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The brain adapts to the sensory environment. For example, simple
sensory exposure can modify the response properties of early sen-
sory neurons. How these changes affect the overall encoding and
maintenance of stimulus information across neuronal populations
remains unclear. We perform parallel recordings in the primary
visual cortex of anesthetized cats and find that brief, repetitive
exposure to structured visual stimuli enhances stimulus encoding
by decreasing the selectivity and increasing the range of the
neuronal responses that persist after stimulus presentation. Low-
dimensional projection methods and simple classifiers demon-
strate that visual exposure increases the segregation of persistent
neuronal population responses into stimulus-specific clusters.
These observed refinements preserve the representational details
required for stimulus reconstruction and are detectable in postex-
posure spontaneous activity. Assuming response facilitation and
recurrent network interactions as the core mechanisms underlying
stimulus persistence, we show that the exposure-driven
segregation of stimulus responses can arise through strictly local
plasticity mechanisms, also in the absence of firing rate changes.
Our findings provide evidence for the existence of an automatic,
unguided optimization process that enhances the encoding power
of neuronal populations in early visual cortex, thus potentially
benefiting simple readouts at higher stages of visual processing.
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A key property of cortical circuits is their capacity to reor-
ganize structurally and functionally with experience (1–3).

In primary visual cortex, adaptive reorganization is well doc-
umented during development (4–7) and growing evidence in-
dicates that sensory responses continue to adapt in adulthood
(8–13). The continual refinement of sensory neurons based on
the statistics of the sensory environment is at odds with the
traditional view of the primary visual cortex as a collection of
static filters or feature detectors, passively converting sensory
input into a sparse code for further feedforward processing
across the visual hierarchy (14). In fact, considerable evidence
suggests that primary visual cortex does not statically encode the
environment but has rich spatial and temporal dynamics. For
example, sensory-evoked activity propagates through the local
network in wavelike patterns (15–17), displays a high degree of
temporal structure (18), and can persist long after the cessation
of stimulation (19–22). These rich dynamic properties exhibited
by early visual neurons suggest an active involvement of primary
visual cortex populations in the coordinated representation of
visual stimuli. Most strikingly, repetitive visual exposure can alter
the strength and selectivity of neuronal responses in the primary
visual cortex, leaving a lasting mark on postexposure activity in
both awake and anesthetized animals (23, 24). Yet, it remains un-
clear how such changes affect the joint encoding of stimuli across
neuronal populations and ultimately the information transmitted
to downstream areas.

Given that primary neurons adapt their responses as a
function of repeated exposure, one compelling hypothesis is
that exposure-driven changes are coordinated across neuronal

populations to collectively improve the representation and
maintenance of recently experienced stimuli. Here, we test this
hypothesis by investigating the impact of visual exposure on the
persistent population response of neurons in cat area 17 to brief,
structured stimulation. We employ a large set of abstract stimuli
(letters of the Latin alphabet and Arabic numerals) that provide
a rich variety of spatial conjunctions across low-level features
and are well suited to capture aspects of distributed coding.
We find five main signatures of functional reorganization. First,
visual exposure optimizes stimulus maintenance in primary visual
cortex by increasing the magnitude and decreasing the variability
of neuronal responses that persist after stimulus offset. Second,
these changes are associated with neural recruitment, a broaden-
ing of the dynamic range neurons employ to respond to stimuli,
and an enhancement of stimulus-specific tiling of neuronal
responses. Third, refinement of individual responses results in
increased stimulus encoding at the population level; i.e., a simple
hypothetical downstream decoder increases its accuracy in iden-
tifying recent stimuli from brief snippets of population activity.
Fourth, the exposure-driven enhancements in stimulus persis-
tence maintain the representational structure of stimuli, resulting
in improved stimulus reconstruction. Fifth, exposure strengthens
patterns in postexposure spontaneous activity. Finally, modeling
demonstrates that exposure-driven enhancements in stimulus
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persistence can arise from recurrent network interactions via
local, unsupervised plasticity mechanisms.

Results
We used silicon multielectrode arrays to record the simultaneous
activity of neuronal populations in area 17 of five lightly anes-
thetized adult cats (Felis catus; mean age, 2.7 y; range, 1 to 5 y;
two females). We applied standard spike-sorting techniques to
isolate the action potentials of 112 single-unit and 331 multiunit
clusters (Materials and Methods). The receptive fields (RFs) of
the recorded units (27 to 52 units per session, 11 recording
sessions with independent electrode positions, 443 units in total)
were located nearby in visual space and were jointly stimulated
by a single luminance stimulus, flashed for 100 ms over a black
background (example trials in Fig. 1A). Short stimulus presenta-
tions at high contrast can produce strong persistent responses in
the primary visual cortex (20, 21). In our data, the flashed stimuli
evoked a biphasic population response, composed of a transient,
low-latency component (≈50 ms) and a prolonged, persistent
component (example trials and average firing rates across all
443 units from five cats in Fig. 1A). In total, 235 of 443 units
(53%) fired above the baseline for the entire duration of the trial
(defined as a difference in firing between the last 100 ms of the
trial and the prestimulus baseline of at least 20%, paired t-test
P values ranged between 0 and 0.0198).

The anesthetic protocol used here, consisting of intravenous
suffentanil supplemented by minimal concentrations of isoflu-
rane, was intended to model stable cortical dynamics, absent
of strong fluctuations between “up” and “down” states. The
stability and quality of the recordings were quantified using the
power spectrum of the local field potential (LFP) and comparing
the shapes of early and late spikes, neither of which exhibited

any systematic change over the exposure interval (SI Appendix,
Fig. S1).

Visual Exposure Enhances Stimulus Persistence. How does brief
visual exposure to structured stimuli affect the persistence of
neuronal population responses in primary visual cortex? To ad-
dress this question, we presented a large set of alphanumeric
stimuli (34 uppercase letters and digits) in random order (1,700
trials in total, 50 trials per stimulus) and compared stimulus
responses across either two or five consecutive trial blocks (stim-
ulus order within each block was random and consecutive trials
corresponded to different stimuli; schematic in Fig. 1B).

We measured stimulus discriminability, also known as Cohen’s
d’(25), by calculating, for each individual unit and each 50-ms
time window within the trial, the spread of the mean responses
to different stimuli relative to the SDs of those responses across
trials (definition of d’ for 34 stimuli in Materials and Methods). We
found that visual exposure led to a substantial increase in average
d’ across units (two blocks, 8.38% increase for the interval 100 to
800 ms, paired t test, P = 6.4e-13, t = -7.43, df = 442 and 10.86%
increase for the interval 300 to 600 ms, paired t test, P = 2.8e-12,
t = -7.19, df = 442; profile of average d’ along the trial in Fig. 1C).
The increase in d’ with visual exposure was gradual and did not
reach a saturation point (five blocks, 10.9% increase between
blocks 1 and 5, paired t test, P = 1.3e-07; the black line indicates
the linear fit, y = 2.4x + 98.66, linear trend was significant at
P = 0.009; Fig. 1D), suggesting that further improvements may
be possible with further exposure.

An improvement in stimulus discriminability is likely to be
associated with an increase in neuronal response amplitude or a
decrease in response variability. We found that visual exposure
resulted in an increase in the amplitude of neuronal responses
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Fig. 1. Visual exposure protocol and simultaneous recordings of neuronal population activity from cat area 17. (A) Cluster of receptive fields of
simultaneously recorded multiunits (rectangles) relative to the location of a visual stimulus. Shown is population activity in example trials from one session.
After a brief stimulus presentation (100 ms, on and off timing marked in blue arrows), neuronal responses display a short transient followed by a persistent
reverberatory component. Bottom peristimulus time histogram (Psth) shows mean population firing rates across 443 recorded units in early (black) and late
(red) trials. (B) Exposure protocol: In each session 34 visual stimuli were presented in random order (1,700 trials in total). Sessions were split in either two
or five consecutive blocks of trials and analyzed separately. (C) Average stimulus discriminability (d’) over the course of the trial (d’ calculated per unit; 443
units; 34 stimuli; shaded area indicates the SE from the mean). The effect of visual exposure on stimulus discriminability is significant for the persistent (300
to 600 ms), but not the transient (0 to 300 ms) part of the evoked response. (D) The increase in d’ is gradual and does not saturate for the exposure interval
considered here (five blocks; interval 300 to 600 ms). (E) Similar firing-rate levels result in higher discriminability in late trials (red) compared to early trials
(black) in a session. ***P < 0.001.
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that persisted after stimulus presentations (6.2% increase
between early and late trials for the 300- to 600-ms interval;
paired t test, P = 2e-08, t = -5.71, df = 442; Fig. 1A and
SI Appendix, Fig. S2). Interestingly, similar firing-rate levels
resulted in higher d’ values for late trials in a session, suggesting
that modulations in firing rates alone cannot explain the observed
improvements in stimulus discriminability (Fig. 1E). Moreover,
the same conclusion was reinforced by the observation that, in
two animals, the mean population firing rate was unchanged
by stimulus exposure, despite substantial improvements in
stimulus encoding (cats 3 and 5; see related stimulus decoding
performance in SI Appendix, Fig. S5). It is known that firing
variability is reduced by stimulus onset (26). Here we found that
visual exposure further reduced variability throughout the trial
(3.48% decrease between early and late trials for the interval
300 to 600 ms; paired t test, P = 8e-05, t = 3.98, df = 442;
SI Appendix, Fig. S2). Laminar analysis revealed that exposure-
driven changes in response amplitude, variability, and d’ were
significant for all compartments (SI Appendix, Fig. S3).

Exposure Increases the Dynamic Range and Stimulus Clustering of
Neuronal Responses. Given the common assumption that higher
response selectivity corresponds to more stimulus information,
we considered the possibility that the observed exposure-driven
enhancement in stimulus discriminability may be associated with
an increase in response sparseness or selectivity. We assessed
both the population sparseness for each stimulus and the stimulus
selectivity of each unit, separately for early and late trials in each
session (response period 300 to 600 ms; Materials and Methods).
Sparseness was estimated as one minus the fraction of simul-
taneously recorded units that responded to each stimulus, and,
conversely, the selectivity of each unit was estimated as one minus
the proportion of stimuli it responded to. We found that both
measures decreased with visual exposure (sparseness, paired t
test across stimuli and sessions, P = 6.8e-04, t = 3.4, df = 373;
values z scored per session; Fig. 2A; selectivity, paired t test,
P = 0.006, t = -2.7, df = 442; not shown).

When units were sorted based on their change in firing-rate
amplitude and grouped into quartiles, we found that the units
that strongly decreased their firing rates with exposure showed
increased selectivity, but decreased d’ (compare Fig. 2 B and
C). Conversely, the units that increased their firing rates with
exposure became less selective and increased their d’ values.
Interestingly, we found that exposure recruited more units to
stimuli (reduced sparseness) and that recruited units increased
the dynamic range of their firing-rate responses (the difference
between the strongest and the weakest response across stimuli;
Materials and Methods and Fig. 2D). The increased dynamic
range was highly significant across units (paired t test, P = 7.5e-
17, t = -8.6, df = 442).

Reducing the high-dimensional population response via prin-
cipal component analysis (PCA), we found that exposure in-
creased the segregation of responses, revealing stimulus-specific
clusters in low-dimensional projections (examples in Fig. 3 A and
B; multiple sessions in SI Appendix, Fig. S4). Better segregation
was quantified as reduced cluster radius and increased interclus-
ter distance. The cluster radius, the mean Euclidean distance in
the first two principal components of all cluster points (stimulus
trials) to the cluster center (average response), decreased signifi-
cantly with exposure (10.4% decrease, paired t test, P = 1.25e-15,
t = 8.36, df = 373; Fig. 3C). In addition, the cluster distance, the
mean distance between the cluster center and all other centers,
increased with exposure (15.3% increase, paired t test, P = 4.7e-
25, t = -11.13, df = 373; Fig. 3D). Overall, the clustering index,
calculated per session as one minus the mean ratio between the
cluster radius and the cluster distance, increased with exposure
(paired t test, P = 0.0058, t = -3.48, df = 10; Fig. 3E).

In sum, these results suggest an exposure-driven refinement
of stimulus encoding. This refinement does not occur through
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Fig. 2. Exposure-driven refinements in stimulus encoding. (A) Response
sparseness decreases significantly with visual exposure, suggesting neural
recruitment. Individual markers correspond to individual stimulus conditions
(11 sessions, 34 stimuli). (B) Change in response selectivity as a function of
change in firing rate with exposure. Units are sorted by amplitude of rate
change (late-early) and grouped into quartiles (marked on x axis). Values on
y axis are z scored per session. (C) Change in d’ as a function of change in
firing rate with exposure. Units that increase their firing rates with visual
exposure also increase their d’ values, but are accompanied by a loss in
selectivity (compare to B). (D) Change in response range as a function of
change in firing rate with exposure. Positive gains in response range are
associated with an increase in firing rates. All measures are calculated over
the 300- to 600-ms time interval in the trial. Error bars in B–D indicate SEs
from the mean. ∗∗∗P < 0.001.

increased selectivity of units, or population sparseness, but rather
through the recruitment of more responsive units into the popu-
lation response, an expansion of the dynamic range of units, and
enhanced stimulus-specific clustering of population responses.

Exposure Enhances Readout Performance. We next sought to in-
vestigate the extent to which exposure-driven changes in neu-
ronal responses affect the capacity of a hypothetical downstream
decoder to identify visual stimuli based on the primary visual
cortex output.

We trained independent Bayesian classifiers to perform time-
resolved decoding of stimulus identity based on the population
activity vector across the trial, i.e., the spike count in each time
bin (instantaneous decoders; schematic in Fig. 4A). Visual expo-
sure led to increased classification performance (time course in
Fig. 4B; chance level = 2.94% for 34 stimuli, 50-ms time bins, 100-
fold validation procedure; see Materials and Methods for details).
The magnitude of the increase was substantial given the modest
changes in firing rate and variability observed for individual units.
Peak accuracy across sessions ranged from 8 to 49.5% correct for
early trials and 16.5 to 59.6% correct for late trials and increased
significantly in every animal (average increase 27.7%, range 13
to 59.6% increase, t test, all P values < 0.001). To quantify
stimulus persistence, we analyzed the time course of classification
performance within the trial by calculating the area under the
curve (AUC) (100 to 800 ms). We found that visual exposure led
to a strong and significant increase in performance AUC in every
animal (average increase 33%, range 14 to 64%, t test, all P values
< 0.001; individual performance profiles in SI Appendix, Fig. S5).
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Fig. 3. Exposure increases stimulus-specific clustering and segregation of the population responses. (A) Evolution of population responses to 34 visual
stimuli over the course of the trial (example session, 50-ms spike-count vectors). (B) Early and late population responses (50-ms spike-count vectors) to three
stimuli (letters A, B and C) in the space defined by the first two principal components. Each marker represents a single trial. For each cluster, an ellipse
circumscribes the data points within one SD from the mean. The stimulus-specific clusters segregate ≈300 ms after stimulus onset. The segregation is more
pronounced for late trials in A (red) compared to early trials (black) in a session. (C) Scatter of cluster radius values in early and late trials, for all stimulus
clusters in all sessions (50-ms spike counts, 300 ms after stimulus offset). Inset histogram shows the distribution of differences in cluster radius between early
and late trials; the mean of the distribution that is significantly different from 0 is marked in red. (D) Scatter of mean distances from each cluster center to
all others, in all sessions (same time window as in C). Inset histogram shows the distribution of differences in cluster distance between early and late trials.
(E) The clustering index increases significantly across recording sessions with visual exposure. ∗∗P < 0.01, ∗∗∗P < 0.001.

Given the large number of stimuli in our set, individual stimuli
were typically repeated only 50 times. Previous studies have
indicated that remarkably little stimulus exposure is required to
modify the response properties of neurons in the primary visual
cortex (24). However, to test the effect of more repetitions, we
acquired a session of 5,100 trials (150 trials per stimulus). In this
control session, the performance AUC continued to increase past
50 repetitions per stimulus (SI Appendix, Fig. S6), suggesting that
additional exposure continues to enhance stimulus encoding.

As expected, the bin size used to integrate spike counts af-
fected the difference in decoding performance between early and
late trials (Fig. 4B). Decoders that counted spikes over intermedi-
ate integration windows (50 to 200 ms) had high performance and
showed significant improvements between early and late trials
(performance AUC, t test, P < 0.05), while very short (10 ms)
and very long (400 ms) integration windows resulted in lower
performance and reduced improvement (AUC, t test, P > 0.05).
Additionally, the effect of visual exposure on decoding perfor-
mance varied with the task difficulty, i.e., the number of stimuli
being decoded (Fig. 4C). We found that exposure improved peak

performance when classifying eight or more stimuli (t test, P <
0.05), but not fewer (t test, P > 0.05). This is likely due to ceiling
effects as peak performance scores for two class problems were
beyond 90% for early trials in 4 of 11 sessions.

The segregation of evoked responses into stimulus-specific
clusters varied substantially over the course of the trial (Fig. 3A)
and peaked at different moments in time for different animals
(SI Appendix, Fig. S5). We therefore examined how stimulus-
specific information varied with trial time by considering three
additional decoding configurations (schematic in Fig. 4A). First,
we trained “time-invariant” decoders on activity vectors pooled
across five consecutive 50-ms time bins. Note that such decoders
have five times more data points for the same N-dimensional
space, compared to the instantaneous decoders. Second, we
trained “aggregate” decoders on concatenated activity vectors
corresponding to five consecutive temporal bins. Aggregate
decoders map a five times larger dimensional space compared
to the instantaneous decoders. Finally, we trained “scrambled”
decoders on temporally scrambled data across five temporal
bins. Scrambled decoders have the same number of points and
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time bins), and scrambled (5 × N-dimensional readout integrates across five time bins after temporal scrambling). (B) Stimulus classification performance
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intervals. (E) Peak classification performance for the Bayesian decoders described schematically in A. All four types are significantly improved, suggesting
that both variant and invariant aspects of stimulus encoding are enhanced by visual exposure.

space dimensions as the aggregate decoders but map an altered
space where within-trial correlations between neurons have been
disrupted through scrambling. Interestingly, all three decoders
showed significant changes with visual exposure. The aggregate
decoder performed significantly better than both the invariant
and temporally scrambled decoders, suggesting that information
was contained not only in the instantaneous structure of the
spike-count vector but also in its trajectory (in the sequence of
state vectors during trial).

Finally, we considered the impact of visual exposure on the
portion of trial-to-trial variability shared between units. Con-
sistent with previous studies (27, 28), spike-count correlations
(SCCs) were highest for pairs of units with similar stimulus
preferences (positive signal correlations) and lowest for pairs
of units with opposing stimulus preferences (negative signal
correlations). Visual exposure reduced the strength of SCCs
(21% decrease, paired t test, P = 1e-17), and the reduction was
strongest for units with opposing preferences (78% decrease,
two-tailed t test, P = 1e-09, signal correlations < −0.1; 9%
decrease, two-tailed t test, P = 1e-06, signal correlations >0.1;
SI Appendix, Fig. S7A). Ignoring SCCs can decrease decoding
performance (29, 30). We found that a support vector machine
with quadratic features trained on trial-shuffled data and tested
on original data performed worse than a decoder trained on the
original data with intact correlation structure (two-way ANOVA;
shuffling led to a 10.42% decrease, P = 0.006, early trials and
13.02% decrease, P = 3.7e-09, late trials; exposure led to a
17.96% increase, P = 1.2e-07 for original data and 14.54%
increase, P = 0.0003 for shuffled data; SI Appendix, Fig. S7B).
Shuffling reduced performance for both the early and late trials,
suggesting that while repeated exposure decreased the overall
level of SCCs in the data, a portion of SCCs present in both

early and late trials contributed positively to the population
code. Indeed, the fact that SCCs decreased most for units
with opposing stimulus preferences might reflect competition
between stimulus-specific ensembles, such that correlations are
stable between units of similar preference and reduced between
units of opposing ensembles.

Exposure Enhances Stimulus Reconstruction. The alphanumeric
stimuli are structurally more complex than oriented gratings but
less complex than natural scenes. Such a large stimulus set of
intermediate complexity is highly suitable for reconstruction,
i.e., recreating the luminance pattern of stimuli from their
evoked neuronal responses. While stimulus decoding techniques
have been applied to many visual cortical areas, stimulus
reconstruction has been attempted rarely and not, to our
knowledge, in the context of visual exposure.

We performed stimulus reconstruction separately on early and
late trials to quantify the impact that visual exposure had on
encoding. To reconstruct each stimulus, we trained Bayesian
decoders to predict the luminance of individual stimulus patches
(576 decoders corresponding to 24 × 24 image patches) based on
the population activity recorded after stimulus offset (schematic
in Fig. 5A; luminance values were between 0 and 1; independent
train and test trials, 20-fold validation scheme; 11 sessions). The
reconstructed stimuli were noisy on single trials (examples from
one session, 50-ms spike counts, 400 ms after stimulus offset; Fig.
5B, Left) and became considerably more accurate when averaged
across 10 test trials (Fig. 5B, Right). Exposure increased stimulus
reconstruction accuracy, calculated as one minus the difference
in pixel luminance between the reconstructed image and the
original image (scatter of 34 stimuli from 11 sessions; paired
t test, P = 1.13e-09, t = -6.24, df = 373; Fig. 5C, Left). This
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Fig. 5. Improved stimulus reconstruction with visual exposure. (A) Schematic representation of stimulus reconstruction technique: A 24 × 24 array of
Bayesian classifiers is trained to predict pixel luminance from population spike-count vectors (50 ms) recorded 400 ms after stimulus offset. Test trials are
omitted from the training set. (B) Single-trial examples for reconstruction of a stimulus (number “3”) and examples of average reconstructions (across 10 test
trials, numbers “1” to “4”) for early and late trials in an example session. (C) Scatter depicts the reconstruction accuracy of all stimuli from 11 sessions, early
vs. late trials (Left). Changes in reconstruction accuracy are significant (Inset histogram, paired t test; mean accuracy per session in Right plot, paired t test).
(D) Example of 50 spontaneous events detected pre- and postvisual exposure in a session. (E) Spontaneous events become stronger postexposure (events
detected pre- and postexposure in 7 sessions). (F) A Bayes classifier trained on evoked activity assigns stimulus labels to spontaneous events. The assigned
labels are more uniformly distributed postexposure; entropy (measured in bits) is significantly higher postexposure (Right plot; permutation test). (G) Stimulus
reconstruction accuracy based on spontaneous events improves postexposure. (H) Examples of single-letter reconstructions based on spontaneous events
occurring pre- and poststimulus exposure (24 × 24 luminance patches; training on evoked data). ∗∗∗P < 0.001.

improvement was significant also when calculated across sessions
(paired t test, P = 8.2e-04, t = -4.71, df = 10; Fig. 5C, Right).
These results suggest that the exposure-driven enhancements
in classification performance are representational in nature and
reflect improved encoding of stimulus content. The fact that the
structure of multiple stimulus shapes (34 letters and digits) can be
reconstructed from relatively small populations of recorded units
(27 to 52 units per session) and improves with exposure speaks
to the impressive encoding capacity and flexibility of the primary
visual cortex.

Structured Postexposure Spontaneous Activity. Exposure-driven
changes in evoked activity are often associated with accompany-
ing changes in spontaneous activity. The stimulus reconstruction
technique described above allowed us to probe for lasting
representational changes in the structure of spontaneous
neuronal activity. To this end, in seven exposure sessions from
three cats, we recorded and analyzed spontaneous activity (20
blank trials) before and after visual stimulation.

We isolated spontaneously occurring strong-activation events,
defined as periods when population activity exceeded mean activ-
ity by more than one SD (50-ms spike counts). In total, 961 events
were detected during preexposure spontaneous activity and 980

during postexposure (example events corresponding to pre- and
postexposure data from one session; Fig. 5D). We found that the
strength of spontaneous events increased significantly after visual
exposure (event strength was pooled across sessions after being
standardized for mean and variance; t test, P = 3.9e-89, t = -21,
df = 1,939; Fig. 5E).

To quantify structural differences in the pre- and postexpo-
sure events, we assigned a stimulus “label” to each event us-
ing decoders trained on evoked activity (example label assign-
ments for pre- and postexposure events from one session in Fig.
5F). The assigned labels were more uniformly distributed across
stimulus conditions postexposure, as indicated by an increase
in entropy (estimated based on 1,000 bootstraps of 50 events,
P = 1e-172; Fig. 5F, Right). We next generated an image, using
the same reconstruction technique as above, for each spon-
taneous event. Both the reconstruction and the identity de-
coders were trained on evoked activity from the entire session
(no separation of early and late trials), as we wanted to assess
exposure-driven changes in the structure of spontaneous activ-
ity, not changes in the reconstruction or decoding techniques.
We pooled images across events based on the assigned class
label to obtain mean stimulus reconstructions (reconstruction
examples in Fig. 5H). The accuracy of stimulus reconstruction
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improved following exposure (paired t test, P = 5.3e-04, t = -3.52,
df = 204; Fig. 5G). Since the assignment of a class label and
the reconstruction of an image for the same spontaneous event
reflect related content, it is not surprising that some degree of
stimulus reconstruction is possible based on spontaneous activ-
ity. However, the improvement in postexposure reconstruction
accuracy suggests that the changes in spontaneous events are
structured and correspond to the experienced visual content.

Self-Organized Recurrent Networks for Stimulus Persistence.
Finally, we sought to demonstrate that a simple self-organized
recurrent network, endowed with local plasticity mechanisms
for learning and homeostasis, can qualitatively reproduce the
exposure-driven enhancements in stimulus encoding, while
maintaining stable activity levels.

We considered a simple network composed of 250 determinis-
tic McCulloch and Pitts threshold neurons, 80% excitatory and
20% inhibitory. For simplicity, the recurrent interactions were
assumed to arise from a single pool of randomly connected
neurons, not a multilayered recurrent network. The connections
between the excitatory units were sparse and followed simple
topological constraints; i.e., nearby neurons had increased prob-
ability for a connection (details in Materials and Methods). A
subset of neurons received luminance input from a 6 × 6 array of
stimulus image patches (schematic in Fig. 6A).

Recurrent neural networks naturally exhibit a memory of
recent inputs, so information about brief stimuli can be retrieved
with some delay from stimulus offset (31, 32). To match
the empirical data, we strengthened the persistent recurrent
responses after stimulus offset through response facilitation,
which has been previously implicated in both stimulus persistence

and learning (33, 34) (fixed interval for facilitation marked by
shaded area in Fig. 6C).

Visual exposure consisted of 50 brief presentations of 10
stimuli (alphabet letters A to J) in random order. The network
self-organized through synaptic plasticity, while homeostatic
plasticity maintained the network output at a stable level
(example of connectivity changes through plasticity in Fig. 6B,
details in Materials and Methods).

We considered how exposure-driven learning may interact with
several different implementations of response facilitation. Facil-
itation was implemented by changing the excitatory–inhibitory
balance of incoming synaptic gains per unit by either 1) lowering
inhibition or 2) increasing excitation. Alternatively, the activity
of excitatory units was increased by 3) adding a random input
drive and 4) changing neuronal excitability via intrinsic plasticity.
The first two methods resulted in persistent unit responses after
stimulus offset. Unsupervised learning during visual exposure
led to improved stimulus encoding (data for an example run
with lowered inhibition in Fig. 6 C–E). Similar to the empirical
results, the enhancement in stimulus encoding could be captured
in low-dimensional projections of the data (Fig. 6E). The last two
methods, variable input and changes in neuronal excitability via
intrinsic plasticity, resulted in similar, persistent responses after
stimulus offset. However, they did not lead to improved stimulus
encoding through learning, suggesting that the intrinsic net-
work interactions, which were more severely disrupted by these
two methods, played a critical role in the optimization process
(Fig. 6F).

Discussion
We found that repeated exposure to briefly flashed visual shapes
improves stimulus encoding in primary visual cortex. Visual
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Fig. 6. SORN. (A) Recurrent neural network with subset of neurons receiving pixel luminance inputs. (B) Network topology: Initial connections are sparse
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comes from a reorganization of internal network dynamics. (E) Exposure results in an enhanced clustering of trials belonging to different stimulus conditions
in a low-dimensional projection space. (F) Facilitation can boost or impede unsupervised learning, depending on implementation. Facilitation via a decrease
in synaptic inhibition or an increase in synaptic excitation leads to a boost in classification performance. Facilitation via nonstructured excitatory input (noise)
or threshold modulation via intrinsic plasticity interferes with learning. exc., excitatory; inh., inhibitory. ∗P < 0.05; n.s., not significant.
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exposure altered poststimulus population activity in a manner
that enhanced both the decoding of stimulus identity and the
reconstruction of visual stimuli.

These improvements were associated with neuronal recruit-
ment, an increase in the dynamic range of neuronal responses,
and stimulus-specific clustering of population responses. The
manner in which exposure enhanced the segregation of popu-
lation responses into low-dimensional, stimulus-specific clusters
suggested two main effects. First, stimulus responses became less
variable across trials and more stereotyped, shrinking the ra-
dius of individual clusters. Second, responses to different stimuli
became more distinct, increasing the distance between clusters.
Using decoders we found that the information about stimulus
identity was temporally specific; i.e., different time bins in the
trial differed in their mapping, and visual exposure improved
both variant and invariant aspects of stimulus encoding. Inter-
estingly, we also observed a reduction in covariability, similar to
what has been previously documented in the context of attention
and perceptual learning (27, 35, 36). In our data, the effect of
exposure on spike-count correlations was complex: The strength
of correlations was reduced with exposure, but knowledge about
their structure remained beneficial for stimulus discrimination.

The brief stimulus presentations employed here resulted in a
stereotyped, biphasic neuronal response in primary visual cortex,
consisting of a high-amplitude transient followed by a delayed
persistent response. Stimulus decoding performance diverged
from the expected dependence on firing rate, with accuracy peak-
ing not on the response transient, but 200 to 400 ms after stim-
ulus offset. Sustained and information-rich sensory responses
persisting beyond the period of sensory stimulation have been
reported previously, not only under anesthesia, but also in various
sensory modalities and species in awake behaving animals. In the
primary auditory cortex of awake marmosets, preceding stimuli
suppressed or facilitated responses to succeeding stimuli for
more than 1 s (37). In awake mice, the early sensory responses to
a single brief whisker deflection encoded stimulus information,
while the later activity appeared to drive the subjective detection
(38). In the primary visual cortex of awake mice, an oriented
flashing light induced a biphasic membrane voltage response that
consisted of an early, transient depolarization and a delayed,
slow depolarization (20). The delayed activity exhibited high
orientation selectivity and influenced the evoked response to
subsequent inputs in an orientation-selective manner. In awake
macaques, a simultaneous change in both stimulus and back-
ground gave rise to a delayed V1 response that varied with the
size of the background and correlated with the perception of
a visual aftereffect (21). In human electroencephalography, in-
formation about a previously presented visual stimulus persisted
even in the absence of delayed activity (activity-silent states) and
could be decoded from an impulse response, long after stimulus
presentation (39).

The persistence of stimulus information observed in our data
and supported by the studies mentioned above highlights a
propensity for the primary visual cortex to maintain sensory
information, far beyond the temporal intervals required by the
traditional feedforward model of the ventral stream. Instead,
these findings are compatible with a dynamic coding framework
for recurrent computation (31, 32, 40). In this framework, the
cortical response to a stimulus emerges from an interaction
between the input signals and the internal dynamical state of
the network, including the ongoing activity (active states), but
also the time-dependent properties of neurons and synapses
(hidden states). Efficient recurrent processing relies on two
simple requirements: 1) Stimulus responses must persist beyond
the duration of the stimulus, establishing a brief memory of
recent events (fading-memory property), and 2) the temporal
evolution of network states in response to different stimuli must
result in reproducible stimulus-specific trajectories (separability

property). Both the memory and separability properties exhib-
ited by a recurrent circuit can be optimized through plasticity by
altering the network’s stimulus-response mapping (40).

The self-organized recurrent model presented here builds
on previous computational work showing that experience-
dependent plasticity increases a recurrent network’s perfor-
mance on memory and prediction tasks (41), while explaining
numerous experimental findings on cortical variability (42). We
introduced response facilitation to boost the network’s response
to brief stimulation and considered its effect on learning in
several implementations. We found that shifts in excitatory–
inhibitory synaptic gains led to strong persistent responses after
stimulus offset and increased stimulus decoding performance
through exposure. In contrast, an increase in excitatory drive
or neuronal excitability led to strong persistent responses after
stimulus offset, but did not result in improved stimulus decoding
performance through exposure, suggesting that the intrinsic
network interactions play an essential role during learning.

Notably, various other computational models have shown that
the dynamics and performance of recurrent neural networks can
be optimized via brain-inspired plasticity mechanisms. For exam-
ple, spike-frequency adaptation was shown to expand the mem-
ory exhibited by recurrent circuits (43) and different forms of
biologically plausible synaptic learning rules have been employed
to enhance computational performance of recurrent networks in
an unsupervised fashion (44–47). Furthermore, several studies
made direct attempts to link learning in recurrent networks to
optimization of state space dynamics (48, 49) or metalearning
(50). While neither of these recurrent models tried to explain
how persistent responses after brief stimulation can interact with
learning, they provide valuable insights into the various means
by which refinements in internal network dynamics result in
improved output performance.

The precise anatomical connectivity responsible for the
observed reverberation of visual responses and the functional
changes underlying exposure-driven improvements in stimulus
discrimination are still unknown. Given the presence of both
strong feedforward and extensive feedback thalamocortical
interactions (51, 52), we cannot exclude the possibility that
exposure-driven changes in primary cortex responses originate
from interactions with subcortical structures. In fact, studies have
shown that slowly decaying inhibitory postsynaptic potentials
in the lateral geniculate nucleus can maintain stimulus-specific
information for up to 300 ms and can modulate subsequent
responses to reoccurring contours (53, 54). However, these
effects were short lasting, while in our data repeated exposure
to stimuli resulted in an increase in stimulus encoding across
numerous trials and was associated with a strengthening
of activation patterns in postexposure spontaneous activity.
Interestingly, the activation of N-methyl D-aspartate (NMDA)
receptors in cortical layer 4, which receives the densest thala-
mocortical input, does not appear to be necessary for stimulus-
selective response potentiation in V1 (55). An alternative is that
exposure-dependent changes primarily affect local recurrent
interactions within primary cortex and/or the long-distance
recurrent interactions with higher cortical areas.

Vision depends on integrating the current sensory input in light
of previous experience (56). This integration is achieved through
the rich recurrent dynamics of the early visual system, which
arise on the backbone of structural connectivity (57, 58). The
connectivity of sensory areas is believed to capture the statistics
of the environment (4, 7, 56, 59), a process that would improve
processing for expected stimuli (60–62). However, exposure-
driven changes in the primary sensory cortex of adult subjects
suggest a complex, occasionally divergent pattern of results. For
example, adaptation classically leads to a reduction in response
amplitude (10), and familiar stimuli can evoke reduced responses
compared to novel stimuli (63). However, repetitive exposure can
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also alter the receptive fields and tuning of neurons in V1 (13),
imprint responses to recent stimulus trajectories (24), increase
the magnitude of responses to familiar sequences, and signal
predictions to missing elements (23). These intricate changes in
response amplitudes with visual exposure appear to depend on
many factors, among which are the frequency and duration of
stimulation, the structure and complexity of the image set, the
state of the animal, and the precise signal measured. Regardless,
the core findings outlined here do not rely heavily on changes
in firing rates to familiar stimuli, but rather on the prolonged
maintenance of stimulus information and the increase in dis-
criminability with visual experience. We interpret these results
as an accumulation of evidence that optimizes the encoding of a
stimulus set akin to learning new stimulus statistics.

State changes are known to vary under anesthesia and can
change the cortical response to stimulation. For example, deep
anesthesia gives rise to alternating up and down states with
distinct dynamic profiles that can have an impact on sensory
coding. We did not observe such strong variations in our record-
ings, which were performed in a modified anesthetic protocol
to mimic awake-like brain dynamics. Although a milder form
of such variation occurs also during wakefulness, we found no
systematic change in brain state that could trivially explain our
results. Likewise, brief stimuli are known to generate robust
responses irrespective of cortical state (64), which may explain
the stability of sensory responses and brain states across record-
ing sessions. Given that the experiments were performed under
anesthesia, the reported exposure-driven changes in activity must
involve “automatic” mechanisms, independent of attention and
conscious control. Further work is necessary to determine to
which extent these effects generalize to the waking state, where
higher cortical areas with reciprocal connections to V1 as well
as subcortical regions, such as the superior colliculus, thalamus,
and cerebellum, are likely to play an important role in shaping V1
plasticity. In particular, top–down enhancement of task-relevant
stimulus features and suppression of irrelevant ones, the level
of attention, motivation, and reward expectation are all likely to
guide learning-induced changes in V1.

Our study provides compelling evidence that repetitive visual
exposure optimizes sensory processing in primary visual cortex,
resulting in a better readout of stimulus-specific information.
These findings suggest that the reliable visual discrimination of
familiar stimuli can be partially achieved through separation
of neuronal representations at the earliest cortical stage in the
visual hierarchy. Future work should establish how these changes
impact the transformation of sensory signals in the visual hierar-
chy, manifest at higher visual areas, and interact with behavioral
states, such as attention or perception.

Materials and Methods
Electrophysiological Recordings and Data Processing. Data were recorded
from five adult cats (F. catus; mean age, 2.7 y; range, 1 to 5 y; two females)
under general anesthesia during terminal experiments in two separate
laboratories. The cats were bred internally, were housed together with other
cats in small groups, and experienced normal vision during development. All
procedures complied with the German law for the protection of animals and
were approved by the regional authority (Regierungspräsidium Darmstadt).

For one of the cats, anesthesia was induced by intramuscular injection of
ketamine (10 mg/kg) and xylazine (2 mg/kg) followed by ventilation with
N2O:O2 (70/30%) and halothane (0.5 to 1.0%). After verifying the depth
of narcosis, pancuronium bromide (0.15 mg/kg) was added for paralysis.
Stimuli were presented binocularly on a 21-inch computer screen (HITACHI
CM813ET) with 100-Hz refresh rate. To obtain binocular fusion, the optical
axes of the two eyes were first determined by mapping the borders of
the respective receptive fields and then aligned on the computer screen
with adjustable prisms placed in front of one eye. Data were recorded
with multiple 16-channel silicon probes from the Center for Neural Com-
munication Technology at the University of Michigan (each probe consisted
of four shanks, 3 mm long, 200 μ m distance, four contact points each,
1,250 μ m2 area, 0.3 to 0.5MΩ impedance at 1 kHz). To extract multiunit

activity, signals were amplified 1,000 times and filtered between 500 and
3,500 Hz.

For four of the cats, anesthesia was induced by intramuscular injection
of ketamine (10 mg/kg) and medetomidine (0.02 mg/kg) followed by venti-
lation with N2O:O2 (60/40%) and isoflurane (0.6 to 1.0%). After verifying
narcosis, vecuronium (0.25 mg×kg–1 × h–1 intravenous) was added for
paralysis. Data were collected via multiple 32-contact probes (100 μ m
intersite spacing, ≈1MΩ at 1 kHz; NeuroNexus or ATLAS Neuroengineering)
and amplified (Tucker Davis Technologies). Signals were filtered with a
passband of 700 to 7,000 Hz and a threshold was set to retain multiunit
activity. Thresholds remained fixed during data collection.

Visual Stimuli. Stimuli consisted of 34 shapes: 26 letters (A to Z) and 8 digits
(0 to 7). They were white on black background and spanned 5 to 7◦ of visual
angle.

A total of 1,700 trials (50 trails per stimulus) were recorded in every
session. More than 6,800 trials (200 trials per stimulus) were recorded
in one of the sessions to test whether longer exposure leads to further
improvements in stimulus encoding (SI Appendix, Fig. S6).

Stimuli were presented in random order; i.e., consecutive trials corre-
sponded to different stimulus conditions.

Data Analysis. Data were processed and analyzed using custom code written
in MATLAB (MathWorks). Statistical significance was calculated via two-
tailed paired t tests that compared early and late trials in each session, and
P, t, and df values were reported in each case. Results across all 443 units
(5 cats), pulled together, are reported in Figs. 1 and 2. Figs. 3–5 focused on
population activity and combined data across all 11 sessions (5 cats). The
exposure improvements in stimulus encoding, as quantified by the Bayesian
classifier, were strong and statistically significant in each recorded animal
(individual subplots for 5 cats in SI Appendix, Fig. S5).

Spontaneous activity was collected before and after visual exposure in
7 sessions from 3 cats (Fig. 5 D–H). The Fieldtrip toolbox (65) was used
for laminar analysis (SI Appendix, Fig. S3). These results were based on 7
recording sessions from 3 cats, for which current source density maps could
be calculated.

One-way ANOVA was used to test the significance of longer exposure
on stimulus decodability (SI Appendix, Fig. S6) and a two-way ANOVA was
used to compare both the impact of exposure and that of trial shuffling on
stimulus decoding performance (SI Appendix, Fig. S7); the corresponding P,
F, and df values were reported in each case.

Spike Sorting. Spike sorting of the recorded multiunits was performed
offline via custom software that computed principal components of spike
waveforms to reduce dimensionality and grouped the resulting data using a
density-based clustering algorithm (DBSCAN). Only the well-isolated clusters
were considered single units and labeled separately. Spike sorting resulted
in 112 single units and 221 multiunits, in total 443 units across all datasets.

Current Source Density Analysis. In three cats (seven sessions, 289 units,
32-channel linear arrays 100 m spacing), LFPs to moving grating stimuli
presented at maximal contrast were recorded either immediately before
or immediately after the sessions with letters and digits. These LFPs were
subject to current source density (CSD) analysis using a standard algorithm
(66) based on the second spatial derivative estimate of the laminar local field
potential time series. This analysis revealed successfully the short-latency
current sink in the middle layers for each session, which has been shown
to correspond most closely to layer 4 (67).

Neuronal Response Properties. For every unit, the discriminability index d’,
also known as Cohen’s effect size (25), for n stimuli, was calculated as

d′
=

√∑n
1(ri − r)2

n
/σ, [1]

where ri is the mean response across trials to stimulus i, r is the mean
response across all trials, and σ is the common within-population SD, here
σ =

∑n
1 σi/n, where σi is the SD of responses across trials to stimulus i. Note

that low single-unit d′ values across many stimulus conditions (n = 34) are
expected; see for example ref. 68 for reference.

The Fano factor was computed per unit according to Fano (69),

FF =

n∑
i=1

(σ
2
i /ri)/n, [2]

where σ, ri , and n are defined as above.
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Response sparseness R describes the response distribution of a population
of neurons to a single stimulus. Within each session, the response sparseness
of the recorded population of units to each stimulus was calculated as

Ri = (1 − fi/m), [3]

where fi/m is the fraction of units out of the total m that fired above the
baseline in response to stimulus i.

Stimulus selectivity quantifies the responsiveness of a unit across a set of
stimuli and was defined as in ref. 70. For each unit,

A =

(
n∑

i=1

ri/n

)2

/

n∑
i=1

(r2
i )/n, [4]

where ri is the unit response to stimulus i and n is the total number of stimuli.
We used this measure in its inverted form S,

S = 1 − A, [5]

so that large values of S indicate high selectivity.
The response range G was defined, for each unit, as the difference

between the maximum and minimum response across all stimuli:

G = max
i

(ri) − min
i
(ri). [6]

All of the measures defined above were calculated for every 50-ms time
interval within the trial. When the reported values refer to larger time
windows, they represent averages over several 50-ms intervals.

Stimulus Classification. An instantaneous Naive Bayes decoder was trained
and tested on individual time bins of population responses. The size of a bin
was 50 ms, unless specified otherwise. We performed k-fold cross-validation
by randomly subsampling the data (k - 1 data partitions used for training,
1 used for test, k repetitions; k = 100). The task of the decoder was to
determine the stimulus identity for each test trial, based on the population
response in a particular time bin. Chance level was 1/number of stimuli =
1/34.

Support vector machines (SVMs) with quadratic kernels were applied us-
ing a similar k-fold cross-validation procedure (k = 100) for the computations
shown in SI Appendix, Fig. S7. For each data split, we trained the SVMs on
either intact or trial-shuffled data (shuffling across trials within stimulus
condition) and tested them on intact data to test whether access to the
correlation structure present in the data leads to better performance.

Self-Organizing Recurrent Network. The neural network model was com-
posed of 80% excitatory (NE = 200) and 20% inhibitory units (NI = 50).
Connectivity matrices WIE, WEI, and WII were dense, randomly drawn from
the interval [0,1] and normalized so that the incoming connections to each
neuron summed up to a constant (

∑
j

Wij = 1). The connections between

excitatory units WEE were random and sparse and followed soft topolog-
ical constraints (pEE = 0.1 was the connection probability for neighboring
units; i.e., every 10 consecutive units were considered neighbors; pEE = 0.01
was the connection probability for nonneighbors). The threshold values
for excitatory (TE) and inhibitory units (TI) were drawn from a uniform
distribution in the intervals [0, 0.5] and [0, 0.3]. The network state at time t
was given by two binary vectors x(t) ∈ 0, 1NE and y(t) ∈ 0, 1NI, representing
activity of the excitatory and inhibitory units, respectively. Each timestep t
corresponded to ≈20 ms of real time.

The network evolved using the following update functions:

x(t + 1) = θ(WEE
(t)x(t) − WEIy(t) + U(t)) − TE

(t)) [7]

y(t + 1) = θ(WIE
(t)x(t) − WIIy(t) − TI

). [8]

The Heaviside step function θ constrained the network activation at time
t to a binary representation: A neuron fired if the total drive it received was
greater than its threshold.

The stimulus set was composed of 10 digits, 6 × 6 pixels each. Every fifth
excitatory unit received input from one corresponding image pixel; i.e., 36
units were input units, 164 units were reservoir units. The input U(t) varied
as a function of time (blue marking in Fig. 6): Initially it represented the
luminance of the stimulus at a particular pixel location (“on” response, two
time steps), and later it represented half the luminance of the reversed
stimulus image at the same location (“off” response, seven time steps). For
learning, we utilized a simple additive spike-timing–dependent plasticity
(STDP) rule that increased (or decreased) the synaptic weight WEE by a fixed
amount ηSTDP = 0.001 whenever unit i is active in the time step following (or
preceding) activation of unit j:

ΔWEE
ij (t) = ηSTDP(xi(t)xj(t − 1) − xi(t − 1)xj(t)). [9]

In addition, synaptic normalization was used to proportionally adjust the
values of incoming connections to a neuron so that they summed up to a
constant value cE = cI = 1:

ΔWEE
ij (t) = cE

⎛
⎝WEE

ij (t)/
∑

j

WEE
ij (t)

⎞
⎠ [10]

ΔWEI
ij (t) = cI

⎛
⎝WEI

ij (t)/
∑

j

WEI
ij (t)

⎞
⎠ . [11]

To stabilize learning, we used a homeostatic intrinsic plasticity (IP) rule
that spread the activity evenly across units, by modulating their excitability
using a learning rate ηIP = 0.001. At each time step, an active unit increased
its threshold, while an inactive unit lowered its threshold by a small amount,
such that on average each excitatory neuron fired with the target firing rate
μIP = 0.1:

ΔTE
i = ηIP(xi(t) − μIP). [12]

Response facilitation was applied for a fixed time interval in each trial
(20 time steps, shaded area in Fig. 6). Four different implementations were
considered: 1) The incoming synaptic inhibition was lowered (mI = 0.5), 2)
the incoming synaptic excitation was increased (mE = 1.5), 3) an additional
noisy input was fed to all excitatory units (uniformly distributed in the
interval [0, 0.01]), and 4) the target firing rate of excitatory units set via
intrinsic plasticity was increased (ηIP = 0.2).

The self-organizing recurrent network (SORN) model was implemented
in MATLAB. A similar implementation of the model in Python (with absent
WII connections) can be found at https://github.com/chrhartm (42).

Data Availability. All study data are in the main text and SI Appendix.
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