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Introduction

Abstract

We investigated the genetic structure of early benthic juveniles of the spiny
lobster Palinurus elephas in the northwest Mediterranean Sea by means of ten
polymorphic microsatellite markers. Non-metric Multidimensional Scaling
coupled with assignment tests were used as a new approach to further delimit a
reference population inside a genetically homogeneous pool of individuals and
test for the presence of long distance immigrants. From this approach, we
found that most early benthic juveniles collected while settling in the northwest
Mediterranean Sea originated from a common larval pool. However, 4.2% of
the individuals were classified as immigrants from other genetically differenti-
ated populations, with more immigrants in the south than in the north of the
sampled basin. Given currents in the northwest Mediterranean Sea and the long
pelagic larval phase of P. elephas that lasts several months, this result suggest a
restricted homogenized zone in the studied basin with some individuals proba-
bly coming from more differentiated populations through the Almeria-Oran
Front or the Strait of Sicily.

a long time, oceans were viewed as open areas without
obvious barriers where the circulation of individuals was

Connectivity between populations is a key process in
understanding marine life cycles and has become a central
issue in the fields of conservation and management of
marine wildlife. In the marine world, connectivity is
mainly determined by dispersal processes throughout
oceanic currents and water masses movements. For most
benthic fish and invertebrates, whereas the adult stages are
generally sedentary or exhibit limited mobility, the larval
phase is planktonic, potentially highly dispersive and
therefore playing a key role in population connectivity
(Grantham et al. 2003). Larval dispersion is shaped by
many environmental and behavioral factors that influence
the distance and the strength of settlement processes. For
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unrestricted (Strathmann 1990). Thus, marine populations
were often considered as highly connected with potential
of important gene flow over large geographic distances
that could prevent genetic local differentiation. Nowadays
and thanks to the improvement of genetic approaches,
many studies are showing that the marine realm is more
structured than previously thought and that genetic differ-
entiation exists sometimes even over short distances (Todd
1998; Swearer et al. 2002; Hey 2006; Galarza et al. 2009;
Hellberg 2009; Casabianca et al. 2011).

Although progress has been made in understanding the
processes driving adult and juvenile stages, larval dispersion
remains unresolved for most marine populations (Cowen
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et al. 2007). This lack of knowledge is a fundamental obsta-
cle in understanding population dynamics of marine organ-
isms and furthermore in establishing adapted management
plans involving marine protected areas (Sale et al. 2005).
In that context, population genetics is the most frequently
used approach to investigate larval dispersal and genetic
connectivity (Jones et al. 2009). Numerous molecular
markers are suitable for these types of studies (Nielsen
et al. 2009) among which microsatellites have been largely
developed recently because of their high polymorphism
(Tautz 1989). Such a high variability contribute revealing
fine population differences at small scales and makes mi-
crosatellites as effective molecular markers to detect genetic
differences even through limited geographic scales (Carr-
eras-Carbonell et al. 2007).

As their definition by Wright (1951), population struc-
ture has been widely described using the F-statistic
approach (Holsinger and Weir 2009) and this approach is
still used and useful despite being based on many assump-
tions often difficult to validate in natural populations
(infinite  population, Hardy—Weinberg equilibrium,
random mating, etc.) (Guillot et al. 2009). Recent improve-
ments of statistics using Bayesian approaches in the field of
population genetics overtake most problems encountered
with F-statistics. Particularly, in the field of connectivity,
Bayesian methods prove to be powerful for assigning
individuals to populations on the basis of multilocus
genotypes (assignment methods) (Waples and Gaggiotti
2006; Saenz-Agudelo et al. 2009; Sillanpdd 2011). These
approaches were able to resolve complex population struc-
turing for further evolutionary, ecological, and conservation
studies (Faubet et al. 2007; O’Hara et al. 2008).

The European spiny lobster Palinurus elephas (Fabricius,
1787) is an economically important species inhabiting a
wide geographic range that extends from the northeast
Atlantic to the eastern Mediterranean. The overfished status
of its populations is attributed to changes in fishing prac-
tices together with growing fishing effort in recent decades
(Goni and Latrouite 2005). The biological characteristics of
the species such as a low growth rate, a long life-span
jointly to a three to five time lower fecundity than other
Palinuridae contribute to the fragility of the stocks (Goni
and Latrouite 2005). The persistence of widely distributed
viable populations is likely related to its complex life cycle,
with a benthic adult phase of limited mobility (<5 km) and
an extensive dispersive larval phase, from 5 to 6 months in
Mediterranean to 10~12 months in the Atlantic (Goii and
Latrouite 2005), that potentially allows repopulation from
wide open sources. Considering the economic and ecologi-
cal importance of P. Elephas, it is essential to understand
gene flow range in order to identify the limits of popula-
tions as an important step toward a proper management of
this threatened species. For a long time, related research
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has focused on the ecology of early benthic juveniles (Diaz
et al. 2001; Diaz 2010) and our understanding of larval dis-
persal patterns and population structure is still limited. For
long, because of its long larval phase, it has been hypothe-
sized that P. elephas have high dispersal ability, and thus
high levels of gene flow and low or absence of population
structuring at large spatial scales. However, some recent
studies have investigated population structure and phyloge-
ography of P. elephas at large geographic scales based on
adult collections (Groeneveld et al. 2007; Patarnello et al.
2007; Palero et al. 2008, 2009; Babbucci et al. 2010; Palero
et al. 2011) and they show that the hypothesis of wide pan-
mixia is now questionable and larval dispersal pattern cer-
tainly not resolved. In fact, the emerging picture suggests a
barrier of gene flow in the Almeria-Oran Front defining
two distinct gene pools generally associated with Atlantic
and Mediterranean basins with borders not really defined.
Palero et al. (2011) show that Atlantic and Mediterranean
populations form two partially overlapping groups and
Babbucci et al. (2010) that Azores and Portugal popula-
tions seem closely related to northwest Mediterranean pop-
ulation. Furthermore, there are also evidences of another
barrier in the Strait of Sicily leading to an east/west differ-
entiation inside the Mediterranean Sea. The easternmost
population (Greece) appears well-separated from other
Mediterranean samples. These results might indicate, at a
large scale, a limited exchange between eastern and western
Mediterranean populations as proposed for other marine
species, as well as little connection occurring between
Atlantic and Mediterranean Sea (Patarnello et al. 2007).

The aim of the present project is to improve the under-
standing of genetic connectivity and source-sink dynamics
for the spiny lobster Palinurus elephas at a smaller scale
(northwest Mediterranean basin). In such perspective, we
focus, for the first time, on collections of recent post-
puerulus individuals to investigate, for the first time in
that species, patchiness in the recruitment and connectivity
pattern. Investigating post-puerulus reduces the variance in
genetic differentiation due to cumulating adults of multiple
years of recruitment in collections and therefore various
network of connectivity from year to year. Using ten
microsatellite markers previously developed by Palero and
Pascual (2008), our objectives are to determine (1) if
there is genetic structuring at regional (100 of Km) and
local (10 of Km) spatial scale and (2) what are the
exchange patterns among populations.

Materials and Methods

Sampling

Sampling was conducted throughout the settlement season
of 2010 (June-September 2010) by the Centro

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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Oceanografico de Baleares of the InstitutoEspanol de
Oceanografia (COB-IEO). Three regions within the north-
west Mediterranean Sea, separated by more than 200 km
(Girona, Columbretes, and Mallorca) were selected and
within each region, four locations separated by approxi-
mately 10 km were sampled (Fig. 1). In total, 238 early
benthic juvenile lobsters (post-puerulus < 18mm CL) were
collected from diving surveys. Leg tissues were sampled
and stored in 96% ethanol for subsequent DNA extraction.

DNA extraction and genotyping

DNA was extracted from a total of 238 sampled recruits fol-
lowing the QIAGEN™ DX Universal Tissue Sample DNA
Extraction protocol. Fourteen polymorphic microsatellites
of 15 previously developed for this species (Palero and
Pascual 2008) were amplified in three multiplex polymerase
chain reactions (PCR) using fluorescently labeled primers
and the QIAGEN® Multiplex PCR reagent kit (QIAGEN S.
A.S., Courtaboeuf cedex, France). The PCR products were
run in an ABI3730xl sequencer (provided by DNAVision S.
A. in Belgium) and we sized alleles using GeneMapper ver-
sion 3.7 (Applied Biosystems France, Villebon sur Yvette,
France).

Genetic polymorphism

Basic genetic statistics were computed in order to validate
assumptions required for population genetic analysis such
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as allele frequency and diversity indexes for the different
microsatellites in GenAlEx version 6.4 (Peakall and
Smouse 2006). Tests for Hardy—Weinberg deviation and
linkage disequilibrium were conducted using GenePop
version 4.1.0 (Raymond and Rousset 1995) and sequential
Bonferonni corrections were applied. The presence of null
alleles was checked using Micro-checker version 2.2.3
(Van Oosterhout et al. 2004).

Population structure

Population structure was assessed from two different
approaches based on different a priori assumptions. First,
we used F-statistics via an analysis of molecular variance
(AMOVA) performed in Arlequin version 3.5.1.2 (Excof-
fier and Lischer 2010). This analysis partitions the
observed genetic variance into components associated
with different hierarchical levels. It estimates and tests the
percentage of genetic variation explained by differences
among regions, within regions, among samples, and
within samples. This approach presupposes that sampling
locations provide some structure to be tested.

Second, we performed two Bayesian analyses. These
two methods differed in the question addressed as one
focuses on segregating populations while the other focuses
on segregating divergent individuals. The first one was
performed using STRUCTURE version 2.3.3 (Pritchard
et al. 2000) to detect genetically homogeneous groups of
individuals without any a priori information of the spatial
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Figure 1. Studied area and geographic position of the three sampled regions.
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distribution of samples. The concept of this approach is
to build groups of individuals in order to minimize intra-
group variance and maximize inter-group variance by
iterative computing. We chose the admixture model and
the option of correlated allele frequencies between popu-
lations following Falush et al. (2003) considerations. The
length of the burn-in period was estimated to be suffi-
cient at 10,000 and the MCMC at 40,000 as proposed by
Pritchard et al. (2000). Four runs were carried out for
each dataset and the range of possible genetic clusters (K)
was set from one to six, which corresponded to the possi-
ble number of regions sampled plus three (in case there
was substructure within one or more regions). The results
were analyzed following Evanno et al. (2005) method
using the online version of Dent’s Structure Harvester
(Earl 2011). This method consists in plotting AK (a mea-
sure of the mean rate of change of the Log probability for
a given K) against K (number of genetic clusters) in order
to find the most likely value of K that explains the genetic
data. The most likely K is usually viewed on this plot as
the presence of a sharp peak (Evanno et al. 2005).

Lastly, we used Primer 6.1.10 (Clarke 1993; Clarke and
Gorley 2006) to construct a non-metric multidimensional
scaling (nMDS) of pairwise, individual by individual,
genetic distances (Smouse and Peakall 1999) between all
samples calculated in GenAlEx version 6.4. This analysis
gives a two-dimensional graphical representation of the
structure based on the genetic distances between individu-
als without any a priori information of the spatial distri-
bution of samples. Zhu and Yu (2009) have demonstrated
the effectiveness of the nMDS method to account for
population structure. In the present case, we used the
nMDS approach to discriminate outlier individuals and
describe genetically homogeneity of the samples.

Assignment tests

Assignment tests were carried out to assign or exclude
individual samples from a given reference population
using GeneClass2 (Piry et al. 2004). We used the nMDS
procedure to arbitrarily define a reference population. We
took individuals within a distance to the barycenter less
than or equal to the median as the reference population.
This novel approach allows the definition of a reference
population based on a genetically homogeneous popula-
tion. For assigning/excluding the remaining individuals
that were not included in the reference population, the
Bayesian method of Rannala and Mountain (1997) was
chosen. Compared to other likelihood-based and dis-
tance-based methods, this method has been described as
best adapted in assigning/excluding individuals to popula-
tions (Cornuet et al. 1999). Statistical thresholds were
estimated by the Monte Carlo resampling algorithm of
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Paetkau et al. (2004) (n = 10,000) implemented in the
same software. Piry et al. (2004) have suggested that this
algorithm is the most appropriate for this analysis because
it takes into account the sample size of the reference
population and better reflects the sampling variance asso-
ciated with the analyzed dataset than other resampling
procedures. Individuals were considered immigrants when
the probability of being assigned to the reference popula-
tion was lower than 0.05 (Type I error).

Results

Genetic differentiation

The mean expected heterozygosity (0.788 + 0.032) and
the mean observed heterozygosity (0.702 + 0.037) were
high and not statistically different. No evidence of linkage
disequilibrium was found between any pair of loci. Four
loci (Pael20, Pael53, Paell4, and Pael28) showed deficit of
heterozygotes. This deficit is likely to be linked to the
presence of null alleles as shown by the results of Micro-
checker and therefore we excluded them from further
analysis. All 10 remaining loci were considered statistically
independent, in Hardy—Weinberg equilibrium and highly
polymorphic. Values of observed and expected heterozyg-
osities and number of alleles for the 14 loci are summa-
rized in Table 1.

Population structure

Based on sampling locations, the AMOVA analysis indi-
cates an absence of genetic structure at both regional and
local scales. Overall, within sample variance explained
99.9% of the total variance. The remaining 0.1% of vari-
ance explained by among population differences within
regions was not significantly different from zero, with an
Fst equal to 0.0005 (P-value = 0.6080). The results of
both Bayesian methods (STRUCTURE and nMDS) also
confirmed the absence of genetic clustering even while not
considering the sample structure. Results from the graphic
representation of Evanno’s AK revealed the presence of a
peak at K = 3.0, but when plotting the relative member-
ship of each individual to each of the three clusters, all
individuals presented equal probabilities to belong to each
one of the three clusters. Finally, results of the nMDS rep-
resentation (stress = 0.26) also supported the presence of
one single homogeneous population with a single cloud of
points representing each individuals (Fig. 2).

Assignment tests

Of the 238 individuals tested, 117 were incorporated in
the reference population. From assignment tests and

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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Figure 2. Non-metric multidimensional scaling of Palinurus elephas samples from the northwest Mediterranean Sea based on genetic distances
among individuals at ten microsatellite loci. Each point corresponds to an individual and each color represents an area constructed according to
the Euclidean distance to the barycenter. Circled individuals have been identified as immigrants by assignment analyses.

assuming that the reference population comes from a
unique gene pool, 10 individuals (4.2%) among the most
divergent are distinguished as immigrants (P < 0.05), as
they are not assigned to the reference population. Three
of these immigrants are located within the 10% most
peripheral points (to the barycenter) in the nMDS,
whereas two immigrants belong to the 75-90% area and
five individuals belong to the 50-75% area (Fig. 2). Based
on these results, we compared the percentage of immi-
grants among sampled regions (with a bilateral Fisher
test). Immigrants appeared significantly more in Mallorca
and Columbretes than in Girona where no immigrants
were found (Fig. 3).

Discussion

The present survey on Palinurus elephas highlights an
overall genetic homogeneity among locations using both
frequency analysis and Bayesian methods. This result fits
with previous works on lobster that also found genetic
homogeneity at even larger spatial scale (Palero et al.
2008, 2011). However, we notice that while we found no
structuring of early benthic juveniles (EBJ) samples,
Babbucci et al. (2010) found that Columbretes adults are
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differentiated from Mallorca and Menorca ones. The
different degree of structure found between the two
studies is likely to derive from difference in sampling
strategy. First, the number of individuals they sampled
can be considered low (<25 in each locality) and thus
can increase a sampling error (Waples, 1998). This limi-
tation in sampling has also been noticed by Palero et al.
(2011) regarding differences in results they obtained.
Moreover, Babbucci et al. (2010) have sampled adults
between 1998 and 2006 while our samples were EBJ of
the same settlement season. In fact, recent studies have
demonstrated the importance of the temporal scale to
understand connectivity and dispersal patterns (Calder6n
et al. 2009; Anderson et al. 2010; Calderén and Turon
2010; Calderon et al. 2012). In species with a long larval
dispersal phase, it is assumed that the genetic composi-
tion of settled individuals determines the genetic makeup
of populations (Watts et al. 1990), but other studies
suggest that forces causing genetic differentiation can act
locally and occur in a single generation (Planes and
Lenfant 2002; Pujolar et al. 2006). In these cases, the
genetic diversity within a cohort can vary from year to
year and be different from the overall diversity of adult
populations (Calderéon and Turon 2010). Indeed, local

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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Figure 3. Graphical representation of the proportion of immigrants (%) of Palinurus elephas in the three regions sampled in the northwest

Mediterranean Sea.

post-settlement selective forces can cause a reduction of
genetic variability within cohorts over time (Planes and
Lenfant 2002).

Our results clearly show that the northwest Mediterra-
nean population of P. elephas is genetically homogeneous,
and thus that the different barriers found in this area for
other species (Galarza et al. 2009; Mokhtar-Jamai et al.
2011; Schunter et al. 2011) did not limit larval dispersal
of P. elephas.

However, new in this frame work, the combination of
nMDS and assignment tests showed that 4.2% of the EBJ
sampled are immigrants with more immigrants in the
southern locations (i.e., immigrants are individuals statis-
tically diverging from the reference population). The use
of this combination was implemented to overtake differ-
ent problems given by Bayesian approaches. It has been
proven that Bayesian methods are powerful approaches
that overtake problems encountered with F-statistics
(Faubet et al. 2007), particularly in the field of population
structure and connectivity. Among several, we can men-
tion Baums et al. (2006) that detected a genetic barrier
for a coral species (Acroporapalmata) using Bayesian
methods, whereas classic frequency analysis approaches
were showing homogeneity. However, the main limitation
of these approaches is that they are poor predictors of
genetic structure and fail to correctly assign individuals to
populations when gene flow among populations is mod-

© 2012 The Authors. Published by Blackwell Publishing Ltd.

erate or, in our case, high (FST < 0.05) (Cornuet et al.
1999; Waples and Gaggiotti 2006; Saenz-Agudelo et al.
2009). This restriction is mostly due to the fact that these
methods rely on differences of allelic frequencies among
genetic clusters. For assignment tests in particular, this
can lead to bias in defining reference populations. To
overtake the problem of reference population, we used an
nMDS representation to characterize the reference popu-
lation and making the characteristics of the reference
population independent of sampling. Under a situation of
high gene flow, where there is no a priori information,
the nMDS allow to define a reference population inside a
homogeneous group. This combined approach allows us
to go further in the understanding of genetic dynamics in
a homogeneous population making possible to test out-
liers as potential immigrants. In this case, we were able to
demonstrate that 4.2% of individuals collected were
immigrants.

Given the differentiation of the northwest Mediterra-
nean population compared with other regions, the long
larval phase and the adapted morphology of the larvae
to be dispersed by currents, immigrants can come from
the entire distribution of P. elephas following oceanic
currents. Two main currents enter in the northwest Medi-
terranean Sea. The first one, coming from the East, enters
through the Corsica Channel (Salat 1996) and can bring
some immigrants coming from eastern Mediterranean dif-
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ferentiated populations. The Strait of Sicily that appears
as gene barrier for some species (Patarnello et al. 2007)
has recently been investigated for the genetic structure of
P. elephas and seems to play a role in the differentiation
of eastern most populations (Palero et al. 2011). The
second current is a surface current coming from the
Atlantic Ocean through the Strait of Gibraltar (Salat
1996) that enters the northwest Mediterranean Sea and
seems to genetically homogenize populations at both sides
of the Strait. Studies by Palero et al. (2008), Babbucci
et al. (2010) and Palero et al. (2011) dealing with the
same species at larger geographic scales suggest that the
Atlantic population of P. elephas is differentiated from the
Mediterranean population, but with populations of
Azores and Portugal coast closely related to the northwest
Mediterranean populations. The little connectivity found
in these studies and the distribution of immigrants docu-
mented here both lend support to a limited gene flow of
P. elephas through the AOF. However, given the lack of
outgroups in our study, we cannot determine whether
one hypothesis is better than the other. Thanks to the
combination of assignment methods and nMDS represen-
tation and the geographic pattern found in the repartition
of immigrants, we can speculate that individuals coming
from more differentiated Atlantic populations disperse
into the Mediterranean Sea through the Almeria-Oran
Front. Obviously, further analyses, comparing immi-
grants’ genetic signature with populations’ genetic signa-
tures in both Atlantic and Mediterranean populations
need to be performed to precisely define their origins.
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