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Abstract: The rheology of oil-in-water (O/W) emulsions thickened by starch nanoparticles is investi-
gated here. The starch nanoparticle concentration is varied from 0 to 25 wt% based on the matrix
aqueous phase. The oil concentration is varied from 0 to 65 wt%. At a given nanoparticle concen-
tration, the emulsions are generally Newtonian at low oil concentrations. The emulsions become
shear-thinning at high oil concentrations. The increase in nanoparticle concentration at a given oil
concentration increases the consistency of the emulsion and enhances the shear-thinning behavior
of emulsion. The rheological behavior of emulsions is described reasonably well by a power-law
model. The consistency index of the emulsion increases with the increases in nanoparticle and oil
concentrations. The flow behavior index of emulsion decreases with the increases in nanoparticle
and oil concentrations, indicating an increase in the degree of shear-thinning in emulsion.

Keywords: emulsion; nanoparticles; starch; rheology; viscosity; non-Newtonian; shear-thinning

1. Introduction

Emulsions are dispersions of two immiscible liquids such as oil and water. In the
absence of any stabilizer additive such as a surfactant, the emulsions are unstable and
readily separate into oil and water layers when left unstirred. To stabilize the emulsions,
a surface-active agent (surfactant) is added. The surfactant serves two functions: (1) it
decreases the interfacial tension between oil and water, thereby making the formation of
emulsion easier, and (2) it stabilizes the droplets against coalescence [1,2].

Many natural and processed food products are emulsions. Examples of food emulsions
include milk, mayonnaise, butter, margarine, and salad dressings [2–7]. Table 1 gives a
brief description of the compositions of some emulsion-based food products. Emulsions
also find applications in many other industries including petroleum, pharmaceuticals,
cosmetics, agriculture, explosives, paints, and lubricants [2,4,6–10].

Table 1. Composition of emulsion-based food products [7].

Food Product Dispersed Phase Continuous Phase Volume Fraction of
Dispersed Phase

Milk Oil droplets Water 0.03 to 0.04
Mayonnaise Oil droplets Water ≥0.65

Butter Water droplets Oil and fat crystals About 0.16
Margarine Water droplets Oil and fat crystals 0.16 to 0.50

Salad dressings Oil droplets Water ≥0.30

One problem with emulsions is that they undergo creaming and sedimentation effects
under the influence of gravity due to differences in the densities of the oil and water
phases [11]. Creaming occurs in oil-in-water (O/W) emulsions where light oil droplets
tend to rise through the heavy aqueous phase (matrix fluid), whereas sedimentation occurs
in water-in-oil (W/O) emulsions, where heavy water droplets tend to fall through the
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light oil phase. Sedimentation and creaming in emulsions are undesirable as they affect
the shelf-life of the product [12]. To minimize creaming and sedimentation in emulsions,
rheology modifiers (thickeners) are usually added to the matrix phase. According to the
Stokes law, the creaming velocity of oil droplets in O/W emulsions or the sedimentation
velocity of water droplets in W/O emulsions is inversely related to the viscosity of the
matrix fluid (continuous phase). Thus, the creaming and sedimentation of droplets can be
minimized by increasing the viscosity of the matrix fluid.

One commonly used approach to increase the viscosity of the matrix phase of emul-
sions is to incorporate a polymeric additive in the matrix fluid [13,14]. Alternatively, one can
use nanoparticles to thicken the matrix fluid of emulsions. While a few studies have been
published on the rheology of polymer-thickened emulsions [13–19], little or no work has
been reported on nanoparticle-thickened emulsions. However, it should be noted that many
studies have been published in recent years on the adsorption of nanoparticles at the oil–
water interface to stabilize the droplets against coalescence. Such nanoparticle-stabilized
emulsions are referred to as Pickering emulsions [20–28]. In several published studies on
Pickering emulsions [29–33], the nanoparticles used to stabilize the droplets are produced
from native and modified starches. The usage of starches to produce nanoparticles has the
advantage that they are renewable, biocompatible, biodegradable, and affordable.

In this article, we report new results on the rheology of nanoparticle-thickened O/W
emulsions over a broad range of nanoparticle and oil concentrations. The nanoparticle
concentration was varied from 0 to approximately 25 wt% based on the matrix fluid
(aqueous phase). The oil concentration of emulsion was varied from 0 to approximately
65 wt%. The emulsions were highly stable with respect to coalescence due to the presence
of surfactant at the surface of the droplets. Figure 1 shows a schematic representation of
the type of emulsions investigated.
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Figure 1. Schematic of the type of emulsions investigated in the present work.

2. Experimental Work
2.1. Materials

The emulsions of oil-in-water (O/W) type were prepared using the following materials:
deionized water, food grade white mineral oil, nanoparticles, and non-ionic water-soluble
surfactant. The oil used was Petro-Canada white mineral oil (code: Purity FG WO-15),
supplied by Boucher and Jones Fuels, Waterloo (ON, Canada). The viscosity of the batch of
oil used in this study was 27.62 mPa.s at 21 ◦C. The nanoparticles used were experimental
grade starch biopolymer nanoparticles supplied by EcoSynthetix Inc. (Burlington, ON,
Canada). They are manufactured through reactive extrusion by modifying native starch.
The mean diameter of the starch nanoparticles was approximately 21 nm (see Figure 2 for
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particle size distribution reported in our earlier study [34]). The surfactant used was Triton
X-100, a commercially available non-ionic surfactant supplied by Union Carbide.
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2.2. Preparation of Nanoparticle Suspensions

The nanoparticle suspension was prepared at room temperature (≈21 ◦C) by slowly
adding a known amount of starch nanoparticles into a known amount of aqueous phase
while maintaining mixing of the suspension using a variable speed homogenizer (Gifford-
Wood, model 1 L, NOV process and flow technologies, Dayton, OH, USA). The aqueous
phase of the suspension consisted of deionized water containing ≈1 wt% of surfactant
Triton X-100 and ≈0.15 wt% biocide (Thor Acticide GA). The biocide was added to pre-
vent any bacterial growth in the starch suspension. The suspension was agitated in the
homogenizer at high speed for at least 30 min until the starch powder was fully dispersed.
The nanoparticle suspension was left overnight to remove any air entrapped during the
homogenization process. Six suspensions of different nanoparticle concentrations ranging
from 0 to approximately 25 wt% were prepared. The nanoparticle concentration of the
suspension was increased in increments of approximately 5 wt%. Figure 3 shows the
preparation process for the suspension of starch nanoparticles.
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2.3. Preparation of O/W Emulsions

The emulsions of oil-in-water (O/W) type were prepared by slowly adding a known
amount of oil to a known amount of starch nanosuspension while maintaining mixing of
the fluids using a homogenizer. After addition of the required amount of oil, the fluids were
sheared in the homogenizer at high speed for at least 30 min. The emulsion thus prepared
was left overnight to remove any air entrapped during the homogenization process. A
higher oil concentration emulsion was prepared by slowly adding a known amount of oil
to an existing lower concentration emulsion while mixing the fluids in the homogenizer.
After the addition of oil, the fluids were sheared in the homogenizer at high speed for more
than 30 min. The oil concentration of the emulsion was generally increased in increments of
approximately 10 wt%. The range of oil concentration for a given nanoparticle suspension
was varied from 0 to approximately 65 wt%.

Table 2 gives complete information about the compositions of the emulsions investi-
gated in this study. Note that the matrix phase of the emulsions consisted of suspension
of starch nanoparticles in aqueous phase. The aqueous phase itself consisted of ≈1 wt%
surfactant Triton X-100 and ≈0.15 wt% of biocide.

Table 2. Compositions of emulsions investigated in this study.

Nanoparticle
Concentration of

Matrix Phase (wt%)

Nanoparticle
Concentration of

Matrix Phase (vol%)

Oil Concentration of
Emulsion (wt%)

Oil Concentration of
Emulsion (vol%)

0 0

Seven concentrations:
10.09, 20.05, 30.088,
40.03, 50.11, 60.06,

65.06

Seven concentrations:
11.674, 22.8, 33.636,
44.011, 54.19, 63.91,

68.68

5.245 3.27
Seven concentrations:

9.977, 19.962, 29.94,
39.974, 50, 59.973, 65

Seven concentrations:
11.21, 22.127, 32.745,
43.14, 53.256, 63.058,

67.906

9.883 6.6

Seven concentrations:
10.083, 20.153, 30.136,

40.142, 50.18, 60.13,
65.13

Seven concentrations:
12.041, 23.554, 34.493,
45.014, 55.147, 64.80,

69.51

15.032 10.233

Seven concentrations:
10.045, 20.01, 29.996,

39.99, 49.96, 59.99,
64.996

Seven concentrations:
12.20, 23.73, 34.78,

45.33, 55.408, 65.108,
69.794

19.68 13.64

Seven concentrations:
9.999, 20.04, 30,

40.023, 50.058, 60.015,
65.022

Seven concentrations:
12.334, 24.094, 35.184,
45.802, 55.934, 65.526,

70.186

24.82 17.541

Seven concentrations:
10, 19.982, 29.977,
40.04, 49.98, 59.95,

64.97

Seven concentrations:
12.563, 24.39, 35.61,
46.313, 56.34, 65.915,

70.55

2.4. Measurements

The rheological measurements were carried out using two co-axial cylinder devices,
namely: Fann viscometer and Haake viscometer. The relevant dimensions of the devices
are given in Table 3. In the Fann viscometer, the inner cylinder is stationary, and the outer
cylinder rotates. There are 12 speeds ranging from 0.9 to 600 rpm. In the Haake viscometer,
the inner cylinder rotates, and the outer cylinder is stationary. There are 30 speeds ranging
from 0.01 to 512 rpm. The viscometers were calibrated using standards of known viscosities.
The viscosity measurements were carried out at room temperature (≈21 ◦C).
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Table 3. Relevant dimensions of viscometers used in this study.

Device Inner Cylinder
Radius, Ri

Outer Cylinder
Radius, Ro

Length of Inner
Cylinder Gap-Width

Fann 35A/SR-12 1.7245 cm 1.8415 cm 3.8 cm 0.117 cm

Haake
Roto-visco RV 12

with MV I
2.004 cm 2.1 cm 6.0 cm 0.096 cm

The droplets of emulsions were observed using a Zeiss optical microscope with trans-
mitted light. The photomicrographs of emulsion droplets were taken using a camera. The
emulsion samples were diluted with the surfactant solution (≈1 wt%) before observation
under the microscope. The dilution of the emulsion sample was necessary to allow the
transmitted light to pass through the sample. The emulsion sample was diluted with the dis-
persion medium (≈1 wt% surfactant solution) of the emulsion to avoid any destabilization
and coalescence of droplets. This technique of observing the droplet sizes microscopically
by dilution of the emulsion sample with the same continuous-phase fluid as that of the
emulsion has been used extensively in the literature [35–37].

3. Results and Discussion
3.1. Rheology of Nanoparticle Suspensions

Figure 4 shows the flow behavior of suspensions of starch nanoparticles. The nanopar-
ticle suspensions are Newtonian in that the viscosity is constant independent of the shear
rate. The viscosity increases with the increase in nanoparticle concentration. The relative
viscosity of nanoparticle suspensions can be described adequately by the following Pal
viscosity model [38] for suspensions:

ηr =

[
1 −

{
1 +

(
1 − ϕm

ϕ2
m

)}
ϕ

]−[η]

(1)

where ηr is the relative viscosity, ϕ is the volume fraction of particles, ϕm is the maximum
packing volume fraction of particles, and [η] is the intrinsic viscosity of suspension. The
value of ϕm is taken as 0.637, corresponding to random packing of spheres. As can be seen
in Figure 4, Equation (1) fits the data very well with [η] = 21.28. The intrinsic viscosity
for rigid spherical particles is 2.5. A high value of [η] observed for starch nanoparticles
is indicative of the swelling of nanoparticles. It is well known that starch nanoparticles
undergo significant swelling when dispersed in aqueous phase [39].
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3.2. Rheology of O/W Emulsions without Nanoparticles

Figure 5 shows the flow behavior of O/W emulsions without nanoparticles. The data
are shown for different oil concentrations. The emulsions are Newtonian up to oil volume
fraction of 0.336. At higher oil volume fractions, the emulsions become shear-thinning in
that the viscosity decreases with the increase in shear rate. The viscosity versus shear rate
data can be described using the power-law model:

τ = K
.
γ

n (2)

where τ is the shear stress,
.
γ is the shear rate, K is the consistency index, and n is the

flow-behavior index. The flow behavior index n decreases whereas the consistency index
increases with the increase in oil volume fraction. Thus, emulsions become more shear-
thinning and viscous with the increase in oil volume fraction.
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It is worth mentioning that O/W emulsions tend to develop yield-stress and become
viscoelastic when the oil droplet concentration becomes significantly larger than the maxi-
mum packing volume fraction of droplets (ϕo > 0.75). Such emulsions are referred to as
HIPREs (high internal phase ratio emulsions) or gel emulsions. The rheological behavior of
gel emulsions is governed by a network of interfacial films [40,41]. In the present work, the
emulsions investigated were not HIPREs or gel emulsions as the droplet concentration was
less than approximately 70 percent by volume.

3.3. Rheology of O/W Emulsions Thickened by Starch Nanoparticles

The flow curves (viscosity versus shear rate plots) of O/W emulsions thickened
with different concentrations of starch nanoparticles are shown in Figures 6–10. The flow
curves for nanoparticle-thickened emulsions can be described reasonably well using the
power-law model, Equation (2). For any given nanoparticle concentration, the flow curve
becomes steeper with the increase in oil concentration. Thus, the degree of shear-thinning
in emulsion increases with the increase in oil concentration while the flow behavior index n
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decreases. However, the consistency of the emulsion, as reflected in the consistency index
K, increases with the increase in oil concentration at any given nanoparticle concentration.
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Figure 11 compares the consistency index K and flow behavior index n values for
O/W emulsions thickened with different concentrations of nanoparticles. For any given
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nanoparticle concentration, the consistency index increases, and the flow behavior index
decreases with the increase in oil concentration, as noted earlier. Interestingly, at any given
volume fraction of oil, the consistency index increases, whereas the flow behavior index
decreases with the increase nanoparticle concentration of the matrix fluid (aqueous phase).
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The increase in consistency of an emulsion with the increase in nanoparticle concentra-
tion is expected as the consistency of emulsion is directly proportional to the consistency of
matrix fluid of the emulsion which increases with the increase in nanoparticle concentration.
The increase in the degree of shear-thinning (decrease in flow behavior index n) with the
increase in nanoparticle concentration at a given oil concentration could be explained in
terms of structure build-up [42] and the deformation of droplets [7]. With the increase in
nanoparticle concentration, the nanoparticles likely form bridges between the neighboring
oil droplets, as shown in Figure 12. This structure is more sensitive to shear and hence
the emulsion exhibits a greater degree of shear-thinning. The other mechanism for the
enhancement of the shear-thinning of emulsions is the deformation of droplets under
shear. At high concentration of nanoparticles, the matrix viscosity is high and therefore the
droplets undergo a higher degree of deformation at a given shear rate (see Figure 13). At a
low concentration of nanoparticles, the matrix viscosity is low, and the droplets deform
only marginally at the same shear rate (see Figure 14). Consequently, for the same change
in shear rate, emulsions with a high concentration of nanoparticles experience a greater
decrease in viscosity as compared with emulsions at a lower concentration of nanoparticles.
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3.4. Droplet Size of Emulsions

Figure 15 shows the images of emulsion samples and their corresponding droplets
with increasing nanoparticle concentration at a fixed oil concentration of approximately
65 wt%. With the increase in nanoparticle concentration, the consistency of emulsion
changes from fluid-like material to paste. The droplet size also generally decreases with
the increase in nanoparticle concentration. Table 4 summarizes the Sauter mean diameters
of emulsions.
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Table 4. Sauter mean diameters of O/W emulsions thickened with starch nanoparticles. The oil
concentration is fixed at approximately 65 wt%.

Approximate Nanoparticle Concentration (wt% NPS) Sauter Mean Diameter (µm)

0 9.01
5 7.31

10 4.68
15 3.71
20 4.46
25 5.64

The Sauter mean diameter decreases from 9 µm to about 4–5 µm when the nanoparticle
concentration is increased from 0 to 25 wt% at a fixed oil concentration of approximately
65 wt%. It should also be noted that the droplet size distribution of emulsions is affected
by the nanoparticle concentration. As an example, Figure 16 compares the droplet size
distributions of O/W emulsions without and with nanoparticles. The oil concentration is
approximately 65 wt% and the nanoparticle concentration is 15 wt%. The O/W emulsion
thickened by nanoparticles has a narrower size distribution of droplets.
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concentration of emulsions is approximately 65 wt%.

It is well known that a decrease in the droplet size of emulsion increases its consis-
tency [35–37]. Thus, the change in consistency of emulsion from fluid to paste-like material
with the increase in nanoparticle concentration (see Figure 15) is partly due to a decrease in
average droplet size and partly due to increase in the viscosity of the matrix phase.

The effect of increasing oil concentration on the droplet sizes while keeping the
nanoparticle concentration fixed is shown in Figure 17. The droplet sizes do not vary
significantly with the increase in oil concentration.
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3.5. Stability of Emulsions

The emulsions produced were highly stable with respect to coalescence. No deterio-
ration of rheological properties or changes in droplet sizes were observed over a period
of one month. However, emulsions exhibited a creaming phenomenon wherein droplets
rose through the matrix fluid under the influence of gravity [11]. Figure 18 shows the
samples of emulsions left unstirred for several weeks. The following points should be
noted from Figure 18: (1) the creaming of emulsions decreases with the increase in oil
concentration, at any given nanoparticle concentration; (2) the creaming effect in emulsions
decreases with the increase in nanoparticle concentration; and (3) the creaming effect is
almost completely eliminated at high concentrations of oil and nanoparticles. Figure 19
shows the plots of percent creaming index (%CI) versus oil concentration for emulsions at
different nanoparticle concentrations where %CI is defined as:

%CI = (HS/HE)× 100 (3)

HS is the height of serum layer (layer free of oil droplets) at the bottom and HE is the height
of the total emulsion sample. For a given nanoparticle concentration, the creaming index
decreases rapidly with the increase in oil concentration. The creaming index also decreases
rapidly with the increase in nanoparticle concentration at any given oil concentration.
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4. Conclusions

Based on the experimental work and data analysis, the following conclusions can
be made:

• The O/W emulsions thickened with starch nanoparticles are generally Newtonian
at low concentrations of oil. At high concentrations of oil, the emulsions become
non-Newtonian shear-thinning.

• The flow behavior of O/W emulsions thickened by starch nanoparticles can be de-
scribed adequately using the power-law model.

• The power-law consistency index increases with increases in oil and nanoparticle
concentrations.

• The power-law flow behavior index decreases with increases in oil and nanoparticle
concentrations, indicating that emulsions become more shear-thinning with increases
in oil and nanoparticle concentrations.

• The average droplet size of emulsions generally decreases with an increase in the
nanoparticle concentration of the matrix phase. The droplet size distribution also
becomes narrower with an increase in nanoparticle concentration.

• The creaming index of emulsions decreases the increases in oil and nanoparticle
concentrations.
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