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Neuroimaging has been successful in characterizing the pattern of cerebral atrophy that
accompanies the progression of Alzheimer’s disease (AD). Examination of functional
connectivity, the strength of signal synchronicity between brain regions, has gathered
pace as another way of understanding changes to the brain that are associated with AD.
It appears to have good sensitivity and detect effects that precede cognitive decline,
and thus offers the possibility to understand the neurobiology of the disease in its
earliest phases. However, functional connectivity analyzes to date generally consider
only the strongest connections, with weaker links ignored. This proof-of-concept study
compared patients with mild-to-moderate AD (N = 11) and matched control individuals
(N = 12) based on functional connectivities derived from blood-oxygenation level
dependent (BOLD) sensitive functional MRI acquired during resting wakefulness. All
positive connectivities irrespective of their strength were included. Transitive closures
of the resulting connectome were calculated that classified connections as either direct
or indirect. Between-group differences in the proportion of indirect paths were observed.
In AD, there was broadly increased indirect connectivity across greater spatial distances.
Furthermore, the indirect pathways in AD had greater between-subject topological
variance than controls. The prevailing characterization of AD as being a disconnection
syndrome is refined by the observation that direct links between regions that are
impaired are perhaps replaced by an increase in indirect functional pathways that is
only detectable through inclusion of connections across the entire range of connection
strengths.
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INTRODUCTION

Within neuroimaging, the integrationist perspective derived from measures of the blood
oxygenation-level dependent (BOLD) signal synchronicity between regions has become the primary
tool for understanding the functional organization of the brain with fMRI. So much so, that the
annual rate of publications on functional integration now exceeds that on functional localization
(i.e., task-induced activation; Friston, 2011). This approach has been highly successful in providing
a new substrate and vocabulary to express both the principles of healthy brain organization,
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and the generalised changes to its key elements that are associated
with disorder (Lynall et al., 2010).

Evidence from structural neuroimaging over the last two
decades has provided a convergent picture of the changes to gray
matter that occur before, during and after a formal diagnosis
of Alzheimer’s disease (AD; Frisoni et al., 2010). Beginning in
the medial temporal lobe, and in particular the hippocampus,
atrophy continues in temporal, parietal and frontal cortices
(Scheltens et al., 1992; Frisoni et al., 2010; Matsuda, 2013;
Wang et al., 2015a) closely following the neuropathological
progression (tau pathology) of the disease (Braak and Braak,
1991) and the course of decline in cognition (Frisoni et al.,
2010). Investigations of functional connectivity in AD are still
relatively immature, nevertheless there is an emerging broad
narrative.

A major discovery of the integrationist approach has
been the default mode network (DMN), consisting of the
medial prefrontal cortex, posterior cingulate cortex, precuneus,
anterior cingulate cortex, and parietal cortex, and activated
when the brain is not otherwise engaged in cognitively
demanding processing. These regions are highly connected
with each other and overlap with brain regions—hubs—that
are disproportionately globally connected. Evidence for the
involvement of the DMN in AD is extensive and compelling
(Mevel et al., 2011; Hafkemeijer et al., 2012; Vemuri et al.,
2012). The DMN largely coincides with concentrations of
amyloid protein deposition in patients with AD (Buckner
et al., 2009), connectivity changes within it are correlated with
progression of the disease (Damoiseaux et al., 2012), and its
structural pathology (Buckner et al., 2005). Furthermore, the
DMN appears unable to rapidly adapt to cognitive demand
that occurs at the earliest stages of the disease (Rombouts
et al., 2005). However, the DMN is not necessarily the
only network involved in AD. Other networks have also
been implicated, particularly the salience network (Zhou
et al., 2010; consisting of the anterior cingulate cortex
and medial temporal regions, including the insula) and the
sensorimotor network (Dipasquale et al., 2015; pre- and post-
central gyri). The possibility that widespread disconnectivity
characterizes AD motivates a more global investigation of brain
(dis)organization

Strong and Weak Connections of the
Functional Connectome

Concisely describing the myriad functional connections of
the brain is predominantly undertaken with graph theoretical
approaches. To generate a graphical object suitable for
characterization by a small number of parameters, edges
(often defined by the bivariate correlation of BOLD time-
series between two brain regions) that connect nodes (the
brain regions themselves) are necessarily sparse and frequently
binary; that is, edges are either present or absent. This is
generally achieved by a threshold on the correlation coefficients,
also known as the cost, that may be followed by algorithms
that ensure all remaining nodes within the connectome are
connected by, for example, reinstating ‘‘missing’’ edges at

minimum cost (Ciftci, 2011). Once constructed, parameters
of the resulting connectome can be derived. This has been
a powerful approach that has identified key features of
the functional connectome such as hubs and its ‘‘small-
world’’ topology (Bassett and Bullmore, 2006); that is, a
graph with a small average minimum number of edges that
connect any two nodes, but with relatively greater local
connectivity.

As with all models, several assumptions constrain
interpretation of binary connectomes. In particular, thresholding
the matrix of values representing the connectivity between
regions leads to a focus on the clique of edges present at high
costs, typically only 5–20% the total number. From the resulting
connectome the implicit assumption is that information flow
occurs through these connections and often preferentially along
the shortest path, typified by the systematic variation of cost to
generate small-world networks that are particularly efficient in
this regard.

In general, the role of weak edges has been underrepresented
to date in the integrationist perspective of the brain. In contrast,
sociological theory has long recognized that weak links play a
vital role in the distribution of information through a network
of friends and acquaintances that can be represented as a
graph (Granovetter, 1973, 1983). In fact, it can be demonstrated
theoretically and empirically that unless a node is isolated from
all other nodes but one, strong edges are highly unlikely to
uniquely connect two nodes. In other words, there will almost
always be an alternate path between any two strongly connected
nodes. However, this is not the case for weak edges which
can ‘‘bridge’’ the span between strongly connected local nodes.
Indeed, in Milgram’s original experiment of social connections
(Travers and Milgram, 1969), both strong and weak links
were necessary for the ‘‘six degrees of separation’’ that has
subsequently entered into common parlance.

The integrationist approach, and in particular the use of
graph theory as its formal framework, has drawn inspiration
from a wide variety of real-world examples. Yet in relation to
how information traverses the network to arrive at its intended
destination, whether the sender has available to them a map of
the overall structure is important to the strategies deployed. If
so, then it is possible to plot the shortest-paths and use this
knowledge to efficiently transport whatever is carried on the
network; ‘‘information’’ in the case of the brain. If not, then
transport will rely on the distributed broadcast of information,
for example via random walk (Noh and Rieger, 2004), where
edges of all strengths play a role and a more efficient route
involving ‘‘weak’’ edges may not be the most direct.

For example, a passenger travelling on the airline network
has access to a map with which to plan, in advance, the most
parsimonious route. Conversely, a sender asked to email a
message via friends and acquaintances to a recipient chosen at
random is likely to be ignorant of the overall social network, and
will instead choose a more egalitarian approach with weak links
over-represented in the chains (Dodds et al., 2003).

Making the assumption that the brain does not have an
overall, instantaneous representation of its own connectome, an
assertion given credence by the temporal variance of its edges
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(Zalesky et al., 2014), the transfer of informationmaywell involve
the entire, fully-connected connectome taking advantage of the
proletariat of weak edges. This ensemble of edges may support
several types of trajectory that information may follow (shortest
paths, paths with redundancy, or paths that retrace edges) and
the manner in which the information is disseminated (as a
single item, or duplicated in serial or in parallel; Borgatti, 2005).
Interestingly, global firing of neurons in an in vitro culture is
controlled by a pulse of activity that is randomly nucleated and
that rapidly propagates throughout the network (Orlandi et al.,
2013), underlining the importance of broadcast dynamics.

One way of investigating this complex network is through
the topology of circuitous functional connections that form a
stronger path than that offered by the edge that directly links
any two nodes. Formally, this is known as a transitivity violation
which occurs if the distance of an indirect path between two
nodes is less than the distance of the direct path between them.
This type of network is called semi-metric and is embedded
in a non-metric topology (Simas and Rocha, 2015). Generally,
any weighted network will have some degree of semi-metricity.
In recent work, we have shown that in many types of real-
world networks the levels of semi-metricity are high (Rocha,
2002; Simas and Rocha, 2012, 2015); that is, networks have a
high degree of redundancy or increased sharing of information
amongst communities.

Characterisation of AD with the Functional
Connectome
Application of the functional connectome in cross-sectional
studies of ADhas led to amixed picture (Tijms et al., 2013). There
is a consensus that the binary human functional connectome
is small-world. However, whilst case-control studies of AD
demonstrate alterations to this configuration, the current weight
of evidence does not yet strongly indicate whether the changes
observed are towards a more disordered, random graph (Sanz-
Arigita et al., 2010) or a more ordered, lattice graph (Zhao et al.,
2012).

Weighted networks incorporate continuous measures of
functional connectivity into the analysis. For connectivities
that are thresholded to generate the network, equations
characterizing their topologies can be adapted to include the
original values, as well as other weightings. This approach
has been undertaken on a sample of AD patients compared
to controls (Liu et al., 2014). Although local clustering was
unchanged, the mean anatomic distance across all edges in the
graph was significantly smaller in AD. Furthermore, cognitive
impairment was associated with reduced connectivity in long-
range connections, in particular.

In general there appears to be strong evidence that
disruptions to functional connectivity accompany the well-
characterized patterns of cerebral atrophy. The direction
of these disruptions is less clear. This is a feature not
only of comparisons of networks derived from BOLD
sensitive fMRI, but also across imaging modalities that
measure brain structure and function from diverse physical
and physiological phenomena such as structural MRI,

electroencephalography and magnetoencephalography (Tijms
et al., 2013).

This article investigates the case-control differences in a small
sample of patients with AD and unaffected controls with an
integrationist approach to the BOLD-sensitive fMRI acquired
whilst participants were at wakeful rest (i.e., without any specific
stimuli). The weighted functional connectomes derived were
compared by metrics that assess the prevalence of indirect
functional connections.

This approach has not previously been applied to data
acquired from patients with neurodegenerative disorders and
thus it is difficult to hypothesise, a priori, the possible outcome
of the analysis. Thus, an exploratory whole-brain strategy was
adopted first statistical testing scalar metrics of semi-metricity
in regions-of-interest, and then qualitatively displaying the
distribution of the between-group differences in semi-metric
edges.

MATERIALS AND METHODS

Participant Recruitment
Eleven participants with a diagnosis of probable AD based
on National Institute on Aging criteria (McKhann et al.,
2011), were recruited along with twelve unaffected controls
of similar age and gender (Table 1). Participants were
recruited from the Neuroimaging of Inflammation in Memory
and Other Disorders study (NIMROD), a cross-sectional
study of dementia within the UK National Institute for
Health Research Cambridge Biomedical Research Unit in
Dementia. Participants provided written informed consent. The
study was approved by the Cambridge 2 Research Ethics
Committee.

Inclusion criteria included clinically probable AD supported
by abnormal structural MRI (McKhann et al., 2011), age over 50
years, with preservation of mental capacity for consent, absence
of contraindications toMRI and no other significant neurological
or psychiatric disorder, including depression. All participants
underwent a comprehensive assessment including full medical
and psychiatric history, cognitive testing and dementia blood
screen, a diagnostic screen (comprised of routine hemeatology
and biochemistry tests, thyroid function tests, vitamin B12, and
folate levels) used to helpmake the diagnosis of dementia subtype
and exclude thyroid and vitamin deficiencies.

TABLE 1 | Demographic characteristics of the groups.

AD patients Controls Test p-value

Mean age (years) 67.5 ± 10.1 68.0 ± 5.6 t(df=21) = 0.16 0.87
± SD
Mean years of 14.3 ± 3.3 14.0 ± 3.0 t(df=21) = 0.21 0.84
education ± SD
Male/Female 8/3 4/8 χ2 = 0.10 0.07
MMSE ± SD 24.6 ± 3.3 28.7 ± 1.1 t(df=21) = −4.14 p� 0.001

SD, Standard deviation; df, Degrees of freedom; MMSE, Mini Mental State

Examination.
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Resting fMRI Data Acquisition
Blood oxygenation level-dependent sensitive imaging data were
acquired on a 3T MRI scanner (Magnetomr Verio; Siemens
AG, Erlangen, Germany) at the Wolfson Brain Imaging
Centre, University of Cambridge, with a multi-echo echo-
planar imaging (EPI) sequence (Poser et al., 2006) using the
following parameters: repetition time, TR = 2430 ms; echo times
TE = 13, 31 and 48 ms; flip angle = 90o; reduction of single
volume acquisition time with sensitivity-encoded single-shot EPI
(SENSE) by a factor of 2; acquisition matrix = 64 × 64; number
of slices = 38; field-of-view, FOV = 240 mm × 240 mm and slice
thickness = 3.8 mm (i.e., voxel size = 3.8 × 3.8 × 3.8 mm3);
acquisition time = 11 min 9 s. During acquisition, participants
were asked to lie quietly with their eyes closed.

To test for between-group differences in head motion,
independent t-tests (assuming unequal variances) were
undertaken of mean DVARS, the average root mean square
variance across all brain voxels of volume-to-volume difference
in percent signal change, and the final relative to initial image
displacement (translations and rotations about orthogonal axes).
These metrics represent rapid and slow rates of head motion,
respectively.

Structural MRI Data Acquisition
Brain structure was imaged with a T1-weighted volumetric
magnetization-prepared-rapid acquisition gradient-echo (MP-
RAGE) sequence using the parameters: TR = 2300 ms; TE = 2.98
ms; inversion recovery time = 900 ms; flip angle = 9◦; acquisition
matrix = 256 × 240; number of slices = 176; FOV = 256 mm ×
240 mm and slice thickness = 1.0 mm (i.e., voxel size = 1.0 ×
1.0 × 1.0 mm3); acquisition time = 9 min 14 s. All MRIs
were reviewed by a neuroradiologist to exclude space occupying
lesions and ensure that scans were consistent with AD, but
were not formally rated on scales for cortical or hippocampal
atrophy.

Whole brain voxel based morphometry (VBM) tested for
anatomical differences in gray matter volume (GMV) between
patients and controls. Voxelwise estimates of GMV from the
T1-weighted structural MRI images were calculated using an
optimized VBM protocol (Good et al., 2001) using version 5
of FSLVBM (Smith et al., 2004) from the Functional Magnetic
Resonance Imaging of the Brian software library (FSL).1

First, the brain was identified and masked in the T1-
weighted MRI (Smith, 2002), followed by segmentation into
gray and white matter volume maps using FAST (Zhang
et al., 2001). GMV maps were initially aligned to the
Montreal Neurological Institute (MNI) standard space atlas
by affine registration, followed by non-linear registration.
Modulation controlled for changes to voxel morphology
during registration. The modulated GMV maps were then
smoothed with an isotropic Gaussian kernel with a variance
of 3 mm.

Between-group differences in GMV were tested by t-test and
regression of the general linear model. Significance testing was
undertaken using threshold-free cluster enhancement (Smith

1http://fsl.fmrib.ox.ac.uk/fsl

and Nichols, 2009) with the statistical threshold for significance
set at p < 0.05, Family-Wise Error (FWE) corrected for multiple
comparisons.

Resting fMRI Preprocessing
The multi-echo EPI acquisitions were first converted to a
single value with near optimal contrast-to-noise ratio using
a weighting scheme on acquisitions at each TE (Poser et al.,
2006). Imaging data were then pre-processed to account
for head motion (Patel et al., 2014). In brief, the first four
volumes of each resting state data set were removed to
eliminate the non-equilibrium effects of magnetization
leaving 256 volumes for analysis. Preprocessing steps then
included slice-time correction, temporal despiking, high
pass frequency filtering above 0.02 Hz, co-registration to
the accompanying structural scan, spatial normalization to
the standard space of the Montreal Neurological Institute
(MNI) template, and spatial smoothing (6-mm full width at
half maximum Gaussian kernel). This toolbox (BrainWavelet
Toolbox)2 corrects for motion by regressing out motion
parameters, and cerebrospinal fluid (CSF) signal from ventricular
regions.

Semi-Metric Percentages
For each individual themean time-series was extracted from each
of 116 anatomically parcellated regions (i.e., nodes) based on the
Eickhoff-Ziles (EZ116) atlas (Eickhoff et al., 2005). The extracted
BOLD signals were decomposed into four frequency bands by
wavelet transform: scale 1, 0.125–0.25 Hz; scale 2, 0.06–0.125 Hz;
scale 3, 0.03–0.06Hz; scale 4, 0.02–0.03Hz. Scale twowas selected
since it represents the wavelet scale where the BOLD signal
has previously been strongly correlated with aberrant physiology
involved in a range of psychiatric disorders. The strength (i.e.,
proximity) of a connection between two nodes was the Pearson’s
correlation coefficient of the wavelet coefficients.

Pearson’s correlation measures the synchronicity between
endogenous BOLD signals. Positive values corresponds to in-
phase responses, and negative values for signals in anti-phase.
Combining both phenomena in one network is non-trivial
since positive and negative values potentially represent different
types of connections. For this reason adjacency matrices were
constructed from only the non-negative, bivariate correlations.
Edges associated with negative correlation were excluded from
the subsequent semi-metric analysis; that is, they were considered
to represent very large distances.

The shortest path between nodes of a network is an important
feature as it is a measure of information exchange between two or
more nodes connected by edges with which there is an associated
weighting (here, the correlation of BOLD activity during resting
wakefulness). It is defined as the route between two nodes that
minimizes the sum of the distances of the edges that are traversed.
When the shortest path is the direct connection between the
nodes it is known as ametric edge. Conversely, when the shortest
path is circuitous—via additional nodes—it is known as a semi-
metric edge.

2http://www.brainwavelet.org
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To find the shortest path the proximity can be maximized
through transitive closure. The functional connectivities between
nodes are first converted to distance relations that describe all
the destinations that are reachable from a given node, by the
isomorphism:

ϕ : dij =
1
wij
− 1

where wij is the proximity (i.e., correlation coefficient) and dij is
the distance between any pair of nodes i and j. In some cases,
the triangle inequality may be violated: dij ≥ dik + dkj for some
element, k (which generalises to transitivity violations involving
any number of other nodes). Thus, the shortest path between
two elements may not be the direct edge, but rather an indirect
path via a number of edges. The shortest direct or indirect path
between nodes in the distance graph is calculated by metric
closure, using by Johnson’s algorithm (Johnson, 1954), leading
to a classification of each path as metric or semi-metric (for more
details, see Simas and Rocha, 2015; Simas et al., 2015). These
calculations were performed with Matlab (MathWorks, USA).

The semi-metric percentage (SMP) measures the overall level
of semi-metric behavior of a network or sub-network, and is
defined as the ratio of the number of edges labelled as semi-
metric to the total number of edges.

Regional group differences in the SMP were first tested at
the whole-brain level, then in a decomposition into sub-graphs
for left and right hemispheres, then decomposing hemispheric
sub-graphs into lobes and the connections between them (the
aggregations of nodes defined using the appropriate levels of
the Harvard-Oxford atlas anatomical hierarchy)3 to identify
regions that contributed to any overall difference in SMP. At
each level of the hierarchy, the nodes of graph remained the
same and defined by the EZ116 atlas. These tests would not be
independent, and thus a scheme was adopted whereby pursuance
of statistical testing was predicated on the significance (i.e.,
p < 0.05, two-tailed) of the test in the preceding level in the
hierarchy. SMPs from between-lobe, within-hemisphere edges
and between-hemisphere edges were tested as measures of more
long-range connections. Between-group differences in SMP were
also ranked in order of the average Euclidean distance between
nodes in the sub-graphs from which they were calculated.

The between-group differences on the whole-brain
connectome were also assessed by comparison of the shortest
paths following transitive closure. To achieve this, the proximity
graphs derived for each individual in each group were aggregated
into a multilayer network by embedding them in a distance space
using a distance closure, which is isomorphic to a transitive
closure in proximity space. During this embedding, semi-metric
edges undergo a high degree of distortion. Thus, large differences
when taking the absolute value after subtracting the embedded
networks corresponding to two groups identifies differences
in semi-metric behavior. Full details of the method have been
reported previously (Simas et al., 2015). To observe the overall
difference in semi-metric behavior that a node has with all other

3http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fslview/atlas-descriptions.html

nodes, the sum of between-group differences associated with
that node was averaged and reprojected onto the brain surface.

Semi-Metric Backbones
Variation across individuals of the semi-metric connectomes
was visually assessed by construction of the backbone for
each group. Every edge on the individual connectomes was
labelled as either metric or semi-metric, using the algorithm
described above. An edge on the backbone is displayed
with a thickness that denotes the percentage of individuals
from the group that have a semi-metric connection at that
location. The minimum percentage of individuals required
to display an edge in the backbone is arbitrary, but was
selected here at >90% for depiction of the key features
whilst removing connections not commonly shared across the
group and serve only to obscure the visualization. Metric
backbones may be constructed, but due to the smaller proportion
of metric connections they are sparser and thus not as
informative.

RESULTS

Sample Demographics
Patients and control groups had non-significant differences
in age, gender and years of education, but as expected
AD participants had significantly lower mini mental state
examination (MMSE) scores (Table 1).

Between-Group Differences in Head
Motion
Between-group differences in mean DVARS were
non-significant: t(19.31) = 0.81, p = 0.42 (mean DVARS:
AD = 1.00, controls = 0.82)

Between-group differences in the translations and rotations
of the final volume relative to the initial volume were
non-significant (p ≥ 0.05) for displacements in the x-
direction (left-right: t(20.88) = 2.10, p = 0.05), y-direction
(anterior-posterior: t(11.48) = 0.15, p = 0.88), and z-direction
(superior-inferior: t(15.52) = 1.75, p = 0.10), and rotations about
the x-axis (t(12.48) = 0.36, p = 0.73), y-axis (t(18.11) = 2.01, p = 0.06),
and z-axis (t(10.75) =−1.03, p = 0.33).

Between-Group Differences in Brain
Structure
An independent t-test of the total GMVswas significant (t(21.45) =
4.42, p = 0.00021). However, a whole-brain, between-group
comparison of GMV at p < 0.05 (FWE corrected) did not
reveal any significant differences. Using a more lenient statistical
threshold of p < 0.001 uncorrected resulted in significant
reductions in GMV in AD patients in areas including temporal
and parietal regions (Supplementary Figure 1).

Between-Group Differences
in Semi-Metricity
Inspection of the histogram of correlation coefficients from
all participants in both groups (Figure 1A) indicates an
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FIGURE 1 | Differences in semi-metricity. (A) Histograms of correlation
coefficients, R, aggregated across all participants in each group. (B)
Projections of semi-metric backbones for left and right hemispheres
demonstrating the lower number of consistent semi-metric edges in
Alzheimer’s disease (AD) patients. (C) Between-group differences in the
node-averaged semi-metric connections to all other regions (scale normalized
for display). (D) Between-group differences in semi-metric percentage (SMP)
ranked by the mean Euclidean distance between nodes.

approximately symmetrical decrease in the variation of
the distribution corresponding to AD patients, although
the maxima are not shifted relative to each other
(median R: AD = 0.266; controls = 0.274; mean ± SD:
AD = 0.291 ± 0.034; controls = 0.316 ± 0.036). Shapiro-
Wilks tests of Normality were highly significant (p <

10−15) for both groups, and so measures of means and
variances were not appropriate characterizations of the
distributions.

Edges associated with negative correlation were excluded
from semi-metric analysis. An independent samples t-test not
assuming homogeniety of variance, of the number of negative
(i.e., set to zero) correlations was non-significant (t(22) = 0.35,
p = 0.37).

Table 2 gives the details of the between-group differences
in SMP, which were significant at the whole-brain level,
and increased in AD patients. The right hemisphere SMP
was also significantly increased in AD patients as was that
associated with inter-hemispheric connections (Table 1). Within
the right hemisphere, both the occipital and between-region
SMP were significantly increased in AD patients. There was
no significant correlation between SMP and GMV (R = −0.32,
p = 0.14).

Bearing in mind the absence of group differences in SMP
in the left hemisphere (Table 2), the apparent hemispheric
symmetry of these results prompted repeated measures t-tests

TABLE 2 | Whole-brain and the subsequent regional between-group mean
differences, 95% confidence intervals and p-values in semi-metric
percentages (SMP).

Region Difference Confidence p-value
of means interval (95%)

(AD—controls)

Whole brain 0.026 0.002, 0.050 0.037∗

Left hemisphere 0.007 −0.023, 0.036 0.637
Right hemisphere 0.031 0.005, 0.057 0.022∗

Cerebellum 0.039 −0.018, 0.096 0.173
Between-hemispheres 0.03 0.004, 0.056 0.029∗

Left
Frontal 0.009 −0.049, 0.067 0.749
Parietal −0.068 −0.174, 0.037 0.191
Occipital 0.092 −0.031, 0.215 0.135
Temporal −0.158 −0.286, −0.030 0.018∗

Limbic −0.007 −0.110, 0.096 0.888
Subcortical −0.213 −0.385, −0.041 0.018∗

Within-hemisphere, 0.019 −0.007, 0.046 0.146
Between-region

Right
Frontal −0.04 −0.124, 0.043 0.317
Parietal −0.041 −0.122, 0.040 0.299
Occipital 0.134 0.016, 0.252 0.028∗

Temporal 0.011 −0.103, 0.124 0.845
Limbic 0.054 −0.075, 0.183 0.39
Subcortical −0.164 −0.382, 0.052 0.127
Within-hemisphere, 0.036 0.007, 0.065 0.016∗

Between-region

∗p < 0.05.

(equal variances assumed) for the difference in SMP between
left and right hemispheres. These tests were non-significant
for all participants in both groups (t(22) = −0.81, p =
0.43) and AD patients alone (t(10) = −1.48, p = 0.17).
A between-group, independent samples, non-parametric test
of the asymmetry index = (r−l)/(r+l) (Geary, 1930), where
r and l are the SMPs in the right and left hemispheres
respectively, was also non-significant (Mann-Whitney U = 49.00,
p = 0.20).

A display of the average semi-metric behavior of the nodes
broadly recapitulates the results from comparisons of SMPs, but
also identifies the bilateral inferior frontal gyri and right inferior
temporal gyrus (Figure 1C) as regions of greatest difference.
At these nodes, the between-group differences in the shortest
indirect paths to all other nodes in the network are greatest, and
thus the distortion in distant space needed to achieve the distance
closure.

The pattern of between-group differences in SMP as a
function of the average distance of the edges within the sub-
graphs are shown in Figure 1D. There is a weak apparent trend
in change in SMP over the spatial scales of the sub-graphs with
greater SMP in controls at short distances and greater SMP in AD
patients at longer distances.

Finally, semi-metric backbones (Figure 1B) indicate a
widespread decrease in semi-metric edges that are consistent
across AD patients. In other words, although indirect paths
are generally increased, predominantly in the right hemisphere
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(Table 2), the edges which are semi-metric vary strongly between
AD patients relative to controls.

DISCUSSION

This study is the first to illustrate the importance of ‘‘weak’’
links in the functional connectome to neuroimaging data from
samples of individuals with neurodegenerative disorders, in this
case AD. Weak links are important to the overall connectome
in that they can form part of indirect paths that are in fact
more proximate than the direct path (i.e., the semi-metric
paths).

Widespread (i.e., whole-brain) increases in the SMP indicate a
change in brain functional connectivity towards more circuitous
paths. Whilst regional testing points towards a predominance
in the left hemisphere, there was no statistical evidence for any
asymmetry in the global effect. A qualitative appreciation of the
SMP differences also suggests symmetric changes. There was
no strong evidence for any changes in magnitude or sign in
semi-metric behavior as a function of geometrical connection
distance.

Global Increases in Indirect Paths are
Associated with AD
Cortical atrophy measured with VBM is a robust indicator
of disease progression in AD with initial cortical thinning in
medial temporal structures later involving limbic, frontal and
occipital brain regions, in that sequence (Thompson et al.,
2003; Matsuda, 2013). No statistical differences in GMV were
observed in this sample of mild-to-moderate AD despite ample
evidence that suggests morphological changes can be detected
early in the course of the illness (Hirata et al., 2005; Ishii
et al., 2005). The implication is that the small samples size
(N = 11 AD patients) in this study reduced the statistical
power below the threshold for detection at p-values appropriately
controlled for multiple comparisons. This is evidenced by
a plausible pattern of GMV reduction seen at uncontrolled
thresholds (Supplementary Figure 1). Furthermore, this sample
is relatively young and there is evidence that patterns of
cerebral atrophy may vary depending the age of onset (Moller
et al., 2013). Thus, there may be deviation here from the
expected pattern of structural changes observed in older
patients.

SMP was sufficiently sensitive to detect case-control
differences at the whole-brain level. Significant contributions
to the overall differences were localized in the right
hemisphere, particularly in the occipital lobe, and in the
intra-hemispheric connections between regions. Additionally,
the between hemisphere connections also significantly
differed. All these changes involved an increase in SMP
(Table 2).

Although these regional results suggest asymmetry to
the effects, formal statistical testing and a qualitative view
of the between-group differences demonstrates a more
bilateral, symmetric pattern either in node-average semi-
metric connections (Figure 1C) or regional SMPs (Figure 1D).
Nevertheless, insufficient power to detect lateralisation due to

small sample sizes cannot be disregarded. Ranking the SMP
differences by the average between-node distance in the sub-
graphs leads to an overall picture of more indirect (semi-metric)
paths at greater spatial distances.

Comparisons with Studies of Strong
Functional Connections
The DMN is a network of brain regions in the posterior
cingulate, parietal cortex, medial temporal and medial prefrontal
cortices associated with atrophy, amyloid deposition and reduced
metabolism in AD. A review of functional connectivity studies
of the DMN in AD (10) reveals both increases and decreases
in functional connectivity between its components. This mixed
picture is broadly aligned with the profile of differences
observed with this analysis of semi-metricity as well as that
obtained with other modalities, particularly with regard to
the frequency-dependent change in the sign of the effect at
long and short ranges (Stam et al., 2006; Babiloni et al.,
2011).

Inferior frontal regions were highlighted as being
associated with the greatest between-group difference in
terms of their average semi-metric behavior towards all
other nodes in the connectome (Figure 1C). These areas
are important for inhibition and, in the left hemisphere,
language. Reductions in functional correlations have been
located in the inferior frontal gryrus as part of disruptions
to larger scale brain circuits (Zhou et al., 2013; Zhang et al.,
2014).

Long-range, interhemispheric connections have come
under scrutiny as markers of AD with loss of both structural
(Lee et al., 2010; Wang et al., 2015b) and functional
(Liu et al., 2014; Wang et al., 2015b) integrity. Here, we
observed a similar change in communication pathways, but
evidenced by the reduction in direct (metric) connections
that characterize functional connectivity between homologous
regions in the healthy brain (Lowe et al., 1998; Salvador
et al., 2005). Instead communication in AD patients
may be facilitated by multiple, indirect paths. However,
although the dominant process in neurodegeneration is
a loss of functional connectivity, more circuitous paths
may in fact serve to increase signal noise, leading to
reductions in cognitive performance. Solving the direction
of this effect will require longitudinal studies where
the change in cognitive performance can be related to
characterizations of the neuroimaging, including semi-metric
analyzes.

Previous studies on the function connectome of AD patients
have noted decreased inter-regional connectivity, but increased
intra-regional connectivity, that has been suggested to occur
as part of a compensatory mechanism (Sanz-Arigita et al.,
2010; Wang et al., 2015b) or due to pathologies affecting
functional connectivity that vary according to distance (Sanz-
Arigita et al., 2010). Comparison of parameters from the
functional connectome constructed from only those edges
associated with the highest correlations have similarly been
characterized by the heterogeneity of their results (Tijms et al.,
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2013). Nevertheless, there is support from these studies for
a disrupted connectivity model, particularly at long distances
and on highly connected hubs (Buckner et al., 2009) that
occurs before the manifestation of clinical symptoms (Brier
et al., 2014). This study provides weak, qualitative evidence
(Figure 1D) for similar changes to the topology of the functional
connection, with increased SMP in AD at shorter mean
geometric edge lengths, switching at longer lengths to decreases
in SMP.

Increased Heterogeneity of the
Connectome
Accompanying the increase of semi-metric connections
globally was greater variance in the topology of the semi-
metric sub-graphs of AD patients, such that the requirement
that >90% of the group have an indirect connection between
any two brain regions is not as frequently satisfied in AD
patients, and the backbone is thus sparser (Figure 1B).
This aligns with the reduced variation of the correlation
coefficients (Figure 1A), suggesting that semi-metric behavior
is related to this property of the complex distribution.
Variance is a feature of functional connectomes, or indeed
of other biomarkers of AD, that is not often reported. Two
examples of increased variance in AD include hippocampal
mircrostructure, measured with high-field MRI microscopy,
that was observed without between-group differences
(Antharam et al., 2012), and amyloid deposition in older
patients with mild cognitive impairment (Hedden et al.,
2009). Amyloid deposition has been linked with changes
to functional connectivity prior to the loss of cognitive
function (Vemuri et al., 2012). However, more recently
the relationship between insoluble amyloid proteins and
neurodegeneration has been questioned by the observation
that loss of cortical volume can occur without amyloid
accumulation in cognitively normal older individuals, although
the impact of neurodegeneration on cognitive performance
is greater in those with higher levels of amyloid (Wirth et al.,
2013). This points to a possible upstream effect of amyloid
on atrophy, or that there are likely to be similar or even
greater effects of tau pathology on connectivity, but these
have not yet been assessed. Variation between individuals
in localized pathological changes may have profound effects
on direct functional connections between regions, and could
therefore account for the inhomogeneity of results between
studies.

CONCLUSION

AD has been described as a disconnection syndrome
(Delbeuck et al., 2003), and the available evidence from
this study and others deploying functional connectivity
would support that notion. Reductions in connections,
particularly at long-ranges are a consistent feature of the
disorder with local (within-lobe) increases in connectivity

more speculatively explained as a compensatory reaction to the
disease.

Through an approach that includes all positive connectivities,
this study suggests a refinement of the disconnectivity model,
in that compensation for the loss of direct connections occurs at
large spatial scales through a proliferation of alternative, indirect
pathways in an attempt maintain information transfer.
The presence of connectivity changes whilst participants
retain some degree of cognitive function suggests that
this is at least partially successful during the initial stages
of the disease. Furthermore, the significant between-
subject variance in the topology of these circuitous paths
in AD patients is an indication that this process is
independent of the location within the brain of the loss of
connectivity.

This greater variance may also go some way to explaining
the heterogeneity of results that exclude weak links in
their models of connectivity. Variable changes in local
microstrucuture could alter the topology of the functional
connectome based on strong links alone on an individual-
by-individual basis. In turn, this may lead to a wider
variety of characteristic parameters than in the healthy
brain.

This study is based on a small sample size and therefore
caution is needed when interpreting the results. Although head
motion was non-significant it was greater in AD patients.
Whilst the preprocessing steps ameliorated the effects of
the motion, the small sample size limited what additional
statistical modelling could be undertaken to further regress
out its effect, and thus its contribution to differences in
SMP cannot be ruled out. Nevertheless, this study motivates
the consideration of weak links as important components of
understanding the functional connectome in neurodegenerative
disorders.
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Supplementary Figure 1 | Regions of significant decrease in grey
matter volume in AD patients relative to controls, at a statistical
threshold at the cluster level of p < 0.001 uncorrected.
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