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Abstract

Background

PPM1D (Protein phosphatase magnesium-dependent 1δ) is known as a damage response

regulator, a part of the p53 negative feedback loop. Truncating mutations of PPM1D, result-

ing in overexpression, are frequently found in the blood of patients with breast or ovarian

cancer. To identify whether the PPM1D mutation predisposes patients to such cancers or if

it results from the cancer and therapy, somatic PPM1D mutations in association with previ-

ous cancer and chemotherapy need to be explored.

Methods

We performed next-generation sequencing (NGS) analysis of blood samples from patients

suspected to have hereditary cancer. We grouped the patients according to their diagnoses

and history of chemotherapy. For the patients with PPM1D mutations in blood, tumor tissue

specimens were examined for the PPM1D mutation using conventional sequencing.

Results

A total of 1,195 patients, including 719 patients with breast cancer and 240 with ovarian

cancer, were tested, and four (~0.3%) had the truncating mutation in PPM1D. All truncating

mutations were in exon 6, in mosaic form, with a mean allele fraction of 11.15%. While 395

out of the 1,195 patients had undergone chemotherapy, the four with the truncating mutation

had a history of cisplatin-based chemotherapy. No corresponding mutations were identified

in the tumor tissues.

Conclusions

We investigated the frequency of the somatic mosaic PPM1D mutation, in patients with

breast or ovarian cancer, which is suggested to be low and related to a history of cisplatin-

based chemotherapy. It may be a marker of previous exposure to selective pressure for

cells with an impaired DNA damage response.
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Introduction

Protein phosphatase magnesium-dependent 1δ (PPM1D) encodes the Wip1 phosphatase and

is known as a regulator of the DNA damage response pathway. Wip1 dephosphorylates the

tumor suppressor p53, CHK1, CHK2 and other key components of the pathway as part of a

negative feedback regulatory loop [1,2]. Induced by p53 initiating cell cycle arrest or apoptosis

upon cellular stress, Wip1 downregulates p53 level and drives the cell back to its normal state

[2].

Gain-of-function mutations of PPM1D have been reported in a wide variety of cancers,

including breast cancer and ovarian cancer [3–10]. Over suppression of p53 releases the cell

from arrest to proceed the cell cycle, resulting in carcinogenesis [11]. Although copy number

gain and increased expression level of PPM1D have been reported, [4,7,10], it has also been

reported that truncating mutations in exon 6 of PPM1D lead to its overexpression, escaping

from the control of degradation signaling [3,11]. In recent studies, these truncating mutations

of PPM1D in mosaic form were found in the blood with higher frequency among patients with

ovarian cancer or breast cancer than in the control group [5,12], suggesting a causal relation-

ship between the mutations and the cancers. In contrast, it has also been reported that PPM1D
mosaic truncating mutations in the blood have been associated with chemotherapy rather than

predisposition to the cancers [9,13].

To support this idea, the association of somatic PPM1D mutations with previous cancer

and chemotherapy needs to be explored. In this study, we investigated the prevalence and

characteristics of the truncating PPM1D mutation among patients with cancer by using NGS

hereditary cancer panel testing. We analyzed the somatic truncating PPM1D mutation status

in the context of previous chemotherapy.

Methods

Patients and samples

A total of 1,195 peripheral blood samples of patients suspected to have had hereditary cancer

according to National Comprehensive Cancer Network guideline (https://www.nccn.org/

professionals/physician_gls/pdf/genetics_screening.pdf, registration required) in Severance

Hospital between July 2016 and July 2018 were subjected to NGS gene panel testing for heredi-

tary cancer. For those patients, investigation of truncating mutations of PPM1D was per-

formed. For the three cases with identified PPM1D truncating mutations, corresponding

formalin-fixed paraffin-embedded primary cancer specimens were subjected to mutational

analysis. Written form of informed consent was obtained for all patients. The current study

was approved by Severance Hospital Institutional Review Board (4-2019-0021).

DNA extraction and sequencing

Genomic DNA was extracted from peripheral blood using the QIAamp DNA Blood Mini Kit

(Qiagen, Venlo, The Netherlands). Approximately 500 ng of genomic DNA was fragmented

into segments between 150 and 250 bp long, using the Bioruptor Pico Sonication System

(Diagenode, Liège, Belgium), which were then end repaired and ligated to Illumina adapters

(Illumina, San Diego, CA, USA) and indices. Sequencing libraries were then hybridized with

the capture probes (Celemics, Seoul, Korea). All procedures were performed per the manu-

facturer’s instructions. Enriched DNA was then amplified, and clusters were generated and

sequenced on a NextSeq 550 instrument (Illumina) with 2×151 bp reads. NGS tests were

performed using a custom gene panel consisting of 65 genes related to hereditary cancer

(S1 Table). For genomic DNA extraction of tumor samples, Maxwell RSC DNA FFPE
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Kits (Promega, Madison, WI, USA) were used and Sanger sequencing of the specimen was

performed.

Data analysis and interpretation

Reads were aligned using the Burrows-Wheeler Alignment tool (0.7.12) on human genomic

reference sequences (GRCh37) [14]. To identify single nucleotide sequence variations, the

HaplotypeCaller in the Genome Analysis Toolkit package (3.8–0) was used [15]. All mutations

were annotated using ANNOVAR and VEP (87) software [16,17]. Detected variants were fur-

ther examined by visual verification using the Integrative Genomics Viewer [18]. The pathoge-

nicity of variants was classified according to the American College of Medical Genetics and

Genomics (ACMG) criteria [19].

Results

Sequencing data and patients

A total of 1,195 patients were enrolled. Among them, 725 patients had breast cancer (60.7%)

and 246 had ovarian cancer (20.6%), as summarized in Table 1. Three hundred and ninety five

patients out of 1,195 (33.1%) had received chemotherapy before genetic testing. The median

depth of coverage of the gene panel was 691× with a maximum depth of 7,976×. The median

depth of the PPM1D gene was 990x, ranging from 650x to 2,277x.

Truncating PPM1D mutations

Truncating mutations in PPM1D were detected in four patients (~0.3% of total cases), one (1/

725, 0.14%) with breast cancer and three (3/246, 1.22%) with ovarian cancer (Table 2). All

truncating mutations were in mosaic form on the cluster region within a 370-base-pair region

in exon 6, the final exon of the gene [5]. The mean variant allele fraction (VAF) was 11.15%,

ranging from 5.4% to 15.4%. Meanwhile, 15 missense variants of PPM1D were identified in

each fifteen patient except the four harboring the truncating mutations in PPM1D. They were

located in exon 1, 2, 5, and 6 and variant allele frequencies were approximately 0.5 (S2 Table).

They were all variants with uncertain clinical significance according to the ACMG guideline.

The mean age at diagnosis of the PPM1D truncating mutation carriers was 63.5 years

(range, 52–82 years), and they did not have family history of breast or ovarian cancer. One

case (P2) had a concurrent truncating mutation in BRCA1 (c.2345T>A, p.Leu785Ter), which

Table 1. Cancer types of people who have undergone NGS gene panel testing for hereditary cancer.

Type of cancer n (%)

Breast 719 (60.2)

Ovarian 240 (20.1)

Breast and ovarian 6 (0.5)

Colorectal 134 (11.2)

Endometrial 15 (1.3)

Retinoblastoma 13 (1.1)

Pancreatic 12 (1.0)

Gastric 11 (0.9)

other 45 (3.8)

total 1195

Breast and/or ovarian cancer were the most common (80.6%)

https://doi.org/10.1371/journal.pone.0217521.t001
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is classified as a pathogenic variant according to the ACMG guideline, in addition to the trun-

cating PPM1D mutation. The cancer type was invasive ductal carcinoma in a case with breast

cancer and serous carcinoma in all cases with ovarian cancer (Table 2).

All four patients with a PPM1D mutation had a history of chemotherapy (odds ratio, 18.4;

95% confidence interval, 0.990–342.67; p = 0.051). Chemotherapy regimens included cisplatin

or carboplatin for all four patients. The time interval between chemotherapy and the NGS test

ranged from 10 months to 20 years.

PPM1D mutation status in cancer specimen

We obtained the peripheral blood and tumor tissues of three mutation-positive cases (P1, P2

and P4) except for P3 whose specimen was not available. and performed conventional PCR

and sequencing. All the low level PPM1D mutations in blood samples were identified by con-

ventional sequencing, but no corresponding mutations in the tumor tissues were observed, as

suggested in the previous reports [5,12] (S1 Fig).

Discussion

PPM1D is known as a DNA damage response regulator, which is a part of the p53 regulatory

feedback loop. PPM1D is induced by activated p53, and it dephosphorylates and inactivates

p53 as well as other target proteins involved in DNA repair [20,21]. It negatively regulates the

p53-mediated apoptosis and returns the cell to its original state [22].

Increased expression of PPM1D and p53 over suppression have been reported in various

cancer tissues [4,7,10]. Notably, PPM1D truncating mutations are invariably found in exon 6

and are known to enhance its function [3,11]. This results in mRNA without the last exon,

which is responsible for the degradation signal, making the molecule more stable. This leads to

a gain of function effect by more strongly dephosphorylating its targets compared to the wild

type dose [11,23]. Because PPM1D also dephosphorylates and inactivates other proteins work-

ing in the DNA damage repair system, the truncating mutations of PPM1D are assumed to

have a role in carcinogenesis in various types of cancers.

Somatic mosaic mutations of PPM1D in the blood have been more frequently found in

patients with various cancers including breast and ovarian cancers compared to control

groups, raising concern that it has a possible role in cancer predisposition [5,9,12]. It is

assumed that the cancer driver mutation is enriched in tumor tissue compared to other tissues

such as blood; however, no corresponding mutations have been identified in tumor tissues in

most cases [5,12].

In 2016, Pharoah et al. and Swisher et al. suggested that somatic mosaic mutations in

PPM1D in the blood resulted from previous chemotherapy [13,24]. Platinum-based chemo-

therapy such as cisplatin is the basis of the chemotherapy regimen for ovarian and breast

cancers. Cisplatin, in particular, is known to cross-link with DNA and cause DNA sequence

changes at a high frequency [25]. The fact that most of the somatic mosaic mutations in

PPM1D were observed in the blood of patients with ovarian and breast cancer supports the

association of these mutations with platinum-based chemotherapy [13,24,26].

Our NGS hereditary cancer panel analysis with blood revealed somatic mosaic mutations of

PPM1D in four out of 965 patients with breast and/or ovarian cancer (0.41%). The frequency

was similar to that reported previously (0.32% in breast and/or ovarian cancer), and the muta-

tions were also within the reported clustering region of exon 6, with no particular hotspots

[5]. However, the percentage of individuals harboring the mutation among patients with lym-

phoid malignancy and prior chemotherapy was reported as high as 20% using more sensitive

method, error-corrected sequencing [27]. Along with previous reports, the mutations present

Somatic mosaic PPM1D mutations
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in low fractions in blood were not enriched or identified in the tumor tissues examined.

Moreover, a patient had a concurrent pathogenic BRCA1 mutation, which predisposes more

strongly to the condition. These results could be supportive of mosaic PPM1D mutations

resulting from treatment rather than causing a predisposition to breast or ovarian cancer.

There were 395 patients who underwent previous chemotherapy, and all four patients with the

PPM1D mutation received cisplatin-based chemotherapy (p = 0.051). Those four patients had

undergone chemotherapy from 10 months to 20 years ago. Concluding that the PPM1D muta-

tion predisposed patients to breast or ovarian cancer requires more evidence. In this context,

somatic PPM1D mutations could be a result of expansion of a PPM1D-mutated clone under

selective pressure by cisplatin chemotherapy, rather than a risk factor or cause of the respective

cancers.

Indeed, somatic mosaic mutations of PPM1D have been reported in populations with clonal

hematopoiesis of indeterminate potential (CHIP) [28,29]. In our study, the median age of the

patients with PPM1D truncating variants was 60 (range, 52–82), which was a little higher than

the age of patients with familial breast and ovarian cancer. Rather, clonal mosaic hematopoie-

sis could be common in this age group. PPM1D mutations are far from being common in the

general population and their frequency is increasing in association with prior chemotherapy

[28–30]. It was the most common mutation associated with CHIP in patients with cisplatin-

based myeloablative therapy or therapy-related myeloid neoplasm (TMN) [26,30]. This is

because the pre-existing or therapy-induced PPM1D mutated clones have survival advantages

in the context of cisplatin therapy, resisting apoptosis and thus chemotherapy [26,31]. Consid-

ering the recent studies stating the association between the clonal PPM1D mutations in blood

and TMN, the mutations could be associated with an increased risk for certain subtypes of

hematologic malignancy [26,30]. According to the recent study, patients with CHIP showed

a higher incidence of TMN and shorter overall survival among patients with myeloablative

therapy [30]. Among them, patients bearing PPM1D as CHIP showed significantly poorer out-

comes [30]. For better precision in treatment, the increased risk of such hematologic malig-

nancy should be taken into account in long-term follow up.

Conclusions

In conclusion, we investigated somatic mosaic PPM1D mutations in patients with various

cancers, including breast and ovarian cancers and found that all four patients bearing the

truncating mutations had a history of cisplatin-based chemotherapy. This suggests that these

mutations may be due to the increase of a mutant clone under selective pressure by cytotoxic

therapy.

Supporting information

S1 Fig. Confirmation of truncating mutations in blood and cancer specimens by Sanger

sequencing. Samples from three (P1, P2 and P4) who had a low percentage of truncating

mutations in peripheral blood by NGS were confirmed by Sanger sequencing. However, no

corresponding mutations in primary tumor tissues were observed.

(TIF)

S1 Table. Genes included in the custom NGS gene panel.

(DOCX)

S2 Table. Characteristics of PPM1D missense mutation carriers.

(DOCX)
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