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Abstract

Populus deltoides Marsh has high ornamental value because its leaves remain yellow dur-

ing the non-dormant period. However, little is known about the regulatory mechanism of leaf

coloration in P. deltoides Marsh. Thus, we analyzed the physiological and transcriptional dif-

ferences of yellow leaves (mutant) and green leaves (wild-type) of P. deltoides Marsh. Phys-

iological experiments showed that the contents of chlorophyll (Chl) and carotenoid were

lower in mutant leaves, and the flavonoid content did not differ significantly between mutant

and wild-type leaves. Transcriptomic sequencing was further used to identify 153 differen-

tially expressed genes (DEGs). Functional classifications based on Gene Ontology enrich-

ment and Genome enrichment analysis indicated that the DEGs were involved in Chl

biosynthesis and flavonoid biosynthesis pathways. Among these, geranylgeranyl diphos-

phate (CHLP) genes associated with Chl biosynthesis showed down-regulation, while chlor-

ophyllase (CLH) genes associated with Chl degradation were up-regulated in yellow leaves.

The expression levels of these genes were further confirmed using quantitative real-time

PCR (RT-qPCR). Furthermore, the estimation of the main precursors of Chl confirmed that

CHLP is a vital enzyme for the yellow leaf color phenotype. Consequently, the formation of

yellow leaf color is due to the disruption of Chl synthesis or catabolism rather than flavonoid

synthesis. These results contribute to our understanding of mechanisms and regulation of

leaf color variation in poplar at the transcriptional level.

Introduction

Leaf color is an important feature of ornamental plants, and trees with colored leaves have

been widely cultivated in landscape gardens. The main factors that determine foliage color are

the pigment types and their relative concentrations. The formation of red leaves is the result of

anthocyanin accumulation, which has been extensively studied [1]. In contrast, there are only

a few studies focused on the mechanism of yellow leaves. Leaf yellowing is generally considered

to be caused by decreased chlorophyll (Chl) content because Chl is the main pigment content
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of green leaves [2]. Therefore, studies of leaf yellowing have mostly focused on Chl biosynthe-

sis and degradation. In addition, leaf yellowing may be due also to the accumulation of flavo-

noids, such as flavanol, flavonol, chalcone and aurone [3,4].

The Chl biosynthetic pathway consists of about 20 different enzymatic steps, starting from

glutamyl-tRNA to Chl a and Chl b [5]. Mutations in any one of the genes of the pathway can

affect the accumulation of Chl [6], decrease photosynthetic capacity [7] and affect the develop-

ment of chloroplast [8]. The silence of CHLD and CHLI (magnesium chelatase subunit D and I)

induced by viruses in peas resulted in yellow leaf phenotypes with rapid reduction of photosyn-

thetic proteins, undeveloped thylakoid membranes, altered chloroplast nucleoid structure and

malformed antenna complexes [9]. Moreover, in rice, PGL10 encoded protochlorophyllide oxi-

doreductase B (PORB), pale-green leaf mutant pgl10 had decreased Chl (a and b), carotenoid

contents, as well as grana lamellae of chloroplasts compared with the wild-type [10]. In addition,

mutants with disrupted Chl degradation were used to characterize many steps in the Chl degra-

dation pathway in leaves undergoing senescence [11]. In Arabidopsis mutants deficient in PPH

(pheophytinase), Chl degradation is inhibited and the plants exhibit a type C stay-green pheno-

type during senescence [12]. Previous studies revealed that chlorophyllase (Chlase) is involved

in Chl degradation in ethylene-treated citrus fruit and could regulate the balance between differ-

ent plant defense pathways and enhance plant resistance to bacteria [13–15]. Recently, mutants

deficient in Chl biosynthesis and degradation have been identified in many yellow leafed plants,

such as rice [16–19], Arabidopsis thaliana [20] and pak-choi [21].

The genotype P. deltoides Marsh (mutant) is a bud mutation of green leaf P. deltoides
Marsh (wild-type) (Fig 1). The mutant is a rare deciduous yellow leaf variety in poplar plants

of the Salicaceae family. This species has extremely high ornamental value because its leaves

remain golden in spring, summer and autumn. However, the molecular mechanism underly-

ing the leaf color of the mutant has not yet been elucidated. Bud mutation is a type of somatic

mutation resulting in visible differences from the remainder of the plant in size, shape, color of

fruit, branch and flower. Bud mutation arises from genetic mutation of the bud meristem cell

[22]. Many ornamental plant cultivars with fruit or flower color variation arose from the bud

mutation. For instance, the color in grape skin changes from white to red due to bud mutation

[23]. Flower color mutants of roses, carnations and chrysanthemums have also been reported

[24]. In contrast, yellow leaf phenotype caused by bud mutations were hardly reported, but the

studies related to yellow leaf color were mostly focused on leaf yellowing. For example, the tea

cultivar ‘Anji Baicha’ produces yellow or white shoots at low temperatures and turns green

when the environmental temperature increases [25]. Only a few studies have reported the yel-

low leaf phenotype, such as the cucumber Chl-deficient golden leaf mutation [26].

In this study, the photosynthetic pigments, Chl precursors, and flavonoids were estimated

and transcriptome level changes of the mutant-type and wild-type were analyzed. Based on a

combination of physiological analysis and bioinformatics, we identified differentially expressed

genes (DEGs) related to Chl and flavonoid biosynthesis. Furthermore, the expression of DEGs

involved in leaf coloration was validated using quantitative real-time polymerase chain reaction

(RT-qPCR). Our results clarified the physiological and transcriptomic aspects of golden leaf col-

oration in P. deltoides Marsh and will serve as a platform to advance the understanding of the

regulatory mechanisms underlying the leaf color formation in poplar and other plant species.

Materials and methods

Plant materials

The green leaf Populus cultivar (wild-type) and the yellow leaf Populus cultivar (mutant) were

used in this study. The plants were three-years-old and grown in Hongxia Nursery, Mianzhu

Populus deltoides Marsh yellow leaf
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Town, Sichuan Province, China. Leaf tissues were collected in May, sampling three leaves per

plant for five plants of each type. The leaves were frozen immediately in liquid nitrogen after

collection and stored at −80˚C for subsequent experiments.

Pigment content estimates

Approximately 0.1 g wild-type and mutant leaves were selected for Chl and carotenoid estima-

tions. The pigment (Chl a, Chl b, and carotenoid) contents were estimated using the method

described by Lichtenthaler [27]. Uroporphyrinogen III (Urogen III) and coproporphyrinogen

III (Coprogen III) were extracted and determined as described by Bogorad [28]. Leaves were

ground into powder with liquid nitrogen and dissolved in nine volumes of phosphate-buffered

saline (pH 7.4) in an ice bath and centrifuged (30 min at 8000 rpm) to estimate the contents of

protoporphyrin IX (Proto IX), magnesium protoporphyrin IX (Mg-Proto IX), protochloro-

phyllide (Pchlide) and chlorophyllide (Chlide) a. The supernatant was used to determine pig-

ments using ELISA kit (MEIMIAN, Jiangsu, China) with a Thermo Scientific Multiskan FC

(Thermo Fisher Scientific, MA, USA). Flavonoid contents were estimated using a UV1901

PCS Double beam UV-VIS Spectrophotometer (Shanghai Yoke Instrument Co., Ltd., Shang-

hai, China) according to the instructions of the Favonoid Plant kit (Suzhou Comin Biotechnol-

ogy Co., Ltd., Jiangsu, China). Three biological replicates were evaluated for each sample. The

data were analyzed with t-tests using version 17.0 of SPSS software (SPSS Inc., Chicago, IL,

USA), and means were compared at the significance levels 0.01 and 0.05. Wild-type was used

as a control and calculated as 1 for the relative values of photosynthetic pigments and Chl

precursors.

Fig 1. Wild-type (left) and mutant (right) leaves phenotype. Bar = 5 cm.

https://doi.org/10.1371/journal.pone.0216879.g001

Populus deltoides Marsh yellow leaf
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Extraction of RNA

Total RNA was isolated from the wild-type and mutant using the CTAB extraction method.

RNA concentration and quality were checked with the Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, USA). RNA purity was measured with a Nano Drop 2000 (Thermo

Scientific, USA).

Library preparation for transcriptome sequencing

Two RNA samples were treated with DNaseI to remove any remaining DNA, and then the

oligo (dT) magnetic beads were used to collect the poly A mRNA fraction. After mixing the

poly A mRNA fraction with fragmentation buffer, the resulting mRNA was broken into short

RNA inserts of approximately 200 nt. The fragments were used to synthesize the first cDNA

strand via random hexamer priming, and the second-strand cDNA was then synthesized using

DNA polymerase I and RNase H. The cDNA fragments were purified using magnetic beads

and subjected to end-repair before adding a terminal A at the 3’ ends. Finally, sequencing

adaptors were ligated to the short fragments, which were purified and amplified via polymer-

ase chain reaction (PCR). The two libraries were generated and then sequenced on an Illumina

HiSeqTM 4000 platform by Chengdu Life Baseline Technology Co., Ltd. (Chengdu, China).

Quality control and mapping of reads

The raw reads were edited to remove adapter sequences, low-quality reads, and reads with

>10% of Q < 20 bases, and then mapped using HISAT v2.0.0 software (http://ccb.jhu.edu/

software/hisat2/downloads/) to the Populus trichocarpa Torr. & Gray genome. All the clean

reads are available at the National Center for Biotechnology Information (NCBI) Short Read

Archive (SRA) Sequence Database (accession number SRA740964).

Gene expression analysis

For gene expression analysis, gene abundance was estimated by RSEM v1.2.30 (http://dewe/

ylab.github.io/RSEM/) and then normalized with fragments per kilobase of exon per million

mapped reads (FPKM) values [29]. The NOIseq v2.16.0 (http://www.bioconductor.org/

packages/release/bioc/html/NOISeq.html) was used to identify genes that were differently

expressed between wild-type and mutant in this experiment. Genes with probability>0.8 and |

log2 fold change|� 1 were considered as DEGs between samples.

For functional annotation, GO enrichment analysis of DEGs was performed in the GO

database (http://www.geneontology.org/) to calculate gene numbers for every term. The

hypergeometric test was conducted to find significantly enriched GO terms in the input list of

DEGs. KEGG enrichment analysis was implemented using the database resource (http://www.

genome.jp/kegg/). The calculation method of KEGG analysis is the same as the GO analysis.

Real-time RT-PCR

For qPCR analysis, total RNA was extracted using the RNAprep Pure Plant Kit (Tiangen Bio-

tech Co. Ltd., Beijing, China). Approximately 1 μg RNA was reverse transcribed via a Trans-

Script All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (Tiangen Biotech Co.

Ltd., Beijing, China) according to the manufacturer’s instructions. Eight genes were selected

for validation using qRT-PCR. Primer sequences were designed using Primer Premier 5.0 soft-

ware as shown in S3 Table. qPCR DNA amplification and analysis were performed using the

TransScript Top Green qPCR SuperMix kit (Tiangen Biotech Co. Ltd., Beijing, China) in

accordance with the manufacturer’s protocol with an CFX Connect Real-Time System (Bio-

Populus deltoides Marsh yellow leaf
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Rad, Hercules, CA, USA). The thermal profile was as follows: pre-denaturation at 94˚C for 30

s; 94˚C for 5 s, 60˚C for 30 s, for 40 cycles. The relative expression level of selected genes in

wild-type and mutant was normalized to CDC2 and ACT expression. Three biological repli-

cates for each of the reactions were performed. The relative expression levels of target genes

were estimated using the 2–ΔΔCt method [30].

Results

Pigment content analysis

We analyzed changes in the pigment contents of wild-type and mutant leaves. The Urogen III

content of the yellow leaves was significantly higher than that of the wild-type, whereas there

were no significant differences in Coprogen III (Fig 2). Proto IX, Mg-Proto IX and Pchlide

contents of the mutant were significantly decreased by about 52.53%-64.71% than green leaves.

The content of Chlide a in yellow leaves was lower than that of green leaves. Compared with

the green leaves, the Chl a content, Chl b content and carotenoids content of yellow leaves

were significantly lower by 72.41%, 84.86% and 53.88%, respectively (Fig 2). The ratio of carot-

enoids to chlorophylls in yellow leaves was 0.12, which was higher than that of green leaves

(0.06). In addition, the difference between the total flavonoid contents of the green leaves and

yellow leaves was not significant (Fig 2).

RNA-seq analysis

RNA-seq libraries were constructed from green and yellow leaf samples and sequenced using

the Illumina HiseqTM 4000 platform for acquiring a comprehensive overview of leaf colora-

tion. Approximately 45 million and 47 million raw reads were obtained from green and yellow

leaves, respectively. After removal of adapter sequence and low-quality reads, the number of

clean reads in the two libraries was 40,779,290 and 41,776,346. The Q20 and Q30 of the two

samples were at least 97.28 and 93.20%, respectively, and the GC content of both exceeded

45%. Additionally, 73.79% of green leaves and 71.67% of yellow leaves reads of each sample

were mapped to the Populus trichocarpa Torr. & Gray genome sequence and approximately

47% of the mapped reads were found to be unique (Table 1).

Gene expression analysis

In total, the number of expressed genes were 28,657 and 28,124 in green and yellow leaves,

respectively, of which 1760 and 1227 genes were expressed specifically in the green and yellow

leaves (Fig 3). In order to identify DEGs between green and yellow leaves, we set the expression

of genes in green leaves as the control and identified genes that were up- or downregulated in

yellow leaves. Accordingly, a total of 153 DEGs were found in yellow leaves, including 52 up-

regulated genes and 101 down-regulated genes.

Gene functional annotation

GO assignments were used to classify the functions of DEGs. A total of 12, 9, and 5 of the

DEGs were divided into biological processes, cellular components and molecular functions,

respectively, and some DEGs were annotated with more than one GO term (Fig 4). In the bio-

logical process category, many DEGs fell into the categories of ‘cellular process,’ ‘metabolic

process,’ and ‘single-organism process’ (S1 Table). The most enriched terms of the cellular

component were involved in ‘cell,’ ‘cell part,’ ‘membrane’ and ‘membrane part’ were also sig-

nificantly enriched terms (S1 Table). Meanwhile, the dominant categories with respect to

molecular function group were ‘binding’ and ‘catalytic activity’ (S1 Table).

Populus deltoides Marsh yellow leaf
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KEGG pathway analysis was performed to categorize gene functions with an emphasis on

biochemical pathways that were active in green and yellow leaves. A total of 52 genes were

annotated and assigned to 31 KEGG pathways (S2 Table). The most significantly enriched

Fig 2. Pigment contents in wild-type and mutant leaves. (A) Schematic view of the Chl biosynthetic pathway. Urogen III (in red) at the beginning of the

pathway shows a significant increase in yellow leaves. CHLG/P illustrates the gene encoding protein catalyzing the reaction of the precursors. A green

box represents each component that is significantly decreased or down-regulated in the yellow leaves. Coprogen III had no significant difference between green

and yellow leaves. (B) Comparison of the relative content of Chl precursors and photosynthetic pigments between wild-type and mutant. (C) Comparison of

the flavonoid contents between wild-type and mutant leaves. Asterisks indicate: (�) P ⩽ 0.05, (��) P ⩽ 0.01. Abbreviations are: Urogen III = uroporphyrinogen

III; Coprogen III = coproporphyrinogen III; Proto IX = protoporphyrin IX; Mg-Proto IX = Mg-protoporphyrin IX; Pchlide = protochlorophyllide; Chlide

a = chlorophyllide a; Chl a = chlorophyll a; Chl b = chlorophyll b; and Caro = carotenoid.

https://doi.org/10.1371/journal.pone.0216879.g002

Table 1. Summary of the sequencing and mapping results.

Sample name Green leaves Yellow leaves

Raw reads 45846322 47483602

Clean reads 40779290 41776346

Q20(%) 97.45 97.28

Q30(%) 93.57 93.20

GC content(%) 45.36 45.14

Total mapped 30092762 (73.79%) 29942722 (71.67%)

Uniquely mapped 9961342 (48.85%) 9903152 (47.41%)

https://doi.org/10.1371/journal.pone.0216879.t001

Populus deltoides Marsh yellow leaf
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pathway was ‘Metabolic pathways’ (Fig 5), with 15 associated DEGs (ranked by padj value), fol-

lowed by ‘Biosynthesis of secondary metabolites’ and ‘Ribosome’ with 8 and 5 DEGs, respec-

tively, which supported the results of GO assignments that ‘metabolic process’ was

significantly enriched. Moreover, 3 DEGs were assigned to ‘Porphyrin and Chl metabolism’

and 2 DEGs were assigned to ‘Flavonoid biosynthesis.’ This cluster of results indicated that the

differences in metabolic activities were the main difference between green and yellow leaves,

and they may perform important roles in the regulating of leaf coloration.

Chl and flavonoid biosynthesis analysis

Based on the above annotations, we found that the P. deltoides Marsh transcriptome contains

genes involved in Chl biosynthesis and flavonoid biosynthesis (Table 2). Two genes annotated

as CHLP (Potri.019G009000 and Potri.019G024600) were down-regulated in yellow leaves. In

the last step of Chl a biosynthesis, the geranylgeranyl diphosphate (CHLP, EC:1.3.1.111) cata-

lyzed the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate and yielded Chl

(Fig 6). Furthermore, the gene encoding Chlase (CLH, EC:3.1.1.14) played roles in the transi-

tion of Chl a(b) to Chlide a(b), which was found to be up-regulated in yellow leaves. In flavo-

noid biosynthesis, two genes annotated as shikimate O-hydroxycinnamoyltransferase (HCT,

EC:2.3.1.133) were differentially expressed in green and yellow leaves. Of these, one gene

(Potri.006G034100) was more highly expressed in green leaves while the other gene

(Potri.005G028500) was more highly expressed in yellow leaves.

Validation of RNA sequencing data

To validate the accuracy of RNA-seq expression results, 8 DEGs with marked changes in plant

hormone signal transduction, flavonoid biosynthesis and Chl biosynthesis were detected by

qPCR (Fig 7). The results showed that except 3 genes (Potri.016G026200, Potri.005G028500,

Fig 3. Number of specific and shared genes between wild-type and mutant leaves.

https://doi.org/10.1371/journal.pone.0216879.g003

Populus deltoides Marsh yellow leaf
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Potri.005G214100), the remaining 5 genes were all down-regulated in mutant plants. In gen-

eral, qRT-PCR results concur with the RNA-seq data, indicating that the DEGs identified by

RNA-seq were accurate.

Discussion

P. deltoides Marsh developed yellow leaves during growth and throughout the lifespan by bud

mutation. Understanding the regulatory mechanisms underlying the leaf color of P. deltoides
Marsh is of significant importance. Changes in ratio of Chl, carotenoids and flavonoids in

Fig 4. The DEG function classification in wild-type and mutant leaves. X-axis displays the number of genes. Y-axis is broken into three

categories: biological process, cellular component and molecular function with enrichment details within each category.

https://doi.org/10.1371/journal.pone.0216879.g004

Populus deltoides Marsh yellow leaf
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Fig 5. Enriched KEGG pathways of DEGs. X-axis displays the Rich factor. Y-axis names the KEGG pathways. Dot size corresponds to the

number of DEGs in the pathway with smaller dots having a lower gene number than larger dots. Dot color indicates P value with red having a

high P value and blue having a low P value.

https://doi.org/10.1371/journal.pone.0216879.g005

Table 2. DEGs involved in Chl and flavonoid biosynthesis in mutant transcriptome.

Function Gene ID Seq. Description log2FC

chlorophyll biosynthesis Potri.019G009000 GDSL-like Lipase/Acylhydrolase superfamily protein -10.7764

Potri.019G024600 GDSL-like Lipase/Acylhydrolase superfamily protein -10.1319

Potri.005G214100 chlorophyllase 1 9.6073

flavonoid biosynthesis Potri.005G028500 HXXXD-type acyl-transferase family protein 9.2808

Potri.006G034100 HXXXD-type acyl-transferase family protein -9.8978

https://doi.org/10.1371/journal.pone.0216879.t002

Populus deltoides Marsh yellow leaf
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leaves will change the expression of leaf color. In this study, the compounds affecting the pig-

ment of leaves were determined. The Chl content in the mutant P. deltoides Marshwas signifi-

cantly lower than that of wild-type. Consistent with the physiological results, transcriptional

analysis demonstrated that down-regulation of CHLP and up-regulation of CLH involved in

porphyrin and Chl metabolism pathways were crucial genes that resulted in yellow leaves.

Carotenoids provide yellow, orange and red color to flowers and fruits, which play crucial

roles in photosystem assembly, light-harvesting and photoprotection [31,32]. In this study, the

carotenoid content decreased significantly in mutant compared with wild-type leaves. Signifi-

cant reductions in the carotenoid content were also observed in previous studies in yellow-

green winter wheat mutant Ygm and Pak-choi yellow leaf mutant pylm [33, 21]. However, in

Fig 6. Chl biosynthetic pathways at the transcript level. Red notates up-regulated genes and green marks down-regulated genes.

https://doi.org/10.1371/journal.pone.0216879.g006

Populus deltoides Marsh yellow leaf
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Ginkgo biloba L, the carotenoids content in the mutant leaves was higher than that of normal

green leaves [2]. This carotenoid content may have been higher because the mutants of Ginkgo
biloba were special golden–green striped leaves. The ratio of carotenoids to Chl drives yellow

leaf coloration, and the photosynthetic pigment contents in the green leaves are similar to the

yellow parts of mutant leaves. By contrast, the mutant in our study is normal, and the total

photosynthetic pigment contents in green leaves are 4 times that of yellow leaves. In addition,

increased ratio of carotenoids to Chl was observed in both pylm mutant and Ginkgo biloba
mutant [21, 2]. Consistent with these research findings, the ratio of carotenoids to chlorophylls

in yellow leaves was two-fold higher than that in green leaves in our study, thus suggesting that

the increase of ratio of carotenoids to chlorophylls was related to yellow coloration in P. del-
toides Marsh. Our transcriptional results demonstrated that no genes were annotated to the

carotenoid biosynthesis pathway.

Chl biosynthetic genes differentially express in leaf color mutants

Leaf color formation is closely related to Chl biosynthesis and breakdown, and most leaf color

mutations are Chl-deficiency mutations [34]. Chl is responsible for harvesting solar energy

and electron transport, even turning plants green because it is Mg2+-containing tetrapyrrole

pigment [35]. In this study, the novel Chl-deficient chlorina mutant of P. deltoides Marsh with

yellow leaf phenotype was identified. Compared with wild-type, the content of photosynthetic

pigments in the mutant were significantly lower. In particular, the Chl b content was six times

higher in green leaves than yellow leaves. These results suggest that the yellow leaf phenotype

is a result of a lack of Chls.

The Chl metabolic process can be subdivided into three parts: biosynthesis of Chl a, the Chl

cycle between Chl a and b, and degradation of Chl a [36–48]. Chl is composed of two moieties,

Chlide and phytol, which are respectively formed from the precursor molecules 5-aminolevuli-

nate and isopentenyl diphosphate [39]. CHLP encodes the enzyme geranylgeranyl reductase

catalyzing terminal hydrogenation of geranylgeraniol to phytol for Chl synthesis [40,41].

Fig 7. RT-qPCR vs. RNA-seq analysis of 8 DEGs in mutant leaves. X-axis is the Gene ID. Y-axis is the fold change in

mutant leaves relative to that in wild-type leaves (Log2(FC)).

https://doi.org/10.1371/journal.pone.0216879.g007

Populus deltoides Marsh yellow leaf
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Previous studies revealed that in transgenic tobacco (Nicotiana tabacum) expressing antisense

CHLP RNA, transformants with gradually reduced CHLP expression displayed a uniform low

pigmentation and a pale or variegated phenotype [42]. In cyanobacterium Synechocystis sp.

PCC 6803, ΔchlP mutant exhibit decreased Chl and total carotenoids contents, and unstable

photosystems I and II [43]. Two CHLP genes (Potri.019G009000 and Potri.019G024600) were

identified in our database and both were down-regulated in the mutant. In the meantime,

qPCR experiments further verified that expression levels of CHLP genes in mutant were highly

reduced compared to those in wild-type, which suggests a later stage of Chl biosynthesis was

inhibited. Parallel experiments also showed that the content of Chlide a was about 4.83%

lower, while the content of Chl a was 72.41% lower in the yellow leaves compared to green

leaves. The result suggests that the inhibition of enzyme activity of CHLP protein is likely to

further suppress the biosynthesis of Chl in yellow leaves. In addition, our physiological results

show that the content of Urogen III in the yellow leaves is about 4 times than that of the green

leaves, but the content of Coprogen III is not significantly different between green and yellow

leaves. Therefore, there might be a suppression between Urogen III and Coprogen III during

Chl biosynthesis. However, the results need further verification.

Chl breakdown starts with the reduction of Chl b, which is then converted into Chl a via

two steps of enzymatic reaction, and finishes by producing nonfluorescent chlorophyll catabo-

lite or nonfluorescent dioxobilin-type chlorophyll catabolite [44]. Chlase, the Chl dephytilation

enzyme, catalyzes the hydrolysis ester bond of Chl to yield Chlide and phytol [45]. Chlase

activity is negatively correlated with Chl levels of color break in citrus fruits and Chlase partici-

pates in the Chl breakdown in citrus [15,46,47]. The citrus Chlase1 gene was overexpressed in

squash and tobacco. Expression of Chlase without the N-terminal 21 amino acids (ChlaseΔN)

resulted in chlorosis in plants, whereas expression of the fulllength Chlase resulted in moderate

Chl breakdown [46]. Subsequently, citrus Chlase was demonstrated to be translated and pro-

cessed to a mature form, which is subject to dual N- and C-terminal processing [15,47]. How-

ever, some evidence does not support that Chlase play a critical role in Chl degradation during

leaf senescence [48–51]. For example, overexpression of ATHCOR1, which has Chlase activity

in Arabidopsis, led to an increased breakdown of Chl a, but the total Chl level was not affected

[48]. Similarly, a short delay in yellowing was observed in the antisense BoCLH1-positive

transformants [49]. Arabidopsis Chlases (AtCLH1 and AtCLH2) are not positively regulated

with leaf senescence. CHL1 and CHL2 single and double knockout mutant plants do not dis-

play a significant delay in senescence [50]. A previous study suggested that Chlase was not

involved in Chl breakdown in the absence of methyljasmonate and exhibited a defense

response when plants were damaged [51]. Schelbert et al. also supported the opinions that

Chlase was not to be essential for dephytylation after Chl is converted into pheophorbide [12].

In our study, the transcript expression patterns suggested that the expression of CLH was

higher in wild-type than in mutant. Moreover, previous studies in common wheat (Triticum
aestivum L.) showed that the gene encoding Chlase in the Chl biosynthesis pathway was also

significantly up-regulated in the yellow leaf mutant [33]. Therefore, experiments related to

cloning and functional verification of CLH in P. deltoides Marsh are needed to further verify

the function of Chlase in Chl breakdown.

Flavonoid biosynthetic genes differentially express in leaf color mutants

Flavonoids, carotenoids, and Chls are the main pigments responsible for flower and leaf color.

Previous studies have demonstrated that flavonoids are the main pigments, producing purple,

blue, yellow, and red colors in plants [52]. Flavonoids have been known as UV-protecting pig-

ments and antioxidants by scavenging molecular species of active oxygen [53,54]. In Ficus
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microcarpa L. f., the golden leaf mutant is the result of continuous high-light irradiation, and

the flavonoid level of golden leaf was 5-fold higher than that of green leaf, the results suggest

that the increase of flavonoids in the golden leaf may protect the leaves from high-light stress

[55]. In this study, there are no significant differences in the content of flavonoid between

wild-type and mutant. Therefore, we consider the yellow leaf phenotype to be caused by

genetic factors, not environmental factors. Shikimate/quinate hydroxycinnamoyltransferase

(E2.3.1.133, HCT) belongs to the large family of BAHD-like acyltransferases [56]. It is a key

enzyme that determines whether 4-coumaroyl CoA is the direct precursor for flavonoid or H-

lignin biosynthesis [57]. In Arabidopsis, silencing of the HCT gene resulted in severely reduced

growth and absence of S lignin [58]. The down-regulation of HCT have a dramatic effect on

lignin content and composition in alfalfa and poplar [59,60]. Up until now, most studies have

focused on the effects of HCT on lignin synthesis [61, 62], while only a few studies related

HCT to flower color or leaf color of plants. It is further proven that the blocked Chl synthesis

pathway in mutant-type plants may be the consequence of yellowing of the leaves.

Conclusions

In this study, physiological and transcriptome sequence analysis showed that there were dis-

tinct differences in coloration between green and yellow mutant leaves of P. deltoides Marsh.

Transcriptional sequence analysis identified 5 DEGs that participated in porphyrin and Chl

metabolism and flavonoid biosynthesis pathways. Furthermore, RT-qPCR verified that those

DEGs were expressed differentially in mutant and wild-type plants. Down-regulation of CHLP
and up-regulation of CLH might cause the difference of leaves. These results provide an excel-

lent platform for future studies to uncover the molecular mechanisms underlying the yellow-

ing phenotype in P. deltoides Marsh and other closely related species.
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