MPa and then sintered at 1200 °C
for 20 h. The sintered tablets were crushed into powders via ball-
milling at 300 rpm for 6 h.

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF),
La0.6Sr0.4CoO3-δ (LSC), and PrBa0.5Sr0.5Co2O5+x (PBSC) were synthe-
sized by the sol-gel method. Taking BSCF as an example, the stoi-
chiometric mixtures of Ba(NO3)2 (Sigma, ≥ 99.0 %), Sr(NO3)2 (Sigma,
≥ 99.0 %), Co(NO3)2·6H2O (Sigma, ≥ 99.0 %) and Fe(NO3)3·9H2O
(Sigma, ≥ 99.95 %) were dissolved into de-ionized water with vigorous
stirring until a transparent solution was formed, followed by addition
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of knownmass of citric acid (Sigma, ≥ 99.5 %) and ammonia-dissolved
ethylenediaminetetraacetic acid (EDTA, Sigma, ≥ 99.0 %). The molar
ratio of metal nitrates, citric acid, and EDTA was 1:1.5:2.0, and the pH
value of the mixed solution was adjusted to 9–10 by ammonia (Alfa
Aesar, 28–30 %). After evaporation of water at 80 °C for 12 h, a viscous
gel was obtained. The gel was then pre-calcined at 250 °C for 3 h to
obtain the pristine powder, whichwas subsequently calcined at 950 °C
for 5 h in the air to form BSCF powder.

Materials characterization
Scanning electron microscopic images (SEM, JEOL JSM-7001F) was
applied at 15 kV to investigate the thickness of perovskite materials on
electrolyte. The crystal structure of the materials was verified from
X-ray diffraction (XRD, Bruker D8) on a Philips X’pert Pro Super dif-
fractometer with a radiation source of Cu-Kα (λ = 1.5418 Å) at a voltage
of 40 kV and a current of 40mA. Thermogravimetric (TG, Perkin Elmer
STA6000) analysis was conducted to reveal the weight loss of the
materials during heating from room temperature to 800 °C in air.
Iodometric titration was used to determine the oxygen non-
stoichiometry (δ) in the material. X-ray absorption spectra (XAS)
were recorded to investigate the bulk characteristics of the materials
on the wiggler XAS beamline (12 ID) at Australian Synchrotron (AS),
with a beam energy of 3.0 GeV and a maximum beam current of
400mA. Nano Measurer software was used to determine the size of
sintered perovskite particles on electrolyte.

Electrical conductivity of the perovskite oxides
The perovskite powders were pressed and then sintered at 1200 °C for
5 h to form dense bars. The relative densities of the samples were over
95 %. After polish, the silver wires were attached to the sample bars,
followed by the electrical conductivity by using a DC 4-probe method
on Autolab PGSTAT 302N. To ensure the accuracy, the measurements
were conducted in the presence of flow air (120mLmin−1). All mea-
surements were repeated for three times.

Oxygen evolution reaction (OER) measurements of the
perovskite oxides
10mg perovskite powder was ultrasonically mixed with 10mg carbon
black (Super C65, TIMCAL C’NERGY) in 1.0mL ethanol with 100μL
NafionTM 117 solution (Sigma, 5 wt.% in ethanol) for 40min. Then, 5μL
suspension was drop-cast onto a glassy carbon disk electrode (dia-
meter of 5.0mm, area of 0.196 cm2, mass loading of 0.045mg) and
dried in a vacuum oven at room temperature. The Pt wire was used as
the counter electrode and an Hg/HgO electrode was used as the
reference electrode. The electrochemical cyclic voltammograms (CV)
measurements (0-0.9 V vs Hg/HgO) of the perovskite materials were
conducted in 0.1M KOH (Sigma, stored at room temperature without
contacting air, saturated with 99.999 % O2 before usage) at a scan rate
of 5mV s−1 at room temperature by using a rotating disk electrode
(RDE) device. The data were collected after the stabilization of CV
curves. The potentials tested in thiswork are iR-corrected according to
the following equation:

EðRHEÞ=EðHg=HgOÞ+0:110V+0:059×pH� 90%× iR ð2Þ

where i and R represent current and ohmic resistance of 0.1M KOH,
respectively, and E(Hg/HgO) is the measured potentials. All measure-
ments were repeated for three times.

Calculation of oxygen vacancy at room temperature
Iodometric titration was applied to determine the oxygen vacancy in
the perovskite-type oxides82. Generally, 0.1 g pre-dried oxide was
mixed with 2.0 g KI (Sigma, ≥ 99.0 %) in an Erlenmeyer flask, followed
by sealing with Ar gas (99.999 %) for 10min and adding 10mL HCl
(3.0mol L−1). The ultrasound treatment was applied to better dissolve

the oxide in HCl acid. The solution was then titrated with 0.1mol L−1

Na2S2O3 (Sigma, 99.99 %).
Taking SrCo0.8Nb0.1Ta0.1O3−δ (SCNT) oxide as an example, only Co

ion participates in the redox reaction. The oxidation state of Co is
assumed as +x, and the redox reactions during the titration can be
expressed as:

Cox + + ðx � 2ÞI� =Co2 + +
x � 2
2

I2 ð3Þ

I2 + 2Na2S2O3 = 2NaI +2Na2S4O6 ð4Þ

So that the stoichiometric relationship between SCNT and
Na2S2O3 should be:

SrCo0:8Nb0:1Ta0:1O3�δ � x � 2
2

×0:8I2 � ðx � 2Þ×0:8Na2S2O3 ð5Þ

The molar relationship between SCNT and Na2S2O3 is calculated
as:

m
M

×0:8× ðx � 2Þ= cV ð6Þ

wherem and M are the exact mass and molar mass of SCNT cathode,
while c and V represent the concentration and volume of the Na2S2O3

solution. The presence of oxygen vacancy will inevitably lead to a
decrease inoxygennon-stoichiometry δ0 at room temperature. So that
M can be expressed as:

M =MSr +MNb ×0:1 +MTa ×0:1 +MCo ×0:8+MO × ð3� δ0Þ ð7Þ

whereMSr,MNb,MTa,MCo, andMO represent the molar atomic mass of
Sr, Nb, Ta, Co, and O, being 87.62, 92.91, 180.95, 58.93, and
16.00 gmol−1, respectively.

Besides, the conservation of charge in SCNT can provide another
equation:

XSr +XNb ×0:1 +XTa ×0:1 +XCo ×0:5 =XO × ð3� δ0Þ ð8Þ

whereXSr, XNb, XTa, XCo, and XO are the valences of Sr, Nb, Ta, Co, andO,
being +2, +5, +5, +x, and −2, respectively.

In summary, the oxygen non-stoichiometry of δ0 can be calcu-
lated from the association of Eq. (6)—Eq. (8). All titration measure-
ments were repeated for three times.

Calculation of oxygen vacancy at elevated temperature
Thermogravimetric (TG) analysis was performed to weigh the mass
loss of sample at 150-800 °C, and thus calculate the δT at elevated
temperature. To eliminate the moisture in the sample, efforts were
made to maintain the temperature at 150–200 °C for 1.5 h. Assuming
that no oxygen vacancy exists in the SCNT material, the original mass
of the sample should be:

moriginal =
m× ðM +MO × δ0Þ

M
ð9Þ

where M is the molar mass of SCNT, and MO represents the molar
atomic mass of the oxygen atom. So that the SCNTmole (Moriginal) can
be calculated from Eq. (10), nomatter howmuch oxygen goes away as
the raising of temperature.

Moriginal =
moriginal

M +MO × δ0
ð10Þ
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Then the δT will be obtained from:

δT =
ðmoriginal �mT Þ=MO

Moriginal
ð11Þ

wheremT is the sample mass at temperature T.

Preparation of symmetrical and single cells
The symmetrical cellswith configuration of perovskite jGd0.1Ce0.9O1.95

(GDC, 10–14 m2·g−1, purchased from Single Cell Materials) j perovskite
were fabricated for electrochemical impedance spectroscopy (EIS)
analysis. The GDC powder was pressed in a die under ~90MPa, fol-
lowed by sintering at 1450 °C for 5 h to form dense electrolyte disks
with a single-side area of ~1.1 cm2 and thickness of ~0.7mm. The cath-
ode slurry was prepared by ball-milling 6.0 g fresh perovskite oxides
with 0.3 g dispersant (20 wt.% vegetable oil dispersed in terpinol) and
0.1 g binder (20 wt.% ethylcellulose dispersed in terpinol) in 60 g iso-
propanol. The as-prepared cathode slurry was then sprayed evenly on
both sides of the GDC electrolyte disks with an N2-borne spray gun,
followed by calcination at 950 °C for 2 h. The symmetrical cells, stored
in air at room temperature, were then assembled by grafting a silver
electrode using silver paste on both sides of the cathode-covered GDC
disk, with a thin silver paste painted on the surface of the cathode to
better collect electrons.

The SCTV-based single cell with the SCTV (cathode) j GDC (elec-
trolyte) j NiO-GDC (anode) structure was prepared to investigate the
electrochemical performance of perovskite-type cathode in a lab-scale
SOFC device. The anode precursor of NiO-GDC was obtained by ball-
milling the mixtures of NiO (Sigma, 99.99 %), GDC, dextrin (Sigma),
and graphite (Sigma, < 20μm) with a mass ratio of 6:4:0.6:0.4 in
ethanol for 24 h. After drying at 150 °C for 2 h, the NiO-GDC substrate
powder was co-pressed with GDC power under ~180MPa into button-
like pellets, followedby the calcination at 1450 °C for 7 h. The thickness
of the GDC electrolyte layer was 13−18μm. The cathode slurry was
subsequently sprayed onto the GDC side with an area of 0.24 cm2,
followed by calcination at 950 °C for 2 h to obtain single cells. The
prepared single cells were store in air at room temperature. The
thickness of the cathode layer was 10−20μm. After adhering silver
lines to both the cathode and anode sides, the silver paste was then
applied as a high-temperature sealant to seal single cells on
alumina tubes.

Cell characterization
The performance of symmetrical and single cells was measured on
Autolab PGSTAT 302N. The EIS analysis of symmetrical cells was
performed at 400−700 °C in flowing air (300mL·min−1). The frequency
range and signal amplitudes were 0.1–100 kHz and 10mV, respec-
tively. For fuel cells, the current-voltage curves were tested at
350−500 °C with H2 on the anode side (80mL·min−1) and air on the
cathode side (120mL·min−1). The signal amplitude was 10mV, and the
frequency range was 0.1–100 kHz. The stability tests were conducted
at 375 °C and 500 °C at 0.272 A cm−2, with H2 flow of 80mlmin−1 on the
anode side and air flow of 120mlmin−1 on the cathode side. All mea-
surements were repeated for three times.

Density functional theory (DFT) calculations
Density functional theory as implemented in the Vienna Ab-initio
Simulation Package (VASP) with the projector augmented waves
methods was employed to relax the unit cells and optimize
structures83–85. The generalizedgradient approximation (GGA)with the
PBEsolmethodwas performed to describe the exchange-correlation86.
For transition metal 3d electrons, the GGA +U calculations were used
with the simplified spherically-averaged approach, and Ueff

(Ueff = Ucoulomb— Jexchange) was set to 0.80 eV, according to the pre-
vious references12. Long-range van der Waals dispersion was also

considered in this calculation by using empirical correction in
Grimme’s scheme87. Cut-off energy of 520 eV for plain-weave basis sets
was adopted and the convergence threshold was 10−5 eV, and
5 × 10−3 eV/Å for energy and force, respectively. To mimic the real
experimental condition, the cubic SrCoO3models were established by
substituting Co atoms with co-dopants to form supercells with scales
of 2 × 2 × 2 (e.g., for SrCo0.8Nb0.2O3-δ, La0.6Sr0.4CoO3-δ, and
Ba0.5Sr0.5Co0.8Fe0.2O3−δ) and 2 × 2 × 4 (e.g., for SrCo0.8Ta0.1V0.1O3−δ,
SrSc0.175Nb0.025Co0.8O3−δ, and SrCo0.8Nb0.1Ta0.1O3-δ), and a 3 × 3 × 3
Monkhorse-pace mesh was chosen for k-sampling of the Brillouin
zone. The climbing nudged elastic band method was employed to
search the saddle points and minimum energy pathways88,89. The for-
mation energies of an oxygen vacancy (Ef) in perovskite structures
were calculated by the following equation:

Ef = Evacancy � Epristine +
1
2
EO2

ð12Þ

where Evacancy and Epristine represent the total energies of the lattice
structures without and with oxygen vacancy, while EO2 is the oxygen
energy that has departed from the perovskite model.
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