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Abstract

A combination of machine learning and expert analyst review was used to detect odontocete

echolocation clicks, identify dominant click types, and classify clicks in 32 years of acoustic

data collected at 11 autonomous monitoring sites in the western North Atlantic between

2016 and 2019. Previously-described click types for eight known odontocete species or gen-

era were identified in this data set: Blainville’s beaked whales (Mesoplodon densirostris),

Cuvier’s beaked whales (Ziphius cavirostris), Gervais’ beaked whales (Mesoplodon euro-

paeus), Sowerby’s beaked whales (Mesoplodon bidens), and True’s beaked whales (Meso-

plodon mirus), Kogia spp., Risso’s dolphin (Grampus griseus), and sperm whales (Physeter

macrocephalus). Six novel delphinid echolocation click types were identified and named

according to their median peak frequencies. Consideration of the spatiotemporal distribution

of these unidentified click types, and comparison to historical sighting data, enabled assign-

ment of the probable species identity to three of the six types, and group identity to a fourth

type. UD36, UD26, and UD28 were attributed to Risso’s dolphin (G. griseus), short-finned

pilot whale (G. macrorhynchus), and short-beaked common dolphin (D. delphis), respec-

tively, based on similar regional distributions and seasonal presence patterns. UD19 was

attributed to one or more species in the subfamily Globicephalinae based on spectral con-

tent and signal timing. UD47 and UD38 represent distinct types for which no clear spatio-

temporal match was apparent. This approach leveraged the power of big acoustic and big

visual data to add to the catalog of known species-specific acoustic signals and yield new

inferences about odontocete spatiotemporal distribution patterns. The tools and call types

described here can be used for efficient analysis of other existing and future passive acous-

tic data sets from this region.
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Introduction

Odontocetes, or toothed whales, are vocal species which use sound for social communication,

foraging, and navigation [1, 2], making them prime targets for passive acoustic monitoring.

Although the acoustic repertoire of some odontocete species have been well-studied, many

remain understudied, have yet to be acoustically characterized, and cannot be distinguished to

the species level in passive acoustic recordings. This limits the utilization of passive acoustic

data sets for odontocete population assessments and ecological studies. Echolocation clicks,

short in duration and mostly broadband biosonar impulses, are produced by odontocete spe-

cies across a range of behavioral contexts. Species-specific echolocation click types, exhibiting

characteristic spectral and temporal features, have been discovered for a broad range of odon-

tocete species including sperm whales [3], Kogia spp. [4], beaked whales [5], and Risso’s dol-

phins [6]. Discriminating features typically include spectral peaks and/or notches, and clicking

rate. The challenge of identifying robust patterns within naturally variable signals is consider-

able when working with echolocation clicks due to the substantial signal variability observed

in response to both environmental conditions and behavioral state [7–12]. Additionally, these

signals are abundant—tens of millions of clicks from a dozen or more species can easily be

recorded over the course of a year of recording effort at a monitoring site—making them good

candidates for automated signal discovery.

The analysis of marine acoustic data has traditionally been highly labor intensive, with

expert analysts manually logging individual encounters, calls, or even clicks of their target spe-

cies. Such approaches are severely limited by the rate at which the data can be thus analyzed,

and in recent years the rate and volume of passive acoustic data collection has outstripped the

pace of manual analysis. These expert analyst methods are also less than ideal in terms of

reproducibility and objectivity [13]. Over the past decade the development of machine learn-

ing tools, and their applications to ecological data, has resulted in a proliferation of automated

methods for analyzing large marine acoustic datasets. Both unsupervised and supervised learn-

ing frameworks, most notably clustering and deep learning algorithms, have become standard

tools in the analysis of marine acoustic data [14–24]. These approaches require initial time

investment to develop the models, and for some applications this investment may be substan-

tial. For example, the creation of labeled training and testing sets for supervised learning is a

notably time- and labor-intensive process. But once a model has been adequately trained, anal-

ysis of large datasets can be readily accomplished. Automated signal discovery, detection, and

classification algorithms (with the latter two sometimes occurring in a single step) have dem-

onstrated good success for a number of marine mammal species [see, e.g., Refs 15, 16, 18, 19,

22–25] with improved objectivity and reproducibility compared to manual analysis.

As underwater autonomous passive acoustic recordings are collected without associated

species presence metadata, species-level attribution of novel signals found in these data require

drawing on other data sources. Traditional marine mammal line-transect visual surveys pro-

vide high confidence species presence and group size data, and in some regions such surveys

have been carried out regularly for years or even decades. These two modalities are highly

complementary, with passive acoustic devices providing high temporal resolution long-term

time series of acoustic presence at discrete sampling points, and visual surveys providing snap-

shots of animal presence over survey track lines or grids. When aggregated over years and

across sites, both can give an indication of long-term species range and distribution patterns

over large regions. By combining these disparate data streams, it may be possible to gain

insights about which species are producing a newly identified acoustic signal type. Simulta-

neous passive acoustic recordings and visual sightings can be especially valuable as such

instances may provide explicit labels for encounters within the acoustic data set.
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In this work, we identify novel species-specific odontocete echolocation click types, and

determine the species most likely responsible for producing them. This was accomplished

using an unsupervised signal discovery and labeling approach on a large autonomous passive

acoustic data set from the U.S. eastern seaboard. By combining machine learning techniques

with expert analyst review, we identified recurring signal types that exhibited the characteris-

tics of odontocete echolocation clicks. The spatiotemporal distribution patterns exhibited by

these signals were compared to the historical distribution of sighting data for each odontocete

species known to be present in the region to correlate species presence with click types. Oppor-

tunistic encounters captured in both the acoustic and the historical sighting data were used

where available to build evidence for species attributions. This approach yielded six novel del-

phinid click types; likely species assignments were identified for three types (UD36, UD26,

and UD28), and a group-level assignment was identified for a fourth type (UD19), with two

click types remaining unidentified. These novel species assignments will enable further study

of these species’ spatiotemporal distribution patterns and ecology using passive acoustic

recordings collected in this region, and may be an indication of the signals attributable to the

same species in other regions.

Methods

Data collection

Passive acoustic data were collected using High-frequency Acoustic Recording Packages

(HARPs) [26] deployed at 11 continental shelf break and slope sites between 30˚ N and 42˚ N

in the western North Atlantic (Fig 1). The devices were deployed at depths of approximately

450 m to 1,350 m and recorded continuously with a sampling rate of 200 kHz and 16-bit ana-

log-to-digital conversion. Most devices were equipped with a single omnidirectional sensor

(International Transducer Corporation’s ITC-1042). Seven deployments used devices with

separate low frequency (Teledyne Benthos AQ-1) and high-frequency (ITC1042) sensors. Both

devices had well-characterized combined frequency response between 10 Hz and 100 kHz. A

bandpass filter reduced low-frequency noise and high-frequency aliasing. Devices recorded for

between 4 months and 14.5 months per deployment; repeated redeployments at each site

enabled almost uninterrupted recording from Spring 2016 to Spring 2019 (Table 1), totaling

just over 32 years of recording effort across sites.

Publicly available historical visual survey data were accessed on Duke University’s OBIS-

SEAMAP database [27] (individual data set citations are found in the S2 Text) to compile a

record of odontocete species sightings in the western North Atlantic. A total of 58,320 sight-

ings were compiled for 26 odontocete species, ~52% from shipboard surveys, ~40% from aerial

surveys, and the remainder from shore stations. The geographical limits of 63˚–82˚ W and

24˚–46˚ N were chosen to bound the study area, and sightings outside these limits were

excluded. Rare data from as far back as 1913 were included in the analysis, but ~94% of the

sightings occurred during 1980–2019.

Signal detection & classification

All analyses were carried out in MATLAB (Mathworks, Inc., Natick, MA, USA) using custom

routines and a combination of automated methods and manual analysis developed by Frasier

et al. [14, 18, 28]. This combined approach enables efficient signal detection, signal type dis-

covery, and classification of large numbers of echolocation clicks with consistent, objective cri-

teria, while simultaneously incorporating analyst review to ensure the resultant detections,

signal types, and classifications are meaningful and not simply artifacts of the automated

algorithms.
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Echolocation clicks were identified using a 2-step automated detection routine [28]. In the

first step, acoustic data were filtered with a 5-pole Butterworth filter with a passband between 5

kHz and 100 kHz, and then waveform samples exceeding a peak-to-peak threshold of 118 dB

re:1 μPa were identified; areas of interest were expanded to include all samples within 2.5 ms

of each high amplitude peak, and high-amplitude events separated by <2.5 ms were merged.

In the second step, individual impulsive signals were located within these high-amplitude

events by identifying samples exceeding the amplitude threshold; individual signal start and

end times were then defined as the first and last sample on either side of the main peak which

Fig 1. Western North Atlantic study area with long-term autonomous passive acoustic monitoring sites (red circles) and associated site name

abbreviations. HZ = Heezen Canyon; OC = Oceanographer’s Canyon; NC = Nantucket Canyon; BC = Babylon Canyon; WC = Wilmington Canyon;

NFC = Norfolk Canyon; HAT = Hatteras; GS = Gulf Stream; BP = Blake Plateau; BS = Blake Spur; JAX = Jacksonville.

https://doi.org/10.1371/journal.pone.0264988.g001
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exceeded the 70th percentile of energy for the entire high-energy event. Individual signals sep-

arated by<100 μs were merged, and clipped signals were discarded. Descriptive parameters

were calculated for each candidate click (duration, spectrum (400-point FFT yielding a 500 Hz

spectral resolution, Hann window, 50% overlap), peak frequency, peak-to-peak amplitude at

the peak frequency, -3dB bandwidth, and envelope shape) and compared to user-defined

thresholds to determine whether to retain or discard the impulse. The goal was to capture as

many odontocete echolocation clicks as possible, particularly previously undescribed types;

therefore, thresholds were set to span the range of variability of known odontocete click types

based on previous works [3–6, 29–34]. This approach was anticipated to also capture many

non-click signals, which would be classified as non-target events in the subsequent steps. The

Table 1. HARP deployment information for repeated deployments at the acoustic monitoring sites shown in Fig 1.

Site Deployment Latitude Longitude Depth (m) Data Start Date & Time Data End Date & Time

Heezen Canyon (HZ) 1 41˚03.71’ N 66˚21.10’ W 883 4/22/2016 18:00:00 6/19/2017 7:05:06

2 41˚03.70’ N 66˚21.09’ W 885 7/9/2017 0:00:00 1/13/2018 15:25:06

3 41˚03.70’ N 66˚21.09’ W 885 6/11/2018 17:59:59 5/10/2019 6:33:44

Oceanographer’s Canyon (OC) 1 40˚15.80’ N 67˚59.17’ W 448 4/24/2016 5:59:59 5/18/2017 6:37:35

2 40˚15.80’ N 67˚59.18’ W 447 7/6/2017 23:59:59 4/16/2018 5:56:18

3 40˚13.80’ N 67˚58.68’ W 882 6/10/2018 6:00:00 5/19/2019 4:33:45

Nantucket Canyon (NC) 1 39˚49.94’ N 69˚58.93’ W 894 4/21/2016 18:00:00 5/24/2017 14:53:51

2 39˚49.96’ N 69˚58.92’ W 894 7/16/2017 18:00:00 6/9/2018 13:02:36

3 39˚49.98’ N 69˚58.92’ W 894 6/10/2018 0:00:00 6/3/2019 4:43:45

Babylon Canyon (BC) 1 39˚11.46’ N 72˚13.72’ W 999 4/20/2016 18:00:00 6/10/2017 23:04:05

2 39˚11.43’ N 72˚13.63’ W 1003 6/30/2017 12:00:00 6/3/2018 11:31:21

3 39˚11.52’ N 72˚13.64’ W 997 6/3/2018 12:00:00 5/19/2019 19:30:00

Wilmington Canyon (WC) 1 38˚22.45’ N 73˚22.24’ W 1028 4/20/2016 6:00:00 6/29/2017 20:57:36

2 38˚22.43’ N 73˚22.21’ W 1036 6/30/2017 0:00:00 6/2/2018 20:42:36

3 38˚22.40’ N 73˚22.19’ W 1045 6/2/2018 22:00:00 5/19/2019 8:32:30

Norfolk Canyon (NFC) 1 37˚09.99’ N 74˚20.00’ W 1028 4/30/2016 12:00:00 6/28/2017 18:38:51

2 37˚10.04’ N 74˚27.98’ W 992 6/30/2017 0:00:00 6/2/2018 16:15:06

3 37˚09.87’ N 74˚27.95’ W 1111 6/2/2018 12:00:00 5/18/2019 17:46:40

Hatteras (HAT) 1 35˚18.11’ N 74˚52.74’ W 1194 4/29/2016 12:00:00 2/6/2017 8:56:03

2 35˚35.05’ N 74˚44.99’ W 1128 5/9/2017 12:02:54 10/25/2017 14:11:45

3 35˚35.01’ N 74˚44.58’ W 1222 10/26/2017 12:00:00 6/1/2018 0:54:59

4 35˚35.39’ N 74˚44.86’ W 1327 6/1/2018 4:00:00 12/14/2018 14:42:36

5 35˚35.36’ N 74˚45.27’ W 1208 12/14/2018 0:00:00 5/17/2019 18:17:30

Gulf Stream (GS) 1 33˚39.94’ N 76˚00.08’ W 926 4/29/2016 0:00:00 6/27/2017 18:35:06

2 33˚40.02’ N 75˚59.97’ W 932 6/28/2017 0:00:00 6/26/2018 11:31:21

3 33˚40.20’ N 75˚59.86’ W 933 6/28/2018 23:59:59 6/18/2019 14:17:09

Blake Plateau (BP) 1 32˚06.36’ N 77˚05.66’ W 953 4/28/2016 12:00:00 6/27/2017 4:57:36

2 32˚06.42’ N 77˚05.41’ W 951 6/27/2017 12:00:00 6/28/2018 13:08:51

3 32˚06.32’ N 77˚05.44’ W 950 6/28/2018 0:00:00 5/28/2019 4:01:15

Blake Spur (BS) 1 30˚35.03’ N 77˚23.44’ W 1047 4/27/2016 18:00:00 6/26/2017 15:22:05

2 30˚34.98’ N 77˚23.43’ W 1047 6/26/2017 18:00:00 6/23/2018 7:32:33

3 30˚34.98’ N 77˚23.40’ W 1047 6/28/2018 0:00:00 6/16/2019 20:13:45

Jacksonville (JAX) 1 30˚09.11’ N 79˚46.21’ W 748 4/26/2016 18:00:00 6/25/2017 19:23:35

2 30˚09.16’ N 79˚46.19’ W 748 6/25/2017 18:03:57 10/28/2017 17:27:48

3 30˚09.14’ N 79˚46.24’ W 746 6/27/2018 0:00:00 6/15/2019 11:03:45

https://doi.org/10.1371/journal.pone.0264988.t001
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detector was run on each deployment independently, yielding time series of putative clicks

and their parameters from each site. Detected clicks in this analysis were not evaluated to iden-

tify on-axis arrivals, but rather all detected clicks were retained for the clustering and classifica-

tion steps, to identify dominant signal types across detections.

To identify dominant click types at each site the unsupervised clustering approach devel-

oped by Frasier et al. [18], also a 2-step process, was used to cluster each deployment indepen-

dently. Identical settings were used to cluster all deployments to allow direct comparison of

the final clusters across deployments. In the first step, deployments were divided into 5-minute

time bins and the Chinese whispers algorithm [35] was used to cluster detections in each bin

based on pairwise spectral distances; only clicks with peak-to-peak sound pressure levels≧120

dB re:1μPa were clustered. 5-minute bin durations were selected as a trade-off between main-

taining high temporal resolution while considering a time period within which there were

likely to be sufficient clicks for the clustering algorithm to identify meaningful groupings, and

simultaneously reducing the large volume of data of each deployment down to a more tracta-

ble size for the second clustering step. This determination was made based upon the slowest

odontocete clicking rate in our analysis, that of sperm whales, which may click as slowly as

once per second [36], and the expectation that some clicks would have been excluded by the

detector during low-amplitude encounters (distant animals). Additionally, this bin duration

was considered short enough to capture possible evolutions in click characteristics over the

course of a given encounter (typically tens of minutes to several hours). An edge pruning

parameter pe = 0.95 was used for the first clustering iteration, consistent with the approach of

Frasier et al. [18] resulting in the formation of on average 1.2 clusters per bin. Multiple clusters

formed in a bin if there were sufficient clicks representing two or more distinctly different sig-

nal types. Mean spectrum, inter-click-interval (ICI) distribution, and mean waveform enve-

lope were calculated for each cluster formed in each 5-minute bin. In the second step, the same

algorithm was used to cluster a subsample of 40,000 bin-level spectra per deployment by com-

paring spectral shape as well as mean waveform envelope. This step was memory-limited, and

selecting a subset of the bin-level averages was necessary due to the computational demands of

the clustering algorithm. To improve the robustness of the clusters formed by this second step,

clusters consisting of fewer than 25 bin-level averages representing a minimum of 50 individ-

ual detections each were discarded. These requirements reduced the formation of clusters

based on short-lived noise events, or a small number of randomly similar noises, but likely also

resulted in rare click types not being represented in the final clusters. A pruning parameter pe

= 0.98 was selected for this step by comparing several clustering iterations run with varying

parameter values (0.95� pe� 0.99) and considering cluster consistency versus unnecessary

separation of highly similar clusters. As with the detector, consistent settings were used for all

deployments to allow meaningful comparison of the clusters formed across deployments.

Mean summary spectra per cluster, ICI distributions, concatenations of contributing bin-level

spectra, and concatenations of contributing bin-level mean waveform envelopes, along with

information about which bin-level spectra contributed to each cluster, were saved for the out-

put from this step.

Clusters arising from this second step were manually compared across sites to identify

recurring signal types. Clusters were compared on spectral shape and ICI distribution, with

consideration given to the self-similarity of a cluster (i.e., the consistency of apparent spectral

features across all contributing bins, an indication of cluster quality), the number of bins con-

tributing to each cluster, the number of sites an apparent type was present at, and the consis-

tency of an apparent type at those sites across the three-year study period. Multiple clusters

from a given site were allowed to contribute to an apparent type, on the premise that click

types show substantial natural variability and the stringency of the clustering process may have
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led to overzealous cluster separation. Eighteen (18) distinct recurring impulse types were iden-

tified, each of which was classified as either: 1) a previously-described click type attributable to

a known species; 2) a recurrent signal which appeared to be an odontocete click type, but

whose species of origin was unknown; or 3) a non-odontocete impulse from a noise source

such as anthropogenic sonar or cavitation bubbles. Sonar was easily identified by the concen-

tration of energy in narrow spectral bands, long-duration signal envelopes compared to echo-

location clicks, and multi-modal inter-signal-interval histograms which arose from pooling

data from sonar operating with different ping rates. Differentiation between odontocete click

types and cavitation bubbles (e.g. ship propellers, snapping shrimp) was based largely on signal

timing, relying on the tendency of odontocetes to produce click trains with fairly regular and

species-specific timing [5, 37], while cavitation bubbles are produced at random. Descriptive

parameters (mean power spectrum, peak frequencies, 3dB bandwidth) were calculated for

each type based on 2,000 representative clicks. The ICI median of modes for each type based

on the ICI distributions from 1,000 5-minute bins containing clicks from that type was com-

puted. In the modal ICI distribution plots below, values <0.02 s have been suppressed to

reduce the contribution of high density encounters in which ICIs values are saturated with

near-zero values due to the interleaving of click trains from many individuals clicking

simultaneously.

The final 18 types selected from the clustering process, as well as a class representing Gulf

of Mexico Gervais’ beaked whales [38] and another class from the same Gulf of Mexico data

representing snapping shrimp [39], which have been previously observed in acoustic data

from the JAX site, were used to establish training classes for a deep neural network-based clas-

sifier. We hypothesized that the Gulf of Mexico Gervais’ population, which may or may not

migrate between the Gulf of Mexico and the Atlantic, might be distinct and acoustically identi-

fiable; therefore, Gulf of Mexico Gervais’ clicks were included as a separate class to test whether

their presence was detected at the Atlantic monitoring sites. Five noise classes accounting for

several of the common noise types were included so that these signals would not end up incor-

rectly labeled as odontocete clicks for lack of an outgroup: ship noise, snapping shrimp, and 3

classes of sonar separated by frequency content. Another important consideration was the

maximum number of classes a classifier can be realistically expected to discriminate between

with an acceptable level of error, as the likelihood of correct classification is inversely propor-

tional to the number of classes.

Several different types of training data and neural network architectures were tested to tune

the hyperparameters of the model and optimize performance. Examples for each class were

either subsampled (for well-represented classes) or augmented via simulation (for minority

classes) to obtain a balanced set of 5,500 examples per class. Augmentation was carried out by

adding Gaussian noise to existing examples, resulting in new examples which retained the

defining characteristics of their target classes while avoiding redundancy. Examples were ran-

domly subdivided for training (5000 examples) and testing (500 examples); training data were

further randomly subdivided for training and validation using an 80/20 split: 80% for training

and 20% for validating performance. Final network architecture consisted of four 512-node

fully connected layers with rectified linear unit (ReLU) [40] activation, 50% dropout between

fully connected layers, batch normalization after the last two dropout layers, and a softmax

[41] output layer. Highest test accuracy was attained by training on spectral shape, click rate,

and waveform envelope shape (S1 Table).

The trained model was run on all HARP deployments, yielding labels and associated proba-

bilities for each 5-minute bin-level mean spectrum. Classifier performance on novel data was

expected to have different accuracy than that which was achieved on the training and testing

sets due to the occurrence of intermediate and noisy clicks and signal types which do not
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belong to any of the available classes. To account for this, a high-level review of the bin-level

labels for each deployment was carried out to remove obviously incorrect labels. For each

deployment, spectra assigned to each class were sorted by peak frequency and concatenated

for visual comparison; spectra whose frequency content was highly inconsistent with the char-

acteristics of their labeled class were manually flagged for removal. This step was carried out

conservatively to remove blatantly incorrect labels while leaving untouched both good and

questionable labels, in hopes of retaining all bins which seemed to possibly indicate presence

for each class. Residual classifier error was then estimated by calculating the false positive rate

(FPR) for a stratified random subset of the retained labels. This approach was favored over the

quantification of confusion due to the uncertainty involved in the assignment of noisy and

intermediate clicks to a “true” class. The effects of enforcing increasingly high received level

and number-clicks-per-bin thresholds were explored as approaches to minimize FPR by

attempting to exclude poor quality clicks.

Spatiotemporal correlation

To assess regional and temporal patterns in the distribution of the click types, average seasonal

acoustic presence of respective click types across acoustic monitoring site were plotted as

scaled bubble maps. Hours of acoustic presence were first summed within each season and

normalized by recording effort to account for gaps between deployments, and then seasons

were averaged across the three-year study period. Seasons were defined as: Spring: March-

May; Summer: June-August; Fall: September-November; Winter: December-February. Classi-

fier error (FPR, averaged across repeated deployments at each site) was used to scale bubbles

to avoid misleading bubble sizes at sites where error was high for a given click type.

Maps of historical sighting data were similarly plotted for each odontocete species (the

exception being the two Kogia species, breviceps and sima, which were grouped by genus as

Kogia spp. due to the challenges of discriminating between these species at sea) to allow direct

comparison to the click type bubble maps. Seasonal sightings were pooled for each season

across all years of data for each species, rather than averaged, due to large interannual differ-

ences in survey effort and sighting rates. Survey track lines traveled in each season were plotted

when available (138 of 197 total datasets), to give a sense of where lack of sightings may be con-

founded by lack of visual survey effort.

To further support species-specific click type identifications based on matches between

acoustic and visual distributions and seasonal patterns, delphinid sightings occurring within

the estimated recording radius (~2 km) [42] of the acoustic mooring sites were identified and

the acoustic data collected during these known species encounters was examined to identify

associated echolocation events. Sightings recorded within close proximity of any acoustic

mooring were rare due to a lack of coordinated visual and acoustic monitoring effort, but 4

qualifying encounters were identified.

Results

Of the 20 classes established based on the clustering output and used to train the neural net-

work, nine represented known odontocete species or genera: Blainville’s beaked whale (M.

densirostris), Cuvier’s beaked whale (Z. cavirostris), Atlantic Gervais’ beaked whale (M. euro-
paeus), Gulf of Mexico Gervais’ beaked whale (M. europaeus), Sowerby’s beaked whale (M.

bidens), True’s beaked whale (M. mirus), Kogia spp., Risso’s dolphin (G. griseus), sperm whale

(P. macrocephalus). Six appeared to be delphinid clicks whose species of origin were unknown.

The remaining five classes represented a variety of noise sources which were included in the

classifier to reduce the incidence of false positives: snapping shrimp, ship cavitation, high-,
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mid-, and multi-frequency sonar. The unidentified click types were presumed to be generated

by delphinids and not beaked whales based on their waveforms with few oscillations, and

short, delphinid-like ICIs [10, 43–45]. These delphinid click types were named “UD” for

“unidentified delphinid,” followed by the approximate value of the median peak frequency in

kHz (e.g. “UD36”). They can be differentiated by their signal parameters peak frequency, 3dB

bandwidth, and modal ICI (Table 2). An overview of the results for the noise classes is available

in the S1 Text, S1 Fig.

All odontocete click types exhibited distinct regional and seasonal patterns in distribution

and acoustic density. Absolute magnitude of acoustic presence, in terms of average seasonal

hours per site (scaled by FPR), varied substantially between click types. UD28 exhibited a max-

imum presence at NFC each spring, averaging 901 hours, while Kogia presence peaked at an

average of 9.5 hours at GS in the winter.

Risso’s dolphin (Grampus griseus)
Description. This click type, known to be generated by Risso’s dolphins based on previous

works [6, 10], is characterized by a multi-peaked structure (Fig 2a). The Risso’s clicks in our

analysis exhibited lower-amplitude peaks at 23.5 kHz and 27 kHz, and a narrow main peak

reaching maximum amplitude at a median frequency of 33 kHz. The modal ICI value of 0.145

s was on the longer side for delphinids, and was consistent with the relatively large body size of

Risso’s dolphins.

Spatiotemporal distribution. The Risso’s click type showed a predominantly northerly

distribution, although it was present at every acoustic monitoring site in every season (Fig 2b).

A clear seasonal pattern was visible, with highest presence at WC, BC, and NC in the spring

shifting northward to highest presence at NC, OC, and HZ in the summer and into the fall;

winter presence was lower at all of the northern sites. JAX exhibited the highest levels of acous-

tic presence of the southern sites, with a distinct maximum in the spring and summer and

minimum in the fall and winter. Historical sightings of Risso’s dolphins map quite well to the

acoustic presence of the Risso’s click type (Fig 2c).

Table 2. Signal parameters peak frequency, 3dB bandwidth, and modal ICI for known species and novel click types given as median with 10th and 90th percentile

in brackets. Names for known-type classes are abbreviations of the species/genus names: Gg: Grampus griseus; Mb: Mesoplodon bidens; Md: Mesoplodon densirostris; Me:

Mesoplodon europaeus; Mm: Mesoplodon mirus; Zc: Ziphius cavirostris; Kogia: Kogia spp.; Pm: Physeter macrocephalus.

Click Type Peak Frequency (kHz) 3dB Bandwidth (kHz) Modal ICI (s)

Gg 32.5 [23.5,38.0] 4.5 [2,10] 0.145 [0.085,0.195]

Mb 67.0 [59.5,73.5] 13.5 [6.5,21.0] 0.135 [0.125,0.185]

Md 31.5 [28.5,35.5] 7.5 [3,11] 0.325 [0.225,0.375]

Me 46.5 [38.0,74.5] 11.5 [4.5,20.5] 0.285 [0.245,0.305]

Mm 47.5 [41.0,75.0] 11.3 [3.50,21.5] 0.185 [0.165,0.205]

Zc 38.5 [31.0,42.5] 7.0 [3.5,13.5] 0.465 [0.085,0.535]

Kogia 99.5 [93.0,99.5] 7.0 [4.0,12.5] 0.085 [0.065,0.115]

Pm 8.5 [6.5,13.0] 3.0 [1.5,5.5] 0.475 [0.035,0.655]

UD36 36.5 [30.0,47.0] 5.5 [2.5,13.0] 0.155 [0.135,0.177]

UD26 26.5 [12.0,39.0] 4 [2.0,9.5] 0.165 [0.085,0.195]

UD28 28.5 [23.0,34.3] 9 [3.0,15.0] 0.075 [0.045,0.105]

UD19 19.0 [15.0,26.5] 9 [3.5,15.0] 0.135 [0.035,0.225]

UD47 47.0 [19.5,57.0] 6.5 [2.5,15.5] 0.065 [0.055,0.085]

UD38 38.5 [29.3,46.5] 8 [4.0,14.5] 0.065 [0.055,0.085]

https://doi.org/10.1371/journal.pone.0264988.t002
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Fig 2. Results for Risso’s dolphin showing click type (a), acoustic presence (b), and historical sightings (c). Click type plots, from left to right:

median power spectrum (solid line) with 10th and 90th percentiles (dashed lines); distribution of modal ICI values from 1,000 5-minute bins;

concatenation of normalized click spectra, sorted by received level; concatenation of normalized waveform envelopes, sorted by received level. For the

concatenated spectra and waveform envelopes, the normalized magnitude of the frequency/pressure is represented by color such that warmer colors

show greater magnitude. Acoustic presence shown as scaled circles depicting cumulative hours at each acoustic monitoring site per season, averaged

across three years of data; classifier error given by color per legend in (b). Historical sightings per season (blue dots), shown relative to acoustic

monitoring sites (red stars) and track lines of surveys undertaken in each season (grey lines). Inset within each sighting map shows number of sightings

(N); total number of individuals summed across all sightings for which group size data was available is shown in parentheses.

https://doi.org/10.1371/journal.pone.0264988.g002
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Sowerby’s beaked whale (Mesoplodon bidens)
Description. Sowerby’s beaked whales produce clicks with energy distributed across a

wide band from 50 kHz to 90 kHz [31, 46] (Fig 3a). We found the median peak frequency to

be 67 kHz. The median modal ICI value, 0.135 s, was surprisingly short for a large-bodied spe-

cies, but was consistent with previous findings.

Spatiotemporal distribution. Overall acoustic presence of Sowerby’s was quite low at our

monitoring sites, but an interesting distribution pattern was visible with maxima in presence

in two distinct regions—one in the WC area and another further north at HZ (Fig 2b). Highest

Fig 3. Results for Sowerby’s beaked whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g003
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levels of presence in both regions were seen in the spring, while presence was lowest in the fall,

although the amplitude of this seasonal fluctuation was not very large. Sightings of Sowerby’s

beaked whales were rare, and most commonly occurred near the shelf break of Georges Bank

in the summer; this pattern was not mirrored in the acoustic presence, although the pattern of

a northerly distribution is visible in both sets of maps.

Blainville’s beaked whale (Mesoplodon densirostris)
Description. This click type, known to be attributable to Blainville’s beaked whale [5, 47],

exhibited a sharp onset of energy around 25 kHz and a single peak which, in our analysis,

attained highest amplitude at a median frequency of 31.5 kHz (Fig 4a). The median modal ICI

value was 0.325 s.

Spatiotemporal distribution. Blainville’s exhibited the greatest acoustic presence at BS,

where a slight summer decline in presence was visible (Fig 4b). Presence was negligible across

the other monitoring sites, but a very slight increase at GS, BP, and JAX was visible in the

spring. Sightings of Blainville’s were rare and occurred mostly near the Bahamas (Fig 4c).

Gervais’ beaked whale (Mesoplodon europaeus)
Very few clicks were classified as Gulf of Mexico Gervais’ (maximum 1.9 hours at JAX in

spring), and the clicks classified as Atlantic Gervais did not appear meaningfully different

from those classified as Gulf of Mexico Gervais’. Therefore we concluded that these types are

not currently differentiable using our methods, and have combined the two classes here. It

remains unclear whether this is because there is no acoustic distinction to be made between

the two, or because the Gulf of Mexico whales do not migrate to the Atlantic, providing no

true Gulf of Mexico Gervais’ encounters for the classifier to identify.

Description. The type attributed to Gervais’ beaked whale was characterized by a sharp

onset of energy at around 30 kHz [48] (Fig 5a). The Gervais’ clicks in our analysis reached

peak amplitude at a median frequency of 46.5 kHz, with a much lower amplitude peak present

at 23.5 kHz. We observed that the rate of energy drop-off above 50 kHz seemed to be a func-

tion of received level, with higher amplitude clicks exhibiting only a small diminishment in

amplitude at the higher frequencies, and lower-amplitude clicks exhibiting a much steeper rate

of drop-off. The median modal ICI value was 0.275 s.

Spatiotemporal distribution. The acoustic presence of the Gervais’ click type lived up to

this species’ moniker of “Gulf Stream beaked whale”, with highest presence at the Gulf Stream

monitoring site (Fig 5b). Overall distribution was strictly southerly and mostly focused at the

GS and BP sites, with lower levels of presence at HAT and BS and no presence at JAX. There

was a distinct seasonal pattern apparent, with an increase in presence at GS and BP beginning

in the fall and reaching a maximum in the winter, and lower levels of presence in the spring

and summer. Sightings of Gervais’ beaked whales were very rare, with just 34 sightings

reported in all the years of visual survey data included in this analysis (Fig 5c). These sightings

suggest Gervais’ presence much further north than indicated by our acoustic data, though

northerly sightings were located much farther offshore than our recording devices, which may

explain why there was no meaningful acoustic presence of Gervais’ north of Hatteras. Alterna-

tively, some of these putative Gervais’ sightings may be mislabeled due to the difficulty of visu-

ally discriminating between mesoplodont beaked whales at sea, and potential misidentification

of True’s beaked whales.
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True’s beaked whale (Mesoplodon mirus)
Description. True’s beaked whales produce clicks with a spectral shape similar to those of

Gervais’ beaked whales, with a sharp onset of energy around 30 kHz [34]; the True’s clicks in

our analysis reached peak amplitude at a median frequency of 48 kHz, with a much lower

amplitude peak present at 24.5 kHz (Fig 6a). True’s beaked whale clicks can be distinguished

from Gervais’ by a shorter median modal ICI value of 0.185 s.

Spatiotemporal distribution. True’s beaked whale clicks were detected at very low levels

at all monitoring sites north of Hatteras (Fig 6b). A clear seasonal pattern was visible, with

Fig 4. Results for Blainville’s beaked whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g004
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increased presence in both the summer and the winter compared to the fall and the spring,

and lowest overall presence in the fall. Highest acoustic presence was seen at NC in all seasons

but the fall. Sightings of True’s beaked whales were exceedingly rare, with just 10 records in all

the years of visual survey data included in this analysis (Fig 6c), all of which occurred north of

Hatteras.

Fig 5. Results for Gervais’ beaked whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g005
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Cuvier’s beaked whale (Ziphius cavirostris)
Description. The click type attributable to Cuvier’s beaked whale is distinctively multi-

peaked [5, 49] (Fig 7a). The median peak frequency of Cuvier’s clicks in our analysis (38 kHz)

doesn’t adequately describe the complex spectral shape, in which most of the click’s energy is

focused in the main peak, but auxiliary peaks of successively decreasing amplitudes at ~23.5

kHz, ~19 kHz, and ~72 kHz were also consistently present. In our analysis this species exhib-

ited a median modal ICI of 0.465 s.

Fig 6. Results for True’s beaked whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g006
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Spatiotemporal distribution. The acoustic presence of Cuvier’s across our monitoring

sites was focused at HAT, with low levels of presence north of this point and negligible pres-

ence at the southern sites (Fig 7b). A slight increase in presence at WC and HZ was visible in

the winter. Sightings of Cuvier’s occurred mostly in the summer, with the majority of sightings

along the shelf break and in deep offshore waters from Cape Hatteras north to Georges Bank

(Fig 7c).

Fig 7. Results for Cuvier’s beaked whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g007
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Kogia spp.

Description. This high frequency click type is generated by both species in the genus

Kogia [4, 50, 51]. The frequency content of these clicks was only partially captured by our sam-

pling frequency of 200 kHz, and resultant Nyquist frequency of 100 kHz, but the energy distri-

bution exclusively >60 kHz makes even a partial spectrum of this click type easily identifiable

(Fig 8a). The median modal ICI value for Kogia clicks in our analysis was 0.085 s.

Spatiotemporal distribution. The overall acoustic presence of Kogia spp. at our monitor-

ing sites was the lowest of all click types in our analysis and the distribution of this click type

Fig 8. Results for Kogia spp. showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g008
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was strongly southerly, with highest presence at the four sites in the South Atlantic Bight (Fig

8b). A seasonal signal was visible at GS, with increased presence in the winter and spring com-

pared to the summer and fall, but presence at the other southern sites was fairly consistent

across seasons. Very low levels of true presence were coupled with high levels of error at the

northern sites; the apparent increase in presence at NC was mostly due to a persistent high-fre-

quency noise source occurring throughout the 2016–2017 deployment, which was misclassi-

fied as Kogia spp. Sightings of Kogia spp. occurred mostly in the summer, with the majority of

sightings occurring along the shelf break and in deep offshore waters from Cape Hatteras

north to Georges Bank (Fig 8c).

Sperm whale (Physeter macrocephalus)
Description. Sperm whale clicks are characterized by their low frequency content [3] (Fig

9a). The median peak frequency for sperm whale clicks in our study was 8.5 kHz, but it should

be noted that this may have been skewed by our choice of a bandpass filter with passband from

5 kHz– 100 kHz, and the decision within the detector to exclude impulses with peak frequency

<5 kHz. The median modal ICI value of 0.485 s was similar to what has been previously

reported for female sperm whales [36, 37].

Spatiotemporal distribution. Sperm whales were the second most abundant click type in

our analysis and were detected at all of our monitoring sites, with most presence detected from

HAT northward (Fig 9b). An increase in presence was apparent across the northern sites in

the spring, and lowest overall presence was seen in the winter. This pattern of acoustic pres-

ence was a good match for the distribution of historical sightings of sperm whales, which

occurred primarily along the shelf break and in deep offshore waters, and were more numer-

ous north of Cape Hatteras in the spring and summer months (Fig 9c).

UD36—Risso’s dolphin (Grampus griseus)
Description. This click type was established based on clusters from several of the northern

HARP sites which exhibited spectra with a main peak at 36 kHz characterized by a small

trough, a lower amplitude peak at 26 kHz, and a shoulder at 23 kHz (Fig 10a). The median

modal ICI value was 0.155 s. The UD36 click type shared several features, such as the location

of spectral peaks and the ICI, with the click type identified in this dataset which was attribut-

able to Risso’s dolphin (Fig 2a). The key difference was that the lower-frequency peaks of

UD36 were not as pronounced as those present in the Risso’s click type.

Spatiotemporal distribution. UD36 exhibited a distinctive northerly distribution with

highest presence at the WC, BC, and NC monitoring sites (Fig 10b). There was a marked

increase in presence during the spring months which seemed to carry slightly into summer,

with much lower levels of presence in the fall and winter. The distribution and seasonal pattern

were very similar to the distribution of historical sightings of Risso’s dolphin (Fig 10c). During

manual review of the automated labels we observed that UD36 was mostly confused with the

Risso’s click type, and to a much lesser extent with UD38. We also observed that UD36 pre-

dominantly occurred interspersed throughout encounters with the Risso’s click type; high-

quality encounters solely with UD36 did occur, however. This may suggest that UD36 is an

alternative Risso’s click type, or that it is generated by a species which is often, but not always,

associated with Risso’s dolphins. Due to the similarities in spectral shape and click rate we

believe UD36 is likely an alternative Risso’s click type. Multiple click types have previously

been reported for a single odontocete species [7, 29, 31, 32]; use of different click types may be

determined by behavioral state, or may be a function of angle of arrival at the receiver or of

regional variation [7, 52, 53].
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UD26—Short-finned pilot whale (Globicephala macrorhynchus)
Description. This click type had substantial low-frequency (<20 kHz) energy, with a dou-

ble peaked structure characterized by a deep notch whose minimum fell between 20 kHz—23

kHz (Fig 11a). The narrow lower peak reached maximum amplitude typically around 19 kHz,

while the broader upper peak extended from 25 kHz– 35 kHz. The median modal ICI value

was 0.165 s. The low frequency content and relatively long ICI were consistent with a larger-

bodied delphinid, such as the species in the subfamily Globicephalinae, commonly referred to

as “blackfish”.

Fig 9. Results for sperm whale showing click type (a), acoustic presence (b), and historical sightings (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g009
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Spatiotemporal distribution. UD26 was predominantly found at and north of Cape Hat-

teras, between the HAT and BC monitoring sites (Fig 11b). This type exhibited a seasonal shift

in presence, with higher presence at NFC and WC beginning in the summer and peaking in

the fall, which gave way to higher presence at HAT beginning in the fall, peaking in the winter,

and carrying into the spring. The regional distribution and seasonal presence of UD26 were a

good match for the historical distribution of short-finned pilot whale sightings in this region

(Fig 11c). The low overall acoustic presence of this click type was also in line with the relatively

Fig 10. Results for UD36 showing click type (a), acoustic presence (b), and historical sightings of probable species match, Risso’s dolphin (c).

Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g010
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small number of sightings of short-finned pilot whales across all years of visual survey data.

The only anomalous feature in this match was the presence of UD26 detections with relatively

low error rates at HZ, as short-finned pilot whales are not thought to be present this far north.

The detections labeled as UD26 at HZ showed a slight upwards shift in frequency content rela-

tive to the UD26 detections from the US mid-Atlantic region, but otherwise had a similar spec-

tral shape and modal ICI. It may be that this northern variant of UD26 is in fact distinct from

the UD26 encountered further south, and should be studied separately.

Fig 11. Results for UD26 showing click type (a), acoustic presence (b), and historical sightings of probable species match, short-finned pilot

whales (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g011
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Supporting observations. We identified three short-finned pilot whale sightings in close

proximity to an acoustic device and looked at the concurrent acoustic data to identify any

acoustic encounters which might be attributed to the sighted species. Acoustic encounters

associated with two of the three sightings exhibited features consistent with those of UD26;

one of these encounters, from JAX, is shown in Fig 12. The third encounter, which was very

low amplitude, did not exhibit the characteristics of UD26. There was also a fourth sighting,

just 0.63 km from NFC in October of 2017, which was associated with a high-amplitude

encounter which strongly exhibited the characteristics of UD26; however, this visual sighting

was only identified to the genus level. The scarcity of long-finned pilot whale sightings near

NFC in the fall (S2 Fig) suggests that the species sighted during this fourth encounter was most

likely short-finned pilot whale. Examination of acoustic encounters labeled as UD26 also

revealed the consistent presence of low-frequency whistles (<10 kHz) and buzz-type calls pre-

viously reported for pilot whales [54, 55]. Additionally, a similar click type has been reported

for short-finned pilot whales from Hawaii [33], the Gulf of Mexico [18], the western North

Atlantic [56], and the eastern North Atlantic [45].

Fig 12. Visually confirmed short-finned pilot whale bout. Top panel: long-term spectrogram showing an acoustic encounter with

visually-identified short-finned pilot whales at the JAX acoustic monitoring site. Bottom panel: concatenated spectra of clicks detected

between 00:59 and 01:07. Most of these clicks exhibit spectral features consistent with UD26, though some natural variability is

visible. In both plots the magnitude of the frequency is represented by color such that warmer colors show greater magnitude.

https://doi.org/10.1371/journal.pone.0264988.g012
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Manual review of a subset of the automated labels revealed that at sites where this type was

more abundant, most of the classification error could be attributed to misclassification as

UD19, which we believe may be another Globicephalinae spp. type. Such confusion occurred

when the lower-frequency peak of UD26 was much higher-amplitude than the higher-fre-

quency peak, resulting in a spectral shape quite similar to that of UD19. Our observations of

clicks with a spectrum intermediate between UD26 and UD19 may indicate that short-finned

pilot whales produce a variety of clicks describing a continuum between these two types. Alter-

natively, the frequent co-occurrence of these two types may tell us that the short-finned pilot

whales producing UD26 sometimes co-occur with other Globicephalinae species producing

UD19.

UD28—Short-beaked common dolphin (Delphinus delphis)
Description. This click type had a simple spectral structure with a single peak around 28

kHz (Fig 13a) and a short median modal ICI value of 0.075 s. Based on this generic shape, and

the ubiquity of this click type across sites, UD28 seemed likely attributable to bottlenose or

short-beaked common dolphins, both of which were common in the study area.

Spatiotemporal distribution. This click type was the most abundant type detected in our

analysis and exhibited the lowest classification error across sites of all the novel types (Fig 13b).

UD28’s distribution predominantly north of Cape Hatteras, with increased presence between

HAT and BC in the winter and spring months, was highly similar to the historical distribution

of short-beaked common dolphin sightings in this region (Fig 13c). Similarly generic click

spectra have also been previously reported for bottlenose dolphins [30, 52], but the abundance

of UD28 at the northern sites in the winter does not mirror the distribution of bottlenose dol-

phin sightings in this region (S5 Fig).

Supporting observations. A click type similar to UD28 has been previously reported for

short-beaked common dolphin clicks in the Pacific [6]. Additionally, the long duration and

dense clicking activity typical of UD28 bouts in this study region suggests large group sizes.

According to the sighting data we compiled, this is more in keeping with what has been

observed for short-beaked common dolphins (mean group size: 30.7 individuals, 10th & 90th

percentiles: [1, 60]; from 5183 sightings with group size data recorded) than for bottlenose dol-

phins (mean group size: 7.6 individuals, 10th & 90th percentiles: [1,18]; from 26,086 sightings

with group size data recorded).

UD19—Globicephalinae spp.

Description. UD19 had a simple spectral shape similar to UD28, but with the peak cen-

tered at a lower frequency of 19 kHz (Fig 14a). The modal ICI value for this click type was

0.135 s. Similar to UD26, the low frequency and slow click rate may be indicative of a large-

bodied species within the subfamily Globicephalinae.

Spatiotemporal distribution. This click type was the third most abundant in our analysis,

after UD28 and sperm whales, and was present at all sites at least part of the year (Fig 14b).

UD19 showed a pronounced seasonal pattern with highest presence at NFC and WC in the

summer and fall, and much lower levels of presence everywhere in the winter and spring.

However, the distribution and seasonal pattern of this click type were not good matches for

the distribution of sighting data for any single dolphin species found in this region, Globice-
phalinae spp. or otherwise. There were some similarities in the seasonal distribution of UD19

to that of UD26, suggesting at first glance a match for short-finned pilot whales, but this may

to some extent have been due to confusion between UD26 and UD19. As described above,

clicks spanning a continuum between these two spectral shapes were often observed during
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bouts with both UD26 and UD19, resulting in confusion consistent with what was seen during

classifier testing (S1 Table). There was some ambiguity as to the best choice of “true” class for

clicks with a pronounced main peak at 19 kHz in addition to a much lower amplitude auxiliary

peak between 25 kHz—30 kHz. Even after accounting for the incidence of false positive UD19

detections, the abundance of UD19 was incongruous with the low number of short-finned

pilot whale sightings in this area (Fig 11c). The more numerous Globicephalinae species in the

study region was the long-finned pilot whale, but the distribution of UD19 did not reproduce

Fig 13. Results for UD28 showing click type (a), acoustic presence (b), and historical sightings of probable species match, short-beaked common

dolphin (c). Subplots as in Fig 2.

https://doi.org/10.1371/journal.pone.0264988.g013

PLOS ONE Odontocete click type identification with machine learning and spatiotemporal correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0264988 March 24, 2022 24 / 37

https://doi.org/10.1371/journal.pone.0264988.g013
https://doi.org/10.1371/journal.pone.0264988


the distribution or seasonal patterns visible in long-finned pilot whale sightings (S2 Fig). One

possible explanation for this ambiguity is that UD19 does not represent a single species but

may in fact be attributable to several Globicephalinae species which produce similar clicks and

which have been inadvertently grouped into a single class in this analysis. In addition to long-

finned pilot whales, short-finned pilot whales, orcas, false killer whales, pygmy killer whales,

and melon-headed whales are also known to be present in the study area. The pooling of spe-

cies with markedly different spatial distribution patterns may have resulted in a generalized

distribution of this click type which obscures the distinct patterns of each species included.

Supporting observations. Similar to UD26, examination of encounters with UD19

revealed the consistent presence of low-frequency whistles (<10 kHz) and buzz-type calls typi-

cal of Globicephalinae species [54, 55].

UD47—Distinctive type without a clear spatiotemporal match

Description. This click type was characterized by its distinctive spectral banding pattern,

with well-defined low-amplitude peaks at 20 kHz and 28 kHz and a broad main peak between

40 kHz—55 kHz (Fig 15a). The modal ICI (0.065 s) was typical of smaller-bodied delphinids,

of which there are several species in this region which have yet to be matched with a character-

istic click type: bottlenose dolphins, Atlantic white-sided dolphin, white-beaked dolphin,

Fig 14. Results for UD19 showing click type (a), and acoustic presence (b). Subplots as in Fig 2a and 2b.

https://doi.org/10.1371/journal.pone.0264988.g014
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Fraser’s dolphin, Atlantic spotted dolphin, pantropical spotted dolphin, spinner dolphin, Cly-

mene dolphin, striped dolphin, rough-toothed dolphin.

Spatiotemporal distribution. UD47 exhibited negligible presence at the shelf break sites

south of HAT, low levels of presence at JAX in the spring and summer, highest presence at

HAT, and low levels of presence at the northern sites (Fig 15b). Very little seasonal pattern was

apparent, though there was a slight increase in presence at HAT in the winter and spring

months. This distribution was not a good match for the distribution of historical sighting data

for any dolphin species in this region.

UD38—Distinctive type without a clear spatiotemporal match

Description. UD38 had a relatively narrow main peak with most energy between 38 kHz–

45 kHz, and two lower-amplitude auxiliary peaks at 16 kHz and 19 kHz; both lower-frequency

peaks were not always apparent (Fig 16a). The modal ICI value was 0.065 s (Table 2); as with

UD47, this may suggest a small-bodied delphinid.

Spatiotemporal distribution. UD38 exhibited a predominantly northerly distribution

with highest presence always at HAT (Fig 16b). Presence at HAT peaked in the winter, while a

slight increase in presence at the northern sites could be seen in the spring. There were low lev-

els of acoustic presence of UD38 at the southern sites with variable error rates. Like UD47,

there was no clear species match based on the distribution and seasonal pattern for this click

type.

Fig 15. Results for UD47 showing click type (a), and acoustic presence (b). Subplots as in Fig 2a and 2b.

https://doi.org/10.1371/journal.pone.0264988.g015
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Discussion

Our two-pronged approach leveraged big acoustic data and many decades of visual survey

efforts to yield new inferences about odontocete acoustic identity, and was made possible by

the combined power of automated algorithms and expert analyst review. Identification of six

novel delphinid click types, and attribution of four of the six to a particular species/genus, sub-

stantially expands our ability to identify delphinid species presence in passive acoustic data

from this region, and thereby pursue ecological studies. This approach can be applied for sig-

nal type discovery and identification in any region where large passive acoustic and visual sur-

vey data sets have been collected, and will enable improved utilization of large marine passive

acoustic data sets. The catalog of impulsive signal types presented here in the form of our neu-

ral network training classes is, to the best of our knowledge, the first of its kind for this area

and represents a comprehensive overview of the dominant odontocete species and impulsive

noise sources commonly found at deep water acoustic monitoring sites spanning the region.

Odontocetes produce directional clicks with greater amplitudes on-axis (forward of the ros-

trum) and lower amplitudes off-axis (lateral from the rostrum) [1]. Since our detector output

did not discriminate between on-axis and off-axis clicks, the click types presented in this analy-

sis may represent both on-axis and off-axis arrivals at our sensors. Previous works have sug-

gested that most delphinid clicks arriving at a seafloor sensor are off-axis [42], while those of

beaked whales are likely on-axis when the animals are more than a few hundred meters from

Fig 16. Results for UD38 showing click type (a), and acoustic presence (b). Subplots as in Fig 2a and 2b.

https://doi.org/10.1371/journal.pone.0264988.g016

PLOS ONE Odontocete click type identification with machine learning and spatiotemporal correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0264988 March 24, 2022 27 / 37

https://doi.org/10.1371/journal.pone.0264988.g016
https://doi.org/10.1371/journal.pone.0264988


the sensor [38]. Clicks which arrive at a sensor from an off-axis path are typically distorted rel-

ative to their on-axis counterparts, with complex waveforms, amplitude and peak frequency

decreasing as a function of off-axis angle, and spectral notches often being introduced [7, 52,

57–59]. Angle of off-axis is also an important consideration, as click which are only slightly

off-axis may appear very similar to on-axis clicks. In a passive acoustic monitoring paradigm it

is reasonable to assume that a large proportion of clicks arriving on a sensor are off-axis, but

this did not appear to be a reason, in and of itself, to discard these clicks from analysis. Off-axis

click have generally not been as well-studied as on-axis clicks but their distortions may carry a

signature of the acoustic anatomy of the generating species, and therefore there may be spe-

cies-specific features of off-axis clicks which make them equally well suited to species classifica-

tions as on-axis clicks [6]. If some of the click types presented here represent off-axis arrivals,

this may explain why the species to click type correspondence is not always one to one, both in

this work and in previous works [29, 31, 32]. A better understanding of the relationship

between on-axis and off-axis click features as they are received by a seafloor sensor would be

valuable for improved interpretation of large passive acoustic data sets. This could perhaps be

obtained through studies combining body-mounted orientation-recording tags and seafloor

acoustic sensors.

The distribution patterns exhibited by the known click types we identified represent two

distinct cases: in the case of Risso’s dolphins and sperm whales, the acoustic presence mirrors

the distribution and seasonal patterns of sightings along the shelf break (Figs 2b, 2c, 9b and

9c), whereas in the case of the beaked whales and Kogia spp., the acoustic data reveals presence

patterns which are not represented in the sighting data (Figs 3–8b and 8c). The former case is

an encouraging proof-of-concept for our approach of matching acoustic presence patterns to

the distribution of historical sighting data in order to attribute novel click types to species. For

species which are readily available for both visual detection and acoustic detection, the two

approaches should generate comparable presence maps, and we see this in the result for both

Risso’s dolphins and sperm whales. In the latter case we see a mismatch between the presence

patterns captured by the two methodologies, which suggests that one of these approaches is

not well-suited to detecting the species of interest. Indeed, beaked whales and Kogia spp. are

known to be cryptic species which exhibit inconspicuous surface behaviors and undertake pro-

longed deep dives, complicating the task of inferring species presence patterns from ship-

based and aerial sighting data. Autonomous passive acoustic data collection captures animals

throughout the water column and is thought to have no effect on animal presence or behavior,

so the acoustic presence recorded via this methodology may be a better indicator of the true

spatiotemporal presence patterns of these elusive species. This is likely the case for Sowerby’s,

Blainville’s, Gervais’, and True’s beaked whales, as the acoustic presence maps suggest that

they are present at more sites and throughout more seasons than is shown by the historical

sighting data (Figs 3–6b and 6c). In each case there are, however, some offshore sightings

which represent animals which would not have been available to be captured in the acoustic

data due to their distance from the acoustic monitoring sites, demonstrating the limitations of

point sampling compared to data collection along far-reaching track lines. For Cuvier’s beaked

whales and Kogia spp. these missed presence points are fairly numerous in the summer months

(Figs 7c and 8c). However, the fact that there is no corresponding increase in acoustic presence

of either species in the northern region during the summer may suggest that the increase in

sightings is due to disproportionate summer survey effort, rather than a true increase in pres-

ence. The fullest understanding of the distribution and seasonal presence patterns for these

two species could likely be attained by combining passive acoustic and visual survey data.

Matching acoustic presence maps to historical sighting maps requires consideration of the

differences between these two approaches to observing species presence. UD36, the novel click
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type assigned to Risso’s dolphin, exhibited a clear increase in acoustic presence in the spring,

which mirrored the increased density in Risso’s sightings tightly clustered along the shelf

break north of Hatteras in the spring compared to the winter and fall (Fig 10b and 10c). How-

ever, in absolute terms there were more Risso’s individuals sighted in the summer. These sum-

mer sightings were somewhat more widely distributed on the shelf and offshore, meaning

many individuals were too far from our devices to be acoustically detected, which may explain

why this increase was not as clearly reflected in the summertime acoustic presence of UD36 at

our monitoring sites. Increased summer Risso’s sightings may also be a function of increased

sighting effort, as opposed to increased species presence, while acoustic monitoring effort was

uniform throughout seasons. Similar to UD36, the acoustic presence of UD28, assigned here

to short-beaked common dolphins, exhibited increased presence in the winter and spring,

while short-beaked common dolphin sightings peak in the summer (Fig 13b and 13c). This

may be due to the apparent shift in distribution of short-beaked common dolphins, from the

outer shelf and shelf break during the winter and spring northward onto Georges Bank and

inshore during the summer and fall. Many of the animals sighted in the summer and fall were

not available to be captured on our acoustic devices for this reason. The distribution of short-

finned pilot whale sightings (Fig 11c) may underestimate their true presence due to missing

data points, as many Globicephala sightings are identified only to the genus level (2701 Globice-
phala spp. records in our analysis, compared to 566 G. macrorhynchus and 1361 G. melas rec-

ords). In areas where the ranges of the two pilot whale species overlap, high probabilities of

sighting either species may lead to lower confidence in species level identifications, and more

sightings reported simply as Globicephala spp. (S2 Fig). The predominance of UD26 clicks dur-

ing multiple encounters with visually-confirmed short-finned pilot whales complements the

possibly-incomplete sighting data to support this species assignment.

UD19 exhibited a very strong summer and fall presence at the mid-Atlantic sites, but it is

unclear from this analysis where these individuals, which we believe may represent more than

one species, spend the winter and spring months (Fig 14b). It may be that the individuals

accounting for the high levels of acoustic presence at HAT, NFC, and WC in the summer and

fall are a different species than the individuals accounting for the lower levels of presence

across all sites in the winter and spring. Further study of the variability within this type may

reveal subtypes with varying seasonal presence which could be linked to the presence of partic-

ular species. UD47 and UD38 may be attributable to species whose distribution and seasonal

presence patterns are not well-elucidated by historical sighting data, and identification of these

click types to species may necessitate additional data types.

The oceanography in this region is dominated by the influence of the Gulf Stream, a high-

volume current which transports warm, high-salinity equatorial water along the shelf break of

the southeastern U.S. until its separation point at Cape Hatteras, where it turns eastward

towards northern Europe. The Gulf Stream front is a steep gradient in temperature and salinity

which delineates a boundary between two very different habitats: warm oligotrophic waters of

the Gulf Stream to the south and east, and cold, lower-salinity, productive sub-polar waters to

the north and west. It is not surprising, therefore, that the distributions of many species in this

region reflect the presence of this boundary. Most of our unidentified click types exhibited lit-

tle to no presence at the three monitoring sites situated directly in the path of the Gulf Stream:

GS, BP and BS. As can be seen by the presence of Blainville’s and Gervais’ beaked whales and

Kogia spp. acoustic encounters at these sites (Figs 4c, 5c and 8c), this was not likely a result of

poor acoustic propagation conditions or low detectability at these sites, but rather a clear spe-

cies preference regarding the conditions of the Gulf Stream waters. The distinct regional and

temporal patterns exhibited by the distributions of each of the unidentified click types may

provide us with insights into the ecology of the species to which they are attributed.
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Clustering and click type identification

Even with the help of the automated signal discovery pipeline, the process of identifying recur-

ring signal types across so many sites and years of data was not a trivial matter. A consideration

when using an automated clustering approach is the tradeoff between cluster separation and

the proportion of nodes (5-minute bin average spectra, in this analysis) which are isolated by

user-defined thresholds. By tuning the parameters of the clustering process we are able to

impose arbitrary requirements of cluster size and self-similarity, yielding types which describe

highly consistent and commonly present signals. This comes at the expense of types which

exhibit greater natural variability or are present in lower numbers. The first case may be

acceptable for our purposes, which rely upon consistently present spectral and temporal fea-

tures to discriminate between species. The loss of rare types, however, undermines our efforts

to identify characteristic click types for these species. When comparing clusters across sites,

the requirement for apparent click types to exhibit presence at multiple sites and across the

years of recording effort (in order to avoid establishing types based on site-specific noise

sources or atypical species presence phenomena) likely further excluded species with low or

intermittent presence in this region, even if they did have highly distinctive and recognizable

clicks which formed robust clusters. This is an issue worth exploring further, as rare species

are often the most data deficient, and methods of collecting information on their presence and

distribution are sorely lacking. Further study of the clusters excluded from our training set

may reveal types which correlate well with the presence of rare species. Future work should

explore approaches to identifying rare click types in these large data sets and differentiating

them from random noise events.

After acceptably self-similar clusters had been formed, the issue of signal variability was still

highly pertinent when comparing clusters and making decisions about which should be

deemed examples of a single type, and which warranted separate consideration. As with all

manual signal identification, this step involved subjective judgement calls guided by knowl-

edge of previously documented signal types and the characteristics of our monitoring sites.

Due to the lack of supporting data justifying subdivisions of similar clusters, an approach

favoring simplicity over hyper-fragmentation of types was chosen. This may have resulted in

signal categories which obscured some species-level differences, such as may be the case for

UD19. We did not, however, choose to merge UD36 with the Risso’s click type despite their

apparent similarity for two reasons: 1) while these types often co-occurred in our data, high

quality encounters with solely UD36 were also present, and, 2) UD36 has not been observed in

click clusters generated from HARP data from the Gulf of Mexico [18] or southern California

(analyses underway), where Risso’s are regularly acoustically detected. This suggested to us

that UD36 might actually be generated by a species other than Risso’s dolphin, or might be a

regionally-specific click type indicative of stock delineations [53]. For these reasons we initially

chose to analyze UD36 independent of the previously established Risso’s click type. An alterna-

tive to this manual approach to establishing click types would be to carry out a third clustering

step, comparing clusters across deployments and sites in an automated fashion as opposed to

manually. It should be noted that at sites where multiple odontocete species frequently co-

occur (most notably HAT and NFC), the clusters themselves may not always have been single-

species. In cases of the co-occurrence of species with similar click types, multiple spectra may

have been separated within each 5-minute bin by the first step of clustering, but then any com-

bination of those bin-level spectra may have been included in a final cluster with characteris-

tics spanning two or more highly similar species. Such an occurrence would mean that the

different species were not effectively available to be separated during manual review of the

clusters from that site (and neither would they be separated by a third pass of clustering).
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Classification error

During the classification step, the neural network was required to distinguish both highly

divergent signals and quite similar signals, likely resulting in lower success in discriminating

between similar signals. This could muddy the waters when looking at the geographic distribu-

tion of each click type. An iterative approach to labeling, where broad classes are first separated

(i.e. sperm whale, beaked whales, dolphins) and then individual classifiers tuned to the more

nuanced distinctions within each class are run in a second step, might show improved discrim-

inatory ability. We did observe, however, that our classifier was resilient to small shifts in fre-

quency content when the overall spectral shape was conserved, as seen in the classification of

UD26 at mid-Atlantic versus northern sites. This is a useful quality when looking to discrimi-

nate to the species level, as regional differences in frequency content for a given species have

been previously described [53], and these differences may be accommodated by the kind of

classifier used here.

We found that classification error, quantified by the false positive rate for the novel click

types, varied greatly between click types, and also between sites within some of the types. One

of the challenges with multi-class classification is that the probability of successful classification

is inversely proportional to the number of classes. For a classifier choosing between 20 classes,

the probability of random success is just 5%; training data improves those odds substantially,

but the model is still challenged by discriminating between so many classes, some of which are

quite similar. The error rates reported here are typically much lower than would be expected

from random guessing, except when presence of a click type at a given site is very low. Manual

review of a subset of the labels, and observation of the presence of many intermediate and

noisy clicks, drove home the impracticality of attempting manual labeling from scratch. Espe-

cially at sites where many species are present and acoustic bouts overlap, such as HAT and

NFC, distinguishing intra-type variability from inter-type variability can perplex even highly

specialized analysts, and requires a prodigious time investment. These are important factors to

keep in mind when evaluating classifier accuracy and considering the tradeoff between accu-

racy and time required to generate labeled time series. The approach to signal classification

used here is fast, objective, and repeatable, and there are many options available for continuing

to improve the classifier, such as multi-step classification and model ensembles.

A recurring feature across many of our click types was higher levels of classifier error at

sites with low levels of presence for that type. This is to be expected when there is a mismatch

between the probability distribution of classes learned by the neural network and the probabil-

ity distribution of species present in the data. This phenomenon, known as dataset shift, has

recently gained attention in the literature on machine learning applications in ecological stud-

ies, along with some proposed solutions [60–63]. The insights gained here regarding the pres-

ence of different click types across our sites could be applied in future to create a training set

which more accurately reflects the true probability distribution of each type.

We sought to minimize our classifier error by enforcing increasingly strict minimum peak-

to-peak receive level and number-clicks-per-bin thresholds in order to weed out low-quality

clicks. In the end, we found that this approach did not have much impact on the patterns in

distribution and seasonal presence visible in the acoustic presence maps, though it did dramat-

ically reduce the number of clicks retained for analysis. In light of this we decided to use fairly

relaxed thresholds in order to retain more of the detected clicks in our analysis. Due to the

number of classes evaluated here, the size of the acoustic data set, and the uncertainty involved

in “true” class selection for intermediate clicks when quantifying confusion, we calculated a

single FPR for each novel click type at each site, and used that single value to scale the acoustic

presence in all seasons. Development of efficient and objective approaches to quantification of
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confusion in such large data sets when out-of-distribution signals are present could lead to

more accurate time series adjustments, as well as an opportunity to improve future classifiers

by identifying the particular features a classifier had difficulty separating.

Conclusion

Our findings illustrate the complementary nature of marine passive acoustic and visual survey

data, and provide a means of ascertaining species identity for novel acoustic signals within

existing and forthcoming acoustic data sets based on spatiotemporal correlations. The work-

flow described here provides a highly objective, repeatable, and fast approach to signal discov-

ery and classification for large acoustic data sets. Identification of two unidentified click types

from this region as short-beaked common dolphins and short-finned pilot whales, as well as

attribution of a second click type to Risso’s dolphin, expands our knowledge of species-specific

click types and sets the stage for ecological studies of these species using passive acoustic data.

Assignment of UD19 to the Globicephalinae subfamily is a first step in species identification,

though more work remains to disentangle the ambiguity remaining around this click type.

Species identities were not forthcoming for UD47 or UD38 in this analysis, but the recognition

of these recurring signal types as likely delphinid click types will enable further study of their

occurrence patterns, which may lead to future species identifications.
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S1 Table. Neural network test performance on a balanced test set of 500 examples per

class. Names for known-type classes are abbreviations of the species/genus names: Md: Meso-
plodon densirostris; Zc: Ziphius cavirostris; Me: Mesoplodon europaeus; GoM Me: Gulf of Mexico
Mesoplodon europaeus; Kogia: Kogia spp.; Gg: Grampus griseus; Mb: Mesoplodon bidens; Pm:

Physeter microcephalus; Mm: Mesoplodon mirus.
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S1 Text. Noise class descriptions.
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S2 Text. Sighting data citations.
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S1 Fig. Characteristics of noise classes; a) ships; b) mid-frequency sonar; c) high-frequency

sonar; d) multi-frequency sonar; e) snapping shrimp. Columns are: median power spectrum

(solid line) with 10th and 90th percentiles (dashed lines); distribution of modal IPI values from

1000 5-minute bins; concatenation of normalized impulsive signal spectra, sorted by received

level; concatenation of normalized waveform envelopes, sorted by received level. For the

concatenated spectra and waveform envelopes, the normalized magnitude of the frequency/

pressure is represented by color such that warmer colors show greater magnitude.

(TIF)

S2 Fig. Historical sighting maps of a) pygmy killer whales (Feresa attenuata); b) long-

finned pilot whales (Globicephala melas); c) Globicephalinae spp.; d) Atlantic white-sided

dolphins (Lagenorhynchus acutus); e) white-beaked dolphins (Lagenorhynchus albirostris).

Sightings are plotted per season (blue dots), shown relative to acoustic monitoring sites (red

stars) and track lines of surveys undertaken in each season (grey lines). Inset within each sight-

ing map shows number of sightings; total number of individuals summed across all sightings

for which group size data was available is given in parentheses.

(TIF)
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S3 Fig. Historical sighting maps of a) Fraser’s dolphin (Lagenodelphis hosei); b) killer

whales (Orcinus orca); c) false killer whale (Pseudorca crassidens); d) melon-headed whale

(Peponocephala electra); e) pantropical-spotted dolphins (Stenella attenuata). Sightings are

plotted per season (blue dots), shown relative to acoustic monitoring sites (red stars) and track

lines of surveys undertaken in each season (grey lines). Inset within each sighting map shows

number of sightings; total number of individuals summed across all sightings for which group

size data was available is given in parentheses.

(TIF)

S4 Fig. Historical sighting maps of a) rough-toothed dolphins (Steno bredanensis); b)

striped dolphins (Stenella coeruleoalba); c) Clymene dolphins (Stenella clymene); d) Atlan-

tic-spotted dolphins (Stenella frontalis); e) spinner dolphins (Stenella longirostris). Sight-

ings are plotted per season (blue dots), shown relative to acoustic monitoring sites (red stars)

and track lines of surveys undertaken in each season (grey lines). Inset within each sighting

map shows number of sightings; total number of individuals summed across all sightings for

which group size data was available is given in parentheses.

(TIF)

S5 Fig. Historical sighting map of bottlenose dolphins (Tursiops truncatus). Sightings are

plotted per season (blue dots), shown relative to acoustic monitoring sites (red stars) and track

lines of surveys undertaken in each season (grey lines). Inset within each sighting map shows

number of sightings; total number of individuals summed across all sightings for which group

size data was available is given in parentheses.

(TIF)
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