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Abstract: Increasing evidence during the past two decades shows that cells interconnect and
communicate through cytonemes. These cytoskeleton-driven extensions of specialized membrane
territories are involved in cell–cell signaling in development, patterning, and differentiation, but
also in the maintenance of adult tissue homeostasis, tissue regeneration, and cancer. Brain tumor
cells in glioblastoma extend ultralong membrane protrusions (named tumor microtubes, TMs),
which contribute to invasion, proliferation, radioresistance, and tumor progression. Here we review
the mechanisms underlying cytoneme formation, regulation, and their roles in cell signaling and
communication in epithelial cells and other cell types. Furthermore, we discuss the recent discovery
of glial cytonemes in the Drosophila glial cells that alter Wingless (Wg)/Frizzled (Fz) signaling between
glia and neurons. Research on cytoneme formation, maintenance, and cell signaling mechanisms will
help to better understand not only physiological developmental processes and tissue homeostasis but
also cancer progression.
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1. Introduction

Filopodia are long, thin, finger-like, actin-rich plasma-membrane protrusions that function as
tentacles for cells to explore their local environment. Cells develop filopodia in response to chemo
attractive signals in the microenvironment. These structures are 0.1–0.3 µm in diameter and contain
parallel bundles of 10–30 actin filaments held together by actin-binding proteins, including tropomyosin
and fascin, and their elongation is mediated by formins [1]. Filopodia dynamics are mainly regulated
by the small Rho GTPase, Cdc42 [2]. Filopodia sense the extracellular environment at their tips using
cell surface receptors, and they have been given different names usually according to their size or
functions: microspikes [3], thin filopodia [4], thick filopodia [5], gliopodia [6], myopodia [7], growth
cone filopodia, and dendritic spines involved in synapse formation [8] and in neuronal targeting and
pathfinding [9], invadopodia (invasion) [10], podosomes (cell adhesion) [11,12], antigen presentation
by dendritic cells of the immune system [13], telopodes [14], pseudopods, tunneling nanotubes [15],
and cytonemes [16]. Other related functions include: force generation by macrophages [17], virus
transmission [18], vasculogenesis [19], wound closure [20], dorsal closure during Drosophila embryonic
development [21], Delta-Notch signaling [22], and growth factor signaling [16].

A cytoneme is defined as specialized types of signaling filopodia that exchange signaling proteins
between cells. They were first noted as long cellular extensions that protrude from Drosophila wing
imaginal disc cells, and are predominantly linear, with diameters estimated at 100–200 nm and lengths
between 2–150 µm [16,23–25]. However, filopodia can extend more than 800 µm and have been
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measured with diameters of 100–500 nm [16,26,27]. Therefore, the macrostructural features contribute
to the classification of the various types of filopodia-like structures.

In the vinegar fly, Drosophila melanogaster, cytonemes were initially found in wing and eye imaginal
discs [16] and later in ovaries [28], trachea [29,30], and lymph glands [31]. They have also been
described in other organisms, such as earthworms [32], earwig ovaries [33], spider embryos [34], in
Rhodnius and Calpodes [35], and in several mammalian cell types including retroviral-infected cells [36],
mast cells [37], B-lymphocytes [38], and neutrophils [39]. Recent observations suggest that cytonemes
also have an important role during development of the zebrafish neural plate [40], where they transport
Wnt8a between distant epithelial cells during development in chicken embryos where they mediate
Wnt signaling [41,42], and of the chick limb where they transport Sonic Hedgehog (Shh) [25].

Studies in Drosophila have shown differences among cytoneme subtypes. There are cytonemes
that send and others that receive signaling proteins. Moreover, cytonemes involved in Decapentaplegic
(Dpp), Hedgehog (Hh), Epidermal growth factor (EGF), and Fibroblast growth factor (FGF) signaling
can be distinguished by composition, location, and behavior (reviewed in [43]).

Here we will review the physiological role of cytonemes during development in different tissues
and the role of cytonemes in tumorigenesis, focusing mainly on the Drosophila model organism.

2. Cytonemes in the Physiology of Epithelial Cells in Drosophila

In this section, we will review and summarize the available information about the structure
and composition of cytonemes, available markers, and components required for cytoneme formation.
Most of the available literature is based in Drosophila melanogaster. Later, we will review cytoneme
physiological roles in cell–cell signaling in both epithelial and in non-epithelial cells.

2.1. Cytonemes: Structure, Composition, and Markers

The cytoneme core is composed of actin filaments that can be marked with actin fluorescent
protein chimeras [23,30,44] and with actin-binding fluorescent protein chimeras, such as moesin
(GMA:GFP) [23,45,46] and Diaphanous (Dia:GFP [47]). Dia is a member of the formin family [48],
which are involved in actin polymerization and that associate with the growing end of actin filaments.
Cytonemes can also be observed by using fluorescent tags to mark either the cytoneme membrane (e.g.,
CD8:GFP, CD8:Cherry, or Cherry-CAAX), or cytoneme components (e.g., signaling protein receptors
such as Tkv [24,44], Breathless (Btl) [24,30], Patched (Ptc) [49], and Fibroblast Growth Factor Receptor
(FGFR) [50]. Other components include signaling proteins such as Dpp [24] and Hh [23], and the
following components of signaling pathways: Ihog, Brother of Ihog (Boi), Shifted (Shf/DmWif), Dallylike
(Dlp), Dispatched (Disp) [23,51], Delta (Dl) [22], and cell adhesion proteins, including Neuroglian
(Nrg:GFP), and Capricious (Caps:GFP)) [24,44,52]. Fluorescently labeled Flotillin-2 (Flo2/Reggie-1),
CD4-Tomato, and glycosylphosphatidyl-inositol (GPI-YFP) also mark cytonemes [23].

Cytonemes can have different components within the same tissue. For instance, the wing disc’s
apical cytonemes contain components of the Dpp pathway (Tkv) [44], the basal cytonemes contain
components of the Hh pathway (Hh, Ihog, Dally, Dlp, Shf/DmWif, a secreted protein that positively
modulates Hedgehog signaling, Disp, and Ptc) [23,49,51,53], and cytonemes in the air sac primordium
(ASP) of the wing disc contain either Btl or Tkv, but not both [24]. It is possible that every signaling
pathway has a dedicated set of cytonemes that mediate trafficking between specific signaling cells.

The appearance and physical characteristics of cytoneme tips suggest that they are specialized
regions. The tips of ASP cytonemes concentrate over-expressed Nrg:GFP, activated Dia:GFP, indicating
that cytoneme tips may be sites of actin nucleation, and Caps:GFP, and the only cytonemes that take up
Dpp are those whose tips contact wing disc cells [43]. Many wing disc cytonemes had bright bulbous
tips at apparent points of contact with ASP cells [52]. The shafts of cytonemes are marked with either
membrane-tethered fluorescent proteins or constituent protein fluorescent constructs. They have a
uniform diameter, visualized with fluorescence optics, and cytoneme tips are brighter and wider.



Int. J. Mol. Sci. 2019, 20, 5641 3 of 15

2.2. Regulatory Mechanisms in the Formation of Cytonemes

In epithelial tissues, cytonemes emanate from specific membrane territories that have an intrinsic
basolateral polarization. Furthermore, in Drosophila, the signaling ligands Hh, Wg, Delta, and Spz,
as well as their reception processes show basolateral positioning [22,49,54–56]. This subcellular
localization implicates mechanisms that drive both signaling components and machinery for the
initiation of protrusion to the basolateral side. In the Drosophila wing disc, an apico-basal activity
gradient of the RhoGTPase, Rac, regulates filopodial polarization [57,58]. This Rac gradient is regulated
by adherens-junction (AJ) proteins and drive both the position and shape of epithelial filopodia.
Likewise, a vesicle-sorting mechanism has been described to transport signaling ligands to the
basolateral side [59,60]. However, the regulatory mechanisms for cytoneme cargo upload have yet
to be determined, and it is also unknown whether or not a vesicle-recycling mechanism could also
contribute to cytoneme formation. In zebrafish, Wnt8a at the plasma membrane recruits transducer of
CDC42-dependent assembly protein 1 (Toca-1), which locally activates cytoneme nucleation [40,61].
Hence, intracellular trafficking of the Wnt ligand could be key for the spatial localization of membrane
protrusion and signaling.

In Drosophila, ectopic expression of a constitutively active form of Dia [62] concentrates at the tips
of the ASP cytonemes, and cytonemes do not extend normally in the absence of Dia function [52]. The
Rho family member, Vav, localizes to wing disc basal cytonemes [44]. Additionally, the Drosophila
capping proteins SCAR and pico, which are actin-binding proteins, have been implicated in cytoneme
function by genetic loss-of-function studies [23].

The ASP cells that extend the cytonemes containing receptor-bound Dpp are able to activate Dpp
signal transduction. ASP cells that are genetically compromised for Dia and shibire (which encodes a
dynamin) and Nrg or Caps (which encodes cell adhesion proteins), fail to make normal cytonemes and
are signaling deficient [63]. Moreover, genetic conditions that deplete anterior cells of either Dia or
SCAR, reduce the length and number of cytonemes and reduce both the Hh gradient and signaling
in the anterior compartment of the wing disc. Furthermore, over-expression of Flotillin-2, a major
component of membrane microdomains, increases cytoneme length and the extent of the Hh signaling
domain, and it is able to induce numerous filopodia-like protrusions in various cell lines [64].

2.3. Signaling and Communication through Cytonemes

Cytonemes have been described to be associated with components of a specific signaling pathway,
even when emerging from the same cells [24]. They can transport either the pathway ligand or the
receptor, depending on whether they emanate from receiving or signal-producing cells, or from both.
Cytonemes have been shown to be involved in the paracrine transport of the following signaling
molecules, including Notch, Spi/EGF, Branchless (Bnl)/FGF, Dpp/BMP, Wingless (Wg)/WNT, and
Hh/Shh. Cytoneme-mediated delivery of signaling ligands has been shown for Dpp in the Drosophila
wing disc, Wnt in zebrafish [40,65], Hh in Drosophila, and Shh in chick limb bud [23,25,49,55,59].
Conversely, cytonemes emanating from signal-receiving cells have been shown to participate in the
distribution of the Drosophila FGF receptor homolog Breathless (Btl) in the developing ASP [66].

Establishing the Dpp gradient in the Drosophila wing disc depends on cytonemes containing
the receptor Tkv. These cytonemes extend from cells situated on both sides of the source territory
containing Dpp from producer cells [16]. Cells that activate Dpp signal transduction extend cytonemes
to the closest cells that produce Dpp. This specificity is evident in the wing disc, where cells in
the wing blade primordium direct Tkv-containing cytonemes toward the Dpp-producing cells at
the disc midline to which they are closest. Specificity is also evident in the ASP cells that direct
Tkv-containing cytonemes toward nearby Dpp-producing cells of the wing disc, while also directing
FGFR-containing cytonemes toward wing disc cells that express FGF. Furthermore, cells in the eye disc
direct the epidermal growth factor receptor (EGFR)-containing cytonemes toward Spi/EGF-producing
cells of the morphogenetic furrow (MF). However, experimental conditions that change the location of
the signaling cells also change cytoneme distributions. Changes to the location of cells that express
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signaling proteins are reflected in altered distributions of cytonemes and blocking signal transduction,
either after ectopic expression of a dominant-negative receptor or if expression of the signaling protein
is reduced or eliminated, results in the absence of cytonemes [63].

Cytonemes orient uniformly towards the anterior–posterior (A/P) compartment boundary of
the Drosophila wing pouch primordium [16]. Cells at the anterior–posterior (A/P) compartment
boundary express Dpp (a member of the transforming growth factor-β (TGF-β) superfamily), and long
filopodia that extend from wing disc receiving cells towards Dpp-expressing cells at the compartment
border are involved in Dpp signaling [16,44]. Different mechanisms were proposed to mediate
extracellular molecule distribution among epithelial cells, including extracellular diffusion [67], cell to
cell transfer [68], vesicle transport [69], or cytoneme mediated movement [16]. The contribution of
cytonemes to Dpp distribution seems to be the most accepted mechanism in the case of the tracheal
system. This organization suggested that physical contacts arise at which Dpp transfers to its targets,
as an alternative to the diffusion–secretion established model. This mechanism of direct delivery is
similar to neurotransmitter release and uptake.

The Hh morphogen is required during development, and Hh signaling has been related to axon
guidance, cell migration, stem cell maintenance, and oncogenesis [70]. The role of Hh as a cytoneme
based signaling molecule, was originally described in Drosophila wing epithelial cells and in abdominal
histoblasts [23]. Actin-based cytonemes are produced and transported by Hh-producing cells to deliver
Hh to several cell diameter distances. This study showed that Hh gradient correlates with cytonemes
formation, and mutations affecting cytoneme formation also disrupt the Hh gradient [23].

There are cytonemes that are specific to the Drosophila eye and wing discs or to tracheal cells.
Eye differentiation in Drosophila is marked by a wave of cell division and differentiation, termed the
morphogenetic furrow (MF), which initiates from the posterior margin of the eye imaginal disc just
prior to metamorphosis. The MF progresses through the unpatterned dividing cells of the eye disc
from posterior to anterior, leaving behind ordered cell clusters called ommatidia [71–73]. In the eye
disc, cytonemes on the apical surface of columnar epithelial cells orient to either the MF or the equator,
which is orthogonal to the MF and defines a line of mirror-image symmetry where dorsal and ventral
ommatidia are juxtaposed [74]. EGFR is present in motile puncta in the cytonemes that orient to the MF,
where the EGFR ligand, Spi/EGF, is produced [24]. In the wing disc, Thickveins (Tkv), a receptor for
Dpp, is present in motile puncta in cytonemes that orient to the disc midline, where Dpp is expressed,
and the cytoneme tips contact and appear to be directed only to Dpp-expressing cells, suggesting that
they transport Dpp across the disc [44]. In the eye disc, cells extend two types of cytonemes, either
orienting toward the MF or toward the equator (Figure 1).

The EGFR signaling pathway sustains multiple functions during eye development, including
proliferation and differentiation [75–78]. In normal conditions, cells extend cytonemes to the usual
signaling centers [63]. The EGF receptor concentrates in motile puncta in the MF-directed cytonemes but
is not present in the cytonemes directed to the equator. When a dominant-negative EGFR is ectopically
expressed throughout the eye disc, the long MF-directed cytonemes are absent, suggesting that they
depend on Spi/EGF signaling [24]. Conversely, when the EGF ligand is uniformly over-expressed,
the only eye disc cytonemes detected are short and lack a directional bias, suggesting that these
cytonemes may have orientations and lengths that are dependent specifically on the source of
spi/EGF [24,63]. These characteristics suggest that cytonemes in the eye disc selectively localize EGFR;
the MF directed cytonemes mediate EGF signaling; cytonemes appear to link signal producing and
receiving cells; and stable contacts via cytonemes require contributions from both signal-producing
and signal-receiving cells.

In Drosophila, cytonemes containing the Fz receptor from the ASP cells contact the Wg-producing
cell bodies in the wing disc epithelia for signal reception [54]. In the zebrafish embryo, the tips of
cytonemes from Wnt8a-producing cells transfer the ligand by contacting the cell body of responding
cells [40]. Moreover, cytoneme distributions and plasticity reveal their specificity for a specific signaling
protein. Eye disc cytonemes change distribution after uniform overexpression of Spi/EGF and orient
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towards these ectopic sources, but they do not change after uniform overexpression of Dpp or Hh.
Similarly, ASP cytonemes change after ectopic expression of FGF, and wing disc cytonemes change
after ectopic expression of Dpp, but these cytonemes do not change after uniform overexpression
of Spi/EGF or Hh. These behaviors suggest that stable contacts require contributions from both the
signal-producing and signal-receiving cells.Int. J. Mol. Sci. 2019, 20, 5641 5 of 16 
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Figure 1. Cytonemes of the eye imaginal disc. Diagram of an eye disc in which the MF (blue line) has
progressed from posterior to anterior, showing differentiated ommatidia in the posterior region of the
eye disc (red dots). The equator is perpendicular to the MF (red line). There are two types of cytoneme
(green lines) extending from cells anterior to the MF: (1) cytonemes oriented toward the equator and (2)
cytonemes oriented toward the MF and populated with EGFR-containing puncta (light blue dots).

The presence of the Tkv, Btl, and EGF receptor in different, specific cytonemes suggests that each
of these cytoneme subtypes mediates the movement of Dpp, FGF, and Spi/EGF, respectively. Cells
that activate the signal transduction pathways for these signaling proteins also extend cytonemes that
contain the cognate receptor. Similarly, wing disc epithelial cells that activate Dpp signal transduction
extend Tkv-containing cytonemes toward Dpp-expressing cells. Likewise, cells of the eye disc activate
EGF signal transduction and extend EGFR-containing cytonemes towards the furrow. Moreover, the
cells at the tip of the ASP that activate the FGF signal transduction, extend FGFR-containing cytonemes,
and cells that activate Dpp signal transduction, extend Tkv-containing cytonemes [63].

Studies in several other systems have reported that signal transduction is associated with cell–cell
contacts both for cells that are far apart and for cells separated by short distances. For example, Hh
is involved in juxtacrine signaling in the Drosophila germline stem cell niche, and it is localized in
cytonemes that extend from Hh-expressing cells [28]. In the Drosophila leg mechanosensory organ,
Spi/EGF is produced in a socket cell and induces a specific neighbor to adopt a bract cell fate. Polarized
protrusions that originate from the socket cell appear to target EGF signaling to the particular precursor
cell [79]. Filopodia-mediated contacts between cells that are not immediate neighbors have also
been implicated in Notch and Scabrous-dependent signaling that pattern the bristles of the adult
thorax [22,80]. Cytonemes have been shown to link wing disc and ASP cells and are required for
signaling. Dpp in transit between the wing disc and the ASP colocalizes with the Tkv receptor in
puncta at cytoneme contacts, also known as cytoneme synapses due to their similarities to neuronal
synapses [63], and moves along them [52]. Moreover, contacts at cytonemes from myoblasts carrying the
Notch ligand, Delta (Dl), also contact the ASP, and vice versa, suggesting a possible cytoneme–cytoneme
interaction to activate Notch signaling [54]. In the case of Hh distribution within Drosophila epithelia, a
study revealed direct cytoneme–cytoneme contact sites between distant producer and receptor cells all
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along their length [55]. Similar contacts have been suggested for Shh signaling in the developing chick
limb bud [25].

3. Cytonemes in Nonepithelial Tissues: Trachea, Myoblast, Ovary, Brain

Various laboratories described the existence and function of cytonemes in the trachea, myoblast,
ovary, and brain cells of Drosophila. The functions of filopodia in neurons are related to path
finding [9] and synapse formation [8], chemotaxis in Dictyostelium discoideum [81], cell migration and
adhesion [82,83], cell signaling [22,40,52,55,84], and cancer progression and metastasis [83,85–87].

3.1. Trachea

The tracheal air sac primordium is a branch that interacts with the epithelial cells of the wing
disc. Cytoneme extend from the basal surface of the tracheal epithelium and mediate Dpp signaling
through its receptor Tkv [44] or FGF signaling through the FGF-receptor [30]. However, these two
receptors are not present in the same cytoneme [52], which suggests a higher level of specificity in
cytoneme-mediated signaling.

FGF mediates the budding of air sac precursors and tracheal branching during third instar larvae.
These air sac precursors extend cytonemes towards FGF expressing cells and establish filopodial
contacts. As a result, FGF signaling induces mitosis on differentiated tracheal cells [30].

A recent publication investigating the similarities between neuronal and cytoneme synapses,
studied the roles of neuronal synapses components in the development of the Drosophila ASP. Signaling
in the ASP was disrupted if genes associated to glutamate signaling were silenced in wing disc
cells, thus cytoneme-mediated signaling in epithelial cells is glutamatergic. In more detail, partial
loss-of-function conditions in the wing disc, which targeted essential components of presynaptic
neuronal compartments, decreased the presence of cytonemes and signaling in the ASP, but targeting
these genes in the ASP had no effect. Partial loss-of-function conditions in the ASP that targeted
essential components of postsynaptic neuronal compartments, decreased signaling in the ASP, but
targeting these genes in the wing disc had no effect on the ASP. This indicates glutamatergic functions
of neuronal presynaptic compartments only in the signal transmitting cells of the wing disc, and
glutamatergic functions of neuronal postsynaptic compartments only in the signal-receiving cells of the
ASP [88]. Cytoneme contacts are characterized by GRASP fluorescence, a technique that marks sites of
approximately 20–40 nm cell–cell apposition originally developed to identify neuronal synapses [52,55].
Cytoneme contacts and cytoneme mediated signaling depend on the adhesion proteins Caps and
Nrg, which also have essential trans-synaptic roles in neuronal synapses [89,90]. This study provides
evidence for additional components that are common to both cytoneme contacts and neuronal synapses,
including voltage-activated glutamate transmission. It was also found that Dpp signaling in the ASP
was compromised if disc cells lacked Synaptobrevin and Synaptotagmin-1 (which function in vesicle
transport at neuronal synapses), the glutamate transporter, and a voltage-gated calcium channel, or if
ASP cells lacked Synaptotagmin-4 or the glutamate receptor GluRII [88].

3.2. Myoblasts

Myoblasts are the precursor cells of the muscle fibers during development; these cells develop
together in the wing imaginal disc and later differentiate into the flight muscles. Long-range signals
among cells assure the proper regulation of embryonic development. Cytonemes connect myoblasts
with epithelial cells and the air sac primordium. Specific cytonemes from myoblast accumulate the Fz
Receptor, which takes Wg from epithelial cells. Additionally, myoblast specific Delta (Dl) containing
cytonemes contribute to Notch activation in the air sac primordium [54] (Figure 2).
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3.3. Ovary/Testis

Stem cell niches maintain the proliferative condition of stem cells, but not of the neighboring
daughter cells. Niche signals are limited to the stem cells through microtube-based nanotubes that
mediate Dpp signaling. Nanotubes accumulate the Tkv receptor that, after interaction with the
ligand Dpp, activates signaling within germ-line stem cells. This signaling (Tkv-Dpp) is sufficient
to stimulate nanotube formation. Disruption of this signal leads to germline stem cell loss [91].
Microtube-based nanotubes can transport signaling molecules in a similar way compared to cytonemes,
but are microtubule-based and F-actin independent [92].

The maintenance of the stem cell niche in the female germline depends on the Hh gradient and
cytoneme formation [28]. In this case, Hh is produced in the cap cells of the ovary niche under the
transcriptional regulation of Engrailed. Hh is secreted to the adjacent escort cells and stimulates the
expression of Dpp and another Tkv ligand, Glass bottom boat (Gbb), by suppressing Janus kinase
signal transducer (JAK/STAT) activity [93]. Whether escort cells are the functional and unique source
of Dpp is a matter of controversy. It is also proposed that Dpp is produced by cap cells and functions
over a short (one cell diameter) distance to promote GSC self-renewal, by suppressing the expression
of the differentiation-promoting factor bags of marbles (Bam) [93]. Cytonemes are produced in the stem
cell niche cap cells and mediate Hh transport and delivery to the escort cells. These cytonemes project
directionally towards low Hh signaling in the niche even though the signals that modulate cytoneme
length from the niche are still under debate. This system ensures the production of Dpp and Gbb to
activate Dpp pathway in female germ-line stem cells to assure their proliferative condition [28].

3.4. Neurons

The nervous system cells, neurons, are morphologically distant from other cell types because
they extend long protrusions (axons and dendrites) and are polarized and asymmetric. Neurons
communicate with target cells or tissues by extending dendrites and axons that form specialized
contacts (synapses). These synapses can release or take signals from other cells and ensure the
specificity of the communication, and modulate the duration and amplitude of the message [94]. A
main characteristic of neurons is the formation of a network that interconnects thousands of cells in
the brain. This network facilitates the coordination among different brain regions, contributes to the
exchange of molecules (neurotransmitters), and the localization of organelles such as mitochondria
in specific zones [95]. These projections are named tunneling nanotubes (TNTs) and share some
features with cytonemes [96]. TNTs are formed by F-actin TNTs. In addition, TNTs also contain
microtubules, depending on the size and the corresponding delivering cargo. Among others, TNTs
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transport prion aggregates involved in neurodegenerative diseases and have been postulated as a
source of neurodegeneration spreading through different areas of the brain [92].

3.5. Glia

Glial cells (microglia, oligodendrocyte, and astrocytes) are specialized nervous system cells that
give metabolic support to the neurons and are responsible for the immune response in the brain,
contribute to the spreading of the electric signals, recapture glutamate, and are involved in many other
essential functions for the brain physiology [97]. Glial cells play a central role in neural diseases such
as Alzheimer’s disease [98], amyotrophic lateral sclerosis (ALS) [99], or psychosis [100].

The coordination between glial cells and neurons is essential for axonal conduction, synaptic
transmission, and information processing during development and during adult life; therefore, it is
critical for brain function. Different methods of communication have been described in the glia–neuron
two-way communication, including ion fluxes, neurotransmitters, cell adhesion molecules, extracellular
vesicles, and signaling molecules [101,102]. Thus, glial cells have emerged as central players in the
development and function of complex nervous systems from flies to humans [103].

In addition, a novel mechanism of cell to cell communication based on cellular protrusions
(filopodia) has been described in glial cells [104]. Astrocytes in vivo extend thin processes around
synapses that mediate the communication with neurons. These structures are known as peripheral
astrocyte processes (PAPs) and are from 50 to 100 nm thick [104].

4. Cytonemes in Pathology: Tumorigenesis

The nature of these interconnecting structures and their similarities with epithelial cytonemes are
currently under debate. Cytonemes have been proposed to mediate communication between neoplastic
cells and cells in their microenvironment [87]. In a Drosophila wing disc tumor model utilizing ectopic
expression of the EGFR and receptor protein-tyrosine kinase (Ret) oncogenes, cytoneme formation
is required to receive signals from the neighboring cells. Genetic ablation of cytonemes prevents
tumor progression, restores apico-basal polarity, and improves survival [87]. This recently established
system serves as an optimal platform for novel pharmaceutical approaches against cancer progression
in vivo. The authors identified pharmacological combinations against cytoneme-mediated oncogenic
signals that prevent tumor progression and improve life span. The value of flies as a valid platform
for human disease has accumulated evidences that favor this model for future preclinical studies. In
particular, the high cost of testing single or combined pharmacological treatments in mice is several
orders of magnitude higher than Drosophila based platforms, which has made preclinical trials risky
and challenging. The molecular basis underlying cytonemes, the signals transduced by cytonemes,
and the implications in tumorigenesis are hot topics for human disease that open novel avenues for
potential future treatments.

In addition, the discovery of tunneling nanotubes (TNTs) brings a novel class of thin and long
membrane protrusions that connect benign tumor cells [15]. These protrusions form complex networks
that mediate the selective transfer of vesicles, organelles, and small molecules [105,106]. TNTs are a
common phenomenon in different cell types and tissues that increase under pathological conditions,
such as infections, cancer, or neurodegenerative diseases [105]. One considerable limitation to the
study of TNTs is the fragility of these structures that makes TNTs difficult to preserve after fixation
of tissues. This brought a controversy about their existence in vivo. However, intravital techniques
enabled the study of TNTs in live animals [107], which revealed that TNTs are indeed relevant cellular
structures in vivo.

In vivo microscopy methods have been used in recent years to study in detail cellular features
of cancer cells. A recent study showed that TNTs are induced by stress in prostate cancer and they
had a role in mediating intercellular communication that confer stress adaptive cell survival and
treatment resistance on the tumoral cells [108]. Additionally, pancreatic cancer cells show TNTs and
their formation is stimulated after chemotherapy exposure [109]. Furthermore, TNTs are involved in the
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communication between tumor cells and macrophages to promote macrophage-dependent tumor cell
invasion both in vitro and in an in vivo zebrafish model [110]. Interestingly, colorectal cancer cells have
the ability to form locomotory and invasive filopodia that promote invasion and metastasis, and this is
suppressed by the phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP) [111]. Related
to colorectal cancer, leucine-rich-repeat containing G-protein-coupled receptor 5 (Lgr5), which labels
crypt stem cells, represents the cell of origin in gastrointestinal cancers [112], and Lgr5 promotes the
formation of cytonemes in mammalian cells suggesting a possible role for cytonemes in gastrointestinal
cancer cell survival, invasion, and metastasis [113]. Exo70, a key component of the Exocyst complex,
induces extensive actin membrane protrusions resembling filopodia and blocking Exo70 function
inhibits invadopodia formation [114]. Exo70 expression is upregulated in colon cancer samples and
its expression is positively correlated with tumor size, invasion depth, and distant metastasis. Colon
cancer patients with higher Exo70 expression have a poorer clinical outcome than those with lower
Exo70 expression [115].

In particular, glioblastoma (GB) cells produce long cellular protrusions at the invasive edge of the
tumor that scan the surrounding area and interconnect tumor cells. These protrusions are F-actin based
and form a complex network that interconnects GB cells; therefore, they are named tumor microtubes
(TMs) [116]. TMs contribute to invasion and proliferation, resulting in effective brain colonization by
GB cells. Moreover, TMs constitute a multicellular network that connects GB cells over long distances
(up to 500 µm length) [116]. This study found that Growth Associated Protein-43 (GAP43) is essential
for the development of TMs and the tumor cell network associated with GB progression, and it drives
TM-dependent tumor cell invasion, proliferation, interconnection, and radioresistance. TMs share
many characteristics with cytonemes, they are actin-based projections and they are marked by several
cytoneme markers, including Ihog, LifeActin, GMA, GPI, myosin light chain (MLC), and the nonmuscle
type 2 myosin, spaghetti squash (sqh). Moreover, this study [86] showed in a Drosophila glioma model
that the glioma network is dependent on the fly GAP43-like gene (igloo, igl), as has been described in
human tumor cells. The glioma network does not develop upon igl silencing. TMs stability in GB is
sensitive to GAP43 expression in tumoral cells. Moreover, downregulating Nrg (Nrg-RNAi), which is
known to prevent epithelial cytoneme formation, resulted in a reduction of the TM-like processes in
GB [86]. Moreover, TMs accumulate Frizzled1 receptor (Fz1) that mediates Wg signaling (Figure 3) [86].
Thus, there are molecular and functional similarities between cytonemes and TMs; however, the term
cytoneme is used for physiological situations, and TMs is restricted to the tumoral condition.Int. J. Mol. Sci. 2019, 20, 5641 10 of 16 
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TMs and TNTs share some structural features, but TMs are more stable, longer, and thicker (2 µm).
In addition, TMs in human cells provide functional coordination to GB cells and facilitate cell repair,
brain infiltration, and offer resistance to radiotherapy through dilution of Ca+2 intracellular peaks [116],
which thereby increases the aggressiveness of GB.

5. Concluding Remarks

Filopodia are a cellular system of communication widely expanded among living organisms
from bacteria to human cells. These protrusions mediate the interaction among cells and with their
microenvironment and serve as sensors for the filopodia-emitting cells. Over decades, different
forms of filopodia have been described according to their specific function, composition, dimensions,
and stability.

Among them, cytonemes have emerged as a novel alternative for cell to cell communication that
are involved in development, physiology, and disease. Cytonemes contribute to the directionality
of the signals and the specificity of the interaction, as there are emitter and receiver cytonemes for
specific signaling pathways. In particular, Wg/WNT, Dpp/BMP, and Hh signaling can be mediated by
cytonemes during development and are essential for certain tumoral cell types progression. This feature
brings a novel perspective for cancer biology and reveals potential targets for treatment. Therefore,
there is a need to decipher the specific mechanisms underlying cytoneme formation, and in general,
each type of filopodial protrusion.

Again, the discoveries from animal models, such as Drosophila, provide novel approaches to
understand the role of cytonemes in central processes in biology and how they are involved in
tumorigenesis. Since cytonemes are conserved structures in other animals, including human cells, the
challenge for scientific research in the following years will be to understand the molecular basis of
their function in normal physiology and cancer.
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