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A B S T R A C T

Meta-analysis, which drives evidence-based practice, typically focuses on the average response of sub-

jects to a treatment. For instance in nutritional research the difference in average weight of participants

on different diets is typically used to draw conclusions about the relative efficacy of interventions. As a

result of their focus on the mean, meta-analyses largely overlook the effects of treatments on inter-

subject variability. Recent tools from the study of biological evolution, where inter-individual variability

is one of the key ingredients for evolution by natural selection, now allow us to study inter-subject

variability using established meta-analytic models. Here we use meta-analysis to study how low carbo-

hydrate (LC) ad libitum diets and calorie restricted diets affect variance in mass. We find that LC ad

libitum diets may have a more variable outcome than diets that prescribe a reduced calorie intake. Our

results suggest that whilst LC diets are effective in a large proportion of the population, for a subset of

individuals, calorie restricted diets may be more effective. There is evidence that LC ad libitum diets rely

on appetite suppression to drive weight loss. Extending this hypothesis, we suggest that between-

individual variability in protein appetite may drive the trends that we report. A priori identification of

an individual’s target intake for protein may help define the most effective dietary intervention to

prescribe for weight loss.
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INTRODUCTION

When coupled with systematic review, meta-analysis

is widely regarded as one of the most valuable tools

available to guide evidence-based practices [1, 2].

Accordingly, almost every scientific field has now

adopted meta-analytic approaches, and nutrition is

no exception [e.g. 3]. In nutritional research meta-ana-

lysis is typically used to evaluate the efficacy of a diet-

ary intervention by calculating an effect size that

corresponds to the difference in the average weight

(or weight loss) of groups of subjects on different diets

within a study [e.g. 4, 5]. Although these meta-analyses

provide important insights, by virtue of their focus on

group averages they largely overlook between-subject

variability in weight (although such variance does in-

fluence the standard error of the associated effect

size). At best meta-analysis of dietary interventions

make a statistical correction for differences in variance

between groups (e.g. by using a standardized mean

difference; [6]), but variance in weight itself is rarely, if

ever treated as the primary outcome.

To-date there a have been a handful of instances in

which meta-analyses have focused on variance as a

primary outcome outside of nutritional research (e.g.

[7–9]). However, in general the widespread adoption

of meta-analysis of variability has been hampered by

the lack of a formal framework that is well integrated

with standard meta-analytic models. Such a frame-

work was recently developed in evolutionary biology

[10], a field where trait variation is considered as im-

portant as, or for some purposes even more import-

ant than, the trait mean. Darwin acknowledged the

importance of intra-population variation as a central

tenet of evolution by natural selection, and driver of

adaptation, at the publication of the concept in 1859.

In public health and nutrition, however, inter-subject

variability has been largely treated as statistical noise,

with little regard for its biological significance.

From an applied perspective understanding how

any intervention affects variability in an outcome is

just as important as understanding its effects on the

mean, and our focus on the latter hinders our ability to

truly understand treatment efficacy [11]. For instance,

if a diet ubiquitously reduces the average weight of a

group, but in fact consistently causes weight gain in a

fraction of the subjects, then the mean response can-

not be regarded as representative of all individuals and

it is erroneous to conclude that the diet is an effective

treatment for the whole population. Yet, it may be

tempting to infer such a conclusion from a mean-

focused meta-analysis of such data. What is more,

given modern-medicine’s pursuit of personalized

health-care [12], and an ever-increasing appreciation

of the role of the interaction between an individual’s

genetics and their environment in governing obesity

risk [13], understanding which dietary interventions

elicit a high degree of between-subject variability in

the response is more important than ever.

The most simplistic methods proposed by

Nakagawa et al. [10] require nothing more than a

reformulation of the effect-size, and use exactly the

same raw statistics as would normally be collected

for meta-analysis of the mean (i.e. mean, standard

deviation and sample size). Outside of public health

these tools have now been applied to understand

variability in phenomena as diverse as decision-

making, the effects of sex-hormones on immune

function, the evolution of dietary niche and even

the biology of ageing [14–17].

Substantial effort has gone into testing how diet-

ary macronutrient composition contributes to

weight loss. Given that dietary macronutrient com-

position is vital for control of appetite and energy

intake [18, 19], and that nutritional appetites may

differ between individuals depending on cultural

backgrounds and other life experiences (e.g. in utero

and early-life environments; [20]), it is of interest to

compare the variance in the mass of subjects on

different dietary regimes. Two popular dietary re-

gimes are ad libitum low carbohydrate (LC) and cal-

orie restriction (CR) diets. LC diets with unrestricted

protein and fat intakes rely upon macronutrient

composition, possibly ketosis and reduced food var-

iety to increase satiety and reduce energy intake for

weight loss [21, 22]. In contrast, CR protocols rely on

the individual following a prescribed level of calorie-

restriction, rather than responding ad libitum to ap-

petite signals. Given that LC diets rely to a greater

extent than CR diets on the physiological signals of

individual subjects to drive energy intake, we predict

that these diets may generate more variability in

weight than diets that prescribe a CR. Here, we use

meta-analytic models to compare variability in body

mass after 6 months of LC ad libitum interventions to

6 months of CR using studies identified in a recent

to-date systematic review [4].

METHODS

Data collection

We started with the library of studies from which

Tobias et al. [4] extracted the data in their analyses.
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To be included in our analyses the study was

required to contain at least one diet that restricted

calorie intake, and one diet that restricted carbohy-

drate intake but allowed subjects to eat ad libitum;

7 studies met our criteria (Table 1). Most studies

contained one group of subjects on each type of diet,

although Gardner et al. [23] and Shai et al. [24] con-

tained two groups on different types of calorie-re-

striction. This gave us data from 16 groups of

subjects on dietary interventions; 7 LC diets and 9

on CR diets. From each group we extracted the mean

and SD in mass (kg) of individuals, and sample

sizes, on each diet after 6 months.

Where results were reported graphically we ex-

tracted data using GraphClick [25]. In three studies

results were reported as the mean and SD in mass at

baseline and the change in mass from baseline at

6 months. In such cases we calculated the mean

mass at 6 months by adjusting the mean at baseline

by the mean change. The SD in mass at 6 months

was calculated as the square root of the sum of the

variance in mass at baseline and that in the change

in mass (i.e. propagation of error). This protocol

assumes that there is no correlation between initial

mass and change in weight at 6 months. Where they

are known to exist such correlations can be ac-

counted for, however no such correlation was men-

tioned in those studies in our dataset to which this

protocol was applied. Furthermore, there is no wide-

spread evidence for such an association in the litera-

ture [26]. Where possible we used population-level

statistics that excluded dropouts. In one case we had

to use data where baseline characteristics were

carried-forward for dropouts [23], although in all in-

stances effects size weighting was based on the

number of actual participants in the trial at 6 months

(the more conservative approach).

Effect-sizes and statistical models

Differences in the mean mass of groups on different

diets within studies were quantified as the log of the

ratio of the mean in each group, also known as the

log response ratio (lnRR and its sampling variance,

s2
lnRR; Table 2). To analyze differences in variance,

Nakagawa et al. [10] suggest several methods, which

differ in the way that concurrent changes in the mean

and variance are accounted for. Many biological sys-

tems seem to follow a mean–variance relationship

sometimes termed Taylor’s Law; an empirically

derived relationship which states that as the mean

increases, the variance also increases following a

power relationship [10]. Given this expected relation-

ship, it may be most meaningful to ask whether the

variance of two groups differs, after accounting for

differences in the mean. Collectively our data appear

to show a linear relationship between log SD and log

mean mass, as would be expected based on Taylor’s

Law (Fig. 1A). However, within-studies a positive

relationship between log SD and log mean mass

was not consistently observed; e.g. in Sahi et al.

[24] there is an apparent negative relationship

(Fig. 1A).

We explored three different methods for meta-

analyzing variance. First, for each possible combin-

ation of diet types within a study we calculated the

log variance ratio (lnVR) and its associated sampling

variance (s2
lnVR; Table 2), an effect size that assumes

that there is no mean-variance relationship. Second

we calculated the log of the coefficient of variance

ratio (lnCVR) and its sampling variance (s2
lnCVR;

Table 2), which assumes there is a linear relationship

between the mean and variance on the natural scale

(note Taylor’s Law predicts a power relationship on

the natural scale). Because both of these effect sizes

and also lnRR (for mean mass) are effect sizes that

correspond to relative differences between treat-

ments within studies, they were analyzed using a

conventional ‘contrast-based’ model [27, 28]. We

used multi-level meta-analyses (MLMA), which

included a random-factor accounting for the fact

that some effect sizes arise from the same study,

and a covariance matrix giving the expected covari-

ance between those effect-sizes that are based on

contrasts with the same LC dietary group; i.e. sto-

chastic dependency [29] (see Supplementary

Materials S1). All analyses were performed using

the rma.mv function in the package ‘metafor’ in

the statistical programming environment R version

3.2.1 [30, 31]. In all cases we consider estimates with

a lower to upper 95% confidence limit (LCL to UCL)

not spanning zero statistically significant. Data

and code can be found on the online repository

Dryad [32].

Finally, we explored an alternative approach where

rather than calculate an effect size that corresponds

to a contrast between groups within the same study,

the outcome for each treatment group is analyzed

directly, with differences between groups made

using moderator variables; sometimes referred to

as an ‘arm-based’ meta-analysis [27, 28]. In this

method the log of the SD (adjusted for sample size,

lnSD; Table 2), along with its sampling variance

(s2
lnSD; Table 2), was calculated for each group within
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a study. Following similar notation to that in

Nakagawa et al. [10], differences between groups

were then analyzed using multi-level meta-regres-

sion (MLMR) as described in equations (1)–(4):

lnSDj ¼ ðb0 þ b1GroupjÞ þ b2lnx j þ ti½j� þ ej þmj

ð1Þ

ti½j� ¼ Nð0;s2
tPiÞ ð2Þ

ej � Nð0;s2
e Þ; ð3Þ

mj � Nð0;s2
lnsj
Þ; ð4Þ

where lnSDj is the jth lnSD in the set of n effect sizes

(j = 1, 2, . . . n), Groupj is a dummy variable denoting

whether the jth estimate comes from an LC (0) or a

CR (1) diet, lnx j is the log of the mean mass of the

jth group (transformed to a Z-score for model fit-

ting), �0 is the overall intercept (here the average

lnSD for LC diets), �1 is the coefficient for Group

(here the average difference in lnSD between CR

and LC diets), �2 is the coefficient for the effect of

mean mass on lnSD, �[i]j is the random effect for the

jth effect size in the ith study in the set of k

studies (i = 1, 2, . . ., k), which is distributed follow-

ing equation (2) (alternatively expressed as

t½i�j ¼ Nð0;s2
tdiagðP1;P2; . . .; PkÞ) where within the

ith study, �[i]j is multivariate normally distributed

with a mean of 0 and co-variance of s2
tPi (Pi is a

correlation matrix with the off-diagonal elements

being a common value of �, which is estimated by

the model; i.e. effect sizes from different treatment

groups within the same study are assumed to be

correlated with one another with�), ej is the residual

for the jth lnSD, which is distributed following equa-

tion (3), and mj is the sampling error for the jth

group, which is distributed following equation (4)

(with the sampling variance fitted as s2
lnSD for the

jth lnSD). The advantage of this approach over

lnVR and lnCVR is that we are not forced to make

rigid assumptions about the association between

group mean mass and group variance in mass, as

the strength of this relationship is estimated

directly from the data (�2). In addition, because

we do not calculate contrasts between dietary

treatments there is no stochastic dependency

(Supplementary Material S1). A potential draw-

back of this method is that the degree to which
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Figure 1. (A) The log mean and log SD mass (kg) after 6 months on a high protein, carbohydrate-restricted ad libitum (open) or calorie-restricted (solid) diet as

reported in those published studies included in our analyses. The size of the point corresponds to the precision (1/sampling error for lnSD) of the effect size. Forest

plots for (B) lnRR, (C) lnVR and (D) lnCVR. Round points give effects sizes calculated from each study, and bars the associated 95% confidence limits. Mean effects

as estimated by multi-level meta-analysis are shown as diamonds at the bottom of the plot. To right of each panel is the relevant statistic for the two groups

included in the effect size. In all panels numbers correspond to article IDs as given in Table 1
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data from the same study are correlated with one

another is also estimated from the data (��
2 and

�), with the possibility that the study-level effect

may be estimated as 0, leaving data points from

the same study essentially independent. Where

this occurs it may be considered a violation of

the concurrent-control principle of meta-analysis

[27, 33]. Further, the model described above is

relatively complex and may suffer from over-par-

ameterization when the number of effect sizes is

limited, as is the case in the current analysis

(which we explored using the profile function in

‘metafor’; [31]). Differences in the mean of two or

more treatment groups may also be assessed

using an arm-based model by fitting lnx j as the

response along with its associated sampling vari-

ance (s2
lnx ; following [10]). In this case the model

could be implemented without estimation of �2,

which would make the coefficient for Group (�1)

similar to lnRR [34, 35]. Alternatively, lnSD may be

fitted as the predictor where one wishes to deter-

mine and potentially correct for a mean-variance

relationship; this becomes similar to using a

standardized mean difference such as Hedge’s

d, although it should be noted this is on a log

scale [6].

RESULTS

MLMA of lnRR estimated a small positive mean ef-

fect (amounting to a 2% difference between the

mean of the two groups), and this difference was

not-statistically significant (MLMA lnRR = 0.02, LCL

to UCL =�0.01 to 0.04, Figure 1B; for full output

from all models see Supplementary Material S2).

Meta-analysis of lnVR estimated a negative mean

effect, which amounted to the SD in mass being

8% lower on CR than LC diets, although the confi-

dence limit for this estimate spanned zero indicating

a non-significant difference (MLMA lnVR = -0.08,

LCL to UCL =�0.19 to 0.02, Fig. 1C). Finally,

MLMA of lnCVR detected a negative effect suggest-

ing the coefficient of variance was lower for LC than

CR groups. Again this effect was non-significant, al-

though the UCL for this estimate was close to zero

(MLMA lnCVR =�0.10, LCL to UCL =�0.20 to 0.90

� 10�3, Fig. 1D); the exponent of this estimated

mean effect suggests that the coefficient of variance

in the CR group is around 10% lower than that in the

LC group. The average mean-corrected lnSD of

groups after 6 months on a CR diet as estimated

by MLMR (equation 1) was 2.77, whereas that on a

LC ad libitum diet was 2.88, and the difference be-

tween the two was statistically significant (MLMR

�1 = -0.11, LCL to UCL = -0.21 to -0.02). This result

corresponds to the mean-corrected SD (the expo-

nent of lnSD) of mass on CR diets being on average

10.5% lower than that on the LC diet, an overall effect

magnitude similar to that estimated by MLMA of

lnVR and lnCVR. MLMR estimated a significant posi-

tive slope of log mean mass on lnSD (MLMR

�2 =0.20, LCL to UCL = 0.14–0.26).

Using our MLMR estimates, and making the as-

sumption that mass is normally distributed, it is pos-

sible to predict the entire distribution of weights for a

group of subjects on each diet type; note that with a

mean focused meta-analysis one would be restricted

to predicting the mean of each group, alone. For a

given mean mass, mass is predicted to be more vari-

able in those groups on LC diets, than those on CR

diets (Fig. 2A). For instance, if we assume a group

with a mean mass of 96.7 kg (the average mass of all

groups in our dataset as estimated by meta-ana-

lysis), a group on a LC diet is more likely to contain

both individuals with mass >120 kg, and mass

<80 kg than a group on a CR diet; see Figure 2B

for the predicted probability density function of each

group. These findings suggest that whilst LC diets

are more effective than the alternative at generating

lower weights in some individuals, this is not the

case for the population as a whole.

It has been argued that LC ad libitum diets reduce

mean mass more effectively than CR diets [5],

making comparisons of distributions with an equal

mean mass unrealistic; note that we have limited

evidence for this in our own dataset (e.g. Fig. 1B).

By combining the estimates from MLMR of the dif-

ference between lnx in LC and CR groups (see

Supplementary Material S2) and MLMR of lnSD,

we can generate estimated probability density func-

tions for each diet that account for differences in

mean and SD in mass simultaneously (Fig. 2C).

Assuming that the estimated difference in mean

mass between the two diets is accurate, the pre-

dicted distributions yield two insights. First, groups

on LC ad libitum diets have a slightly higher probabil-

ity (0.62%) of containing subjects with mass

>125 kg than CR diets (Fig. 2C). Although this prob-

ability seems small, over an entire population there

could be a substantial number of overweight people

(>1 in every 200) who would have a lower weight

after 6 months on a CR diet than an LC diet.

Secondly, groups on LC diets have a substantially

higher probability of containing subjects with mass
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<80 kg than CR diets (Fig. 1D). This latter artifact,

however, arises by virtue of the fact that LC diets

simultaneously have a higher SD and lower mean

mass (albeit by a modest amount) than the alterna-

tive, and would be overlooked if we solely focused on

differences in mean mass.

DISCUSSION

Using a recently developed framework for meta-ana-

lysis of variability we present evidence for a greater

variation in body mass following a LC ad libitum

intervention in comparison to a CR protocol, despite

a slight (non-significant) trend for lower mean body

mass following the former. Although the sign and

magnitude of the difference in variability in mass

between groups was relatively consistent, the effect

was not significant in all analyses. In particular, the

precision of the associated difference between

groups was influenced by the way in which correc-

tion for a mean-variance relationship was made.

Analyses of lnVR, which is independent of be-

tween-treatment differences in mean mass had a

very wide confidence limit. However, lnCVR and

arm-based models, which made correction for differ-

ences in group means, identified more precise ef-

fects. Taken collectively, our data certainly suggest

a mean-variance relationship; however, at the

within-study level this relationship was not consist-

ently observed (a potential example of Simpson’s

paradox; [36]). Nevertheless, our work illustrates

the importance of simultaneously analyzing vari-

ance- and mean-focused effect sizes in nutritional

meta-analyses. No study has performed a full

analysis of means and variance associated with all

dietary and lifestyle interventions used for weight

loss, but here we have provided preliminary insights

into differences in effectiveness between LC and CR

protocols using the meta-analysis of variance

method described by Nakagawa et al. [10].

The LC interventions in our dataset used the

Atkins protocol or similar, which prescribes a

reduced carbohydrate intake without a restriction

on protein or fat intakes leading to a 6 month diet

that is relatively high in percent protein and fat (22%

protein, 47% fat and 28% carbohydrate; [23]).

Protein-induced satiety is a key driver of reduced

energy intake, which in turn promotes weight loss

on a LC diet. Variance in this response may explain

the greater variance in body mass at 6 months on the

LC diet in comparison to the set energy intake of CR

interventions.

Simpson and Raubenheimer proposed a key role

for protein appetite in driving the human obesity

epidemic—the protein leverage hypothesis

(Fig. 3A; [37]). Population studies, large dietary

trials, experimental studies and synthesis of 38 pub-

lished experimental trials show that humans priori-

tize, or ‘defend’, protein intake at the expense of

regulation of carbohydrate and fat intake [18,

38–41]. Therefore, when the percentage of protein

in the diet is reduced total energy intakes increase

to maintain absolute protein intake relatively con-

stant (Fig. 3A). Protein appetites may differ between

individuals through differences in the absolute pro-

tein target (Fig. 3B and C) and the strength of protein

leverage (i.e. variance in the range of absolute pro-

tein intakes an individual consumes when percent
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Figure 2. (A) Shaded areas give the predicted 2.5–97.5 percentiles in mass (kg) for a given mean mass (kg), as predicted by the MLMR of lnSD assuming a normal

distribution. (B) Predicted probability densities for mass after 6 months on each diet based on the SD estimated by MLMR of lnSD, assuming a mean mass of

96.7 kg (the mean mass of all subjects as estimated by meta-analysis). (C) Predicted probability densities for mass after 6 months on each diet based on the SD

estimated by MLMR of lnSD, assuming a different mean mass on each diet. For full MLMR coefficients see Supplementary Material S2
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dietary protein changes; Fig. 3D). Protein appetites

may vary due to different cultural backgrounds, in

utero experiences or disease states such as insulin

resistance [20, 37].

As well as these environmental factors, it

seems reasonable to assume that there is a gen-

etic contribution in the degree to which specific

macronutrients are regulated. Cross taxa com-

parisons demonstrate that the degree to which

the intake of specific macronutrients is regulated

differs between closely related species implying

that such traits are evolutionarily labile and

populations may contain heritable variation. In

the case of primates, on average humans appear

to regulate protein intake at the expense of

overconsumption of non-protein energy, yet

Gorillas (Gorilla gorilla) regulate carbohydrate en-

ergy intake [19]. Regulatory priorities of other

nutrients such as carbohydrate may also contrib-

ute to determining the success of diets differing in

nutrient composition. For instance, if humans

have a specific appetite for carbohydrate, similar

to numerous other species, including mice [41],

the suppressive effect of protein on appetite and

energy intake may be dampened by compensatory

intake of carbohydrate on LC diets.

An individual’s protein target and strength of pro-

tein leverage could be used to predict success on

weight loss regimes that rely upon feedback from

protein appetite to drive reduced energy intake [20,

37]. Figure 3B–D presents scenarios that describe

how differences in protein targets and the strength

of protein leverage may impact the success of a LC

diet. For instance, the magnitude of an individual’s

absolute protein target may interact with the per-

centage protein in their habitual diet to govern the

net reduction in calories consumed when percent-

age dietary protein increases on an LC ad libitum diet

(Fig. 3B and C). Determining predictors of success

on LC diets might not only be important from a

weight management perspective. Studies on model

organisms and data from human trials and cohort

studies suggest that diets high in protein and low in

carbohydrate content are associated with decreased
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Figure 3. Protein and total energy (mega joules; MJ) intake plotted along the x- and y-axes, respectively. Grey dashed lines represent nutrient rails reflecting diets

with differing average percent protein (%P). Points denote the amount of energy an individual consumes on a diet (i.e. their appetite). (A) Protein leverage dictates

that as the proportion of dietary protein decreases (e.g. from from 25%P to the 15%P; small arrow), total energy intake increases (black points and large arrow) to

maintain absolute protein intake relatively constant. (B) There may be between-individual variance in absolute protein targets. Accordingly, for a given %P,

individuals with a higher protein target (grey circle) consume more total energy than those with a lower protein target (black circle). (C) An individual with a high

protein target but a lower %P in their habitual diet (grey points) may experience a smaller reduction in energy intake (black dotted line) when %P increases, than an

individual with a lower protein target and %P in their habitual diet (black point, grey dotted line). (D) There may be variation in the strength of protein leverage.

Thus, on a diet with a low %P, individuals may have similar intakes (white point). However, as %P increases some individuals may maintain constant protein intake

(grey point), where as others may over-consume protein (black point; e.g. to satisfy an appetite for carbohydrates). Figures redrawn from Simpson and

Raubenheimer, which the reader should see for a more detailed examination of protein leverage see [37]
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longevity and poor late-life health outcomes [43, 44].

Thus these interventions should perhaps only be

prescribed when they are likely to have substantial

beneficial impact on weight.

The results of this study are limited to a 6-month

period and adherence to a prescribed intervention

may deteriorate beyond this point [23], attenuating

long-term maintenance of weight loss in response to

any dietary regime [45]. Irrespective of dietary pre-

scription, the success of weight loss will depend

upon appetite physiology, motivation and life experi-

ences, and these factors are likely to vary between

individuals. This variability should be explored. As

above, we reiterate that the methods we use here

require essentially the same summary statistics as

are required for meta-analysis of the group mean

[10]. Therefore, much of the data required for com-

pletion of a meta-analysis of variance to understand

differences in success of various weight loss proto-

cols may be available in published literature and

could provide substantial advances in personalized

weight management regimes. In cases where

data sets are sufficiently large enough (note

that our sample sizes here are relatively limited)

moderator variables can be used to explore how

the specifics of each study contribute to the magni-

tude of the observed variance as one would with

meta-analysis of the mean. In the case of our ana-

lyses, we detected some heterogeneity in the meta-

analysis of lnCVR (Supplementary Material S2). The

macronutrient content of the LC and CR diets in our

dataset differed slightly between studies, as did ex-

ercise recommendations (see Table 1). Thus, as

more data become available one may use meta-re-

gression to ask how differences in the macronutrient

profile of diets and or prescribed exercise regimes

contribute to differences in variability in mass.

Here, we provide an example to illustrate the im-

portance of meta-analysis of variance in interpreting

outcomes of dietary prescriptions used for weight

management. In particular, it seems that individual

variance in appetite response to dietary macronutri-

ent composition may be vital in identifying the po-

tential success an individual may experience on an

intervention. The implications for assessing variabil-

ity across different dietary interventions are substan-

tial and could result in targeting phenotypes with

specific weight loss interventions, improve our

understanding of factors involved in appetite and

body weight maintenance, and inform future study

design.
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