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Abstract

Recently, researchers have focused on immunosuppression induced by rifampicin. Our previous investigation found that
rifampicin was neuroprotective by inhibiting the production of pro-inflammatory mediators, thereby suppressing microglial
activation. In this study, using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we discovered that 26S
protease regulatory subunit 7 (MSS1) was decreased in rifampicin-treated microglia. Western blot analysis verified the
downregulation of MSS1 expression by rifampicin. As it is indicated that the modulation of the ubiquitin-26S proteasome
system (UPS) with proteasome inhibitors is efficacious for the treatment of neuro-inflammatory disorders, we next
hypothesized that silencing MSS1 gene expression might inhibit microglial inflammation. Using RNA interference (RNAi), we
showed significant reduction of IkBa degradation and NF-kB activation. The production of lipopolysaccharides-induced pro-
inflammatory mediators such as inducible nitric oxide synthase (iNOS), nitric oxide, cyclooxygenase-2, and prostaglandin E2
were also reduced by MSS1 gene knockdown. Taken together, our findings suggested that rifampicin inhibited microglial
inflammation by suppressing MSS1 protein production. Silencing MSS1 gene expression decreased neuroinflammation. We
concluded that MSS1 inhibition, in addition to anti-inflammatory rifampicin, might represent a novel mechanism for the
treatment of neuroinflammatory disorders.
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Introduction

Microglial activation plays an important role in the pathophys-

iology of neurodegenerative diseases, and the suppression of

microglial activation has been shown to prevent the progression of

Alzheimer’s disease (AD), Parkinson’s disease (PD), trauma,

multiple sclerosis, and cerebral ischemia [1–5].

Rifampicin is a macrocyclic antibiotic that is used extensively

against Mycobacterium Tuberculosis and other mycobacterial

infections [6]. It has been reported that rifampicin is immuno-

suppressive [7–10]. We previously found that rifampicin improved

survival of catecholamine and a-synuclein-containing cells, which

degenerate in PD, thus might be therapeutic in this disease [11].

Rifampicin suppressed the release of pro-inflammatory mediators

including nitric oxide (NO), prostaglandin E2 (PGE2), tumor

necrosis factor-a (TNF-a), and interleukin-1b (IL-1b) from BV2

microglial cells that were pre-treated with lipopolysaccharides

(LPS). It acted as a neuroprotector to increase neuronal survival

against microglia-induced neuron death [12]. Our results strongly

supported rifampicin as a potential therapeutic for the treatment

of neurodegenerative diseases. Despite the above findings, the

mechanism through which rifampicin inhibits neuroinflammation

is not completely understood.

NF-kB is an important transcription factor for the expression

of pro-inflammatory mediators [13]. In unstimulated cells,

nuclear factor-kappa B (NF-kB) binds to IkappaBalpha (IkBa)
and its activity is inhibited. The activation of NF-kB is initiated

by signal-induced degradation of IkBa proteins [14], which

occurs primarily via the ubiquitin–proteasome pathway [15].

Proteasomes play a critical role in protein degradation and are

essential to many intracellular processes [16]. The 26S

proteasome, a multi-subunit enzyme complex, is a major

cellular non-lysosomal protease. Modulation of the ubiquitin-

26S proteasome system (UPS) with proteasome inhibitors has

indicated possible efficacy for the treatment of neuroinflamma-

tory disorders [17]. We used 2-dimensional gel electrophoresis

(2-DE) and mass spectrometry (MS) to identify proteins affected

by rifampicin in activated microglia. We uncovered that the

expression of 26S protease regulatory subunit 7 (MSS1) was

reduced. MSS1 localizes to both the nucleus and the cytoplasm.

It functions as a chaperone-like subunit in the 19S regulatory

complex and participates in intracellular proteasome events

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36142



[18]. Based on the above evidence, we further hypothesized that

rifampicin inhibited the expression of MSS1, thus suppressed

IkBa degradation and the production of inflammatory media-

tors.

In this study, we examined the effect of rifampicin on the

expression of MSS1 in LPS-stimulated BV2 microglia by western

blot to confirm the results of proteomics experiments. We

demonstrated that after silencing the expression of MSS1 gene

via RNA interference (RNAi), IkBa protein degradation and NF-

kB activity were both downregulated in LPS-stimulated BV2

microglia. We also showed that the production of inducible NO

synthase (iNOS), NO, cyclooxygenase-2 (COX-2), and PGE2 were

significantly decreased after MSS1 gene knockdown in LPS-

activated BV2 microglia. Our results implied that rifampicin

inhibited IkBa degradation by suppressing the expression of

MSS1, therefore regulated the production of inflammatory

mediators.

Materials and Methods

Chemicals and Reagents
Rifampicin (purity .98%), LPS and dimethyl sulfoxide

(DMSO) were purchased from Sigma (St. Louis, MO). Rifampicin

was dissolved in less than 0.1% of DMSO solution. Antibodies

against iNOS, COX-2, and IkBa were obtained from Cell

Signaling Tech (Beverly, MA). Mouse beta-actin antibody was

purchased from Sigma. Dulbecco’s-modified Eagle’s medium

(DMEM) containing L-arginine (200 mg/L), fetal bovine serum

(FBS), and other tissue culture reagents were purchased from

Gibco (Grand Island, NY).

Cell Culture
BV2-immortalized murine microglial cells were provided by the

Cell Culture Center of the Chinese Academy of Medical Sciences

(China). Cells were cultured in DMEM supplemented with 10%

FBS, 100 units/ml penicillin, and 100 mg/ml streptomycin in

a humidified atmosphere of 5% CO2 at 37uC [12]. To examine

the effect of rifampicin on the expression of MSS1 in LPS-

stimulated BV2 microglia, 36105 cells per well were seeded in 6-

well plates and pretreated with 150 mmol/L rifampicin for 2 hours

(h) before the addition of LPS (1000 ng/ml).

2-dimensional Gel Electrophoresis and Image Analysis
LPS-treated cells were washed three times with ice-cold

washing buffer (10 mM Tris-HCl, 250 mM sucrose, pH 7.0),

collected in clean 1.5 ml eppendorf tubes. Lysis buffer [7 M

urea, 2 M thiourea, 4% CHAPS (w/v), 1% dithiothreitol

(DTT), 2% immobilized pH gradients (IPG) (v/v), pH 3–

10 NL] was added, and samples were centrifuged at 13,200 g

for 30 min at 4uC. The supernatant was subjected to 2-DE

using an Amersham Biosciences IPGphor IEF System and

Hoefer SE 600 (GE healthcare, Uppsala, Sweden) electropho-

resis units (13 cm), according to manufacturer’s instructions and

a previously described protocol [19]. Protein lysates and 2-DE

gels were processed in parallel. Protein concentrations were

determined using the Bradford assay. After 2-DE, the gels

underwent silver nitrate staining according to a previously

described protocol [20], then were scanned using an Image

Scanner (GE Healthcare). The images were analyzed using the

ImageMaster 2D Platinum (GE Healthcare).

Matrix-assisted Laser Desorption/ionization Time-of-flight
Mass Spectrometry (MALDI-TOF-MS) and Database
Search
Only protein spots that were consistently different in at least

three independent experiments were considered to be significant

for analysis by MALDI-TOF-MS. Protein spots were excised from

the silver-stained gels and transferred into siliconized 1.5 ml

eppendorf tubes. Tryptic in-gel digestion was performed as

previously reported with slight modifications [19]. Molecular mass

analysis of the tryptic peptides was performed using ABI 4800 plus

a MALDI-TOF-MS mass spectrometer (Applied Biosystems,

Foster City, CA). Spectra were interpreted and processed using

the Global Protein Server Workstation (V3.6, Applied Biosystems)

via the internal MASCOT search engine (V2.1, Matrix Science,

London, UK) to analyze MALDI-TOF-MS and MS/MS data.

Based on combined MALDI-TOF-MS and MS/MS spectra,

MASCOT protein scores of greater than 65 were considered

statistically significant (p,0.05). The individual MS/MS spectrum

with the best ion score (based on MS/MS spectra) that was

statistically significant (p,0.05) was also accepted. Searches were

performed against the IPI mouse database (V3.36) with param-

eters as the following: the enzyme trypsin with one missed cleavage

was allowed; variable modifications included acetamidation of

cysteine and oxidation of methionine; peptide mass tolerance was

set to 50 ppm and fragment ion mass tolerance was set to 0.2 Da;

and only monoisotopic masses were included in the search.

MSS1 Gene silencing
Gene silencing was performed using small interference RNA

(siRNA) targeting MSS1 mRNA for degradation. MSS1-specific

siRNAs had the sense sequence of 59-GUCGAACGCACAU-

CUUUAATT-39, corresponding to a region that was 443–461

bases downstream of the first nucleotide of the start codon of

mouse MSS1 cDNA (GenBank Accession Number:

NC_000007.13). The sense sequence of scrambled siRNAs was

59-UUCUCCGAACGUGUCACGUTT-39. RNA duplexes were

synthesized, purified and annealed by Dharmacon (Lafayette,

CO). BV2 cells were transfected with targeting and scrambled

RNA duplexes at a final concentration of 100 nM using

Lipofectamine 2000 (Invitrogen, Grand Island, NY) in either 96-

well or 6-well culture plates. The cells were assayed at 24 h post-

transfection via western blotting.

Nitrite (Griess) Assay
The NO levels in the culture supernatants were determined by

measuring nitrite levels using a Griess reaction [21]. Six wells of

cells were treated with rifampicin per experiment. After the BV2

microglial cells were stimulated in 24-well plates for 24 h, 100 ml
of the cell culture medium was taken out and mixed with the same

volume of the Griess reagent [1% sulfanilamide, 0.1% N-(1-

naphthyl)-ethylenediamine dihydrochloride, 2.5% H3PO4]. The

nitrite concentration was determined by evaluating the absorbance

at 540 nm using a 96-well microplate spectrophotometer and

calculated by referring to a standard curve.

Enzyme-linked Immunosorbent Assay (ELISA)
The concentration of PGE2 in cell-conditioned culture medium

was assessed using an ELISA kit (R&D Systems, Minneapolis,

MN) according to the manufacturer’s instructions. Three wells of

cells were treated per experiment.

Inhibition of MSS1 Suppresses Neuroinflammation
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Western Blot Analysis
The BV2 microglial cells were harvested from each group and

followed by western blot analysis that was conducted as previously

described [22]. Cell pellets were briefly lysed in RIPA buffer

[1 mM ethylenediaminetetraacetic acid (EDTA), 150 mM NaCl,

1% igepal, 0.1% sodium dodecyl sulfate (SDS), 0.5% sodium

deoxycholate, and 50 mM Tris-HCl, pH 8.0]. Equal amounts of

cellular proteins were separated by 8–12% sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE), transferred to

polyvinylidene fluoride (PVDF) membranes, blocked with 5%

nonfat milk for 2 h, and incubated with antibodies against iNOS

(1:1000), COX-2 (1:1000), IkBa (1:1000), and b-actin (1:5000) at

4uC overnight. The next day, the membrane was washed by Tris-

Buffered Saline Tween-20 (TBST) three times, 10 minutes each,

and incubated with the corresponding secondary antibodies that

were horseradish peroxidase-conjugated for 1 h at room temper-

ature. Antibody interactions were detected using enhanced

chemiluminescence (ECL) followed by exposure to film.

NF-kB Reporter Gene Assay
A total of 16106 BV2 microglial cells were transfected with 2 mg

NF-kB-Luciferase reporter plasmid and pCMV-gal control vector

(Clontech, Mountain View, CA) using Lipofectamine reagents

according to the manufacturer’s protocol (Invitrogen). BV2

microglial cells were plated in 96-well plates at a density of

16104 cells per well and cultivated at 37uC overnight. Three wells

of cells were treated per experiment. After incubation with the

appropriate DNA-Lipofectamine mixtures, cells were pre-incubat-

ed with or without rifampicin for 2 h before the addition of LPS

for 6 h. Cells were then washed, lysed, and centrifuged according

to the manufacturer’s instructions (Promega, Madison, WI). 20 ml
of cell extract was mixed with 100 ml of luciferase assay reagent at
room temperature followed by the luciferase activity detection

using a luminometer (Safire2, Tecan Instruments, Switzerland).

Luciferase activity was normalized through dividing the mean

luciferase relative light units (RLU) by the mean value of b-
galactosidase RLU.

Statistical Analysis
Data were presented as the mean 6 standard error of the mean

(SEM) derived from three or more independent experiments.

Comparisons between two groups were analyzed using Student’s t-

test. A value of p,0.05 was deemed to be statistically significant.

Results

2-DE Maps and Protein Identification by MALDI-TOF-MS
After matching, fifteen protein spots were extracted, digested,

and submitted for identification by MALDI-TOF-MS. MSS1

protein was successfully identified. Its expression level was

downregulated compared to the control (Figure 1). Detailed

information about MSS1 proteins is listed in Table 1, including

International Protein Index (IPI) accession number, molecular

weight, pH indicated, and rifampicin treated-to-vehicle fluores-

cence ratios.

Rifampicin Significantly Suppressed the Expression of
MSS1 in LPS-activated BV2 Microglia
To examine the effect of rifampicin on the expression of MSS1

in LPS stimulated BV2 microglia, we measured the protein levels

of MSS1 in LPS-stimulated BV2 microglia. Rifampicin treatment

greatly inhibited the LPS-induced MSS1 protein expression

(Figure 2). The result suggested that rifampicin significantly

reduced the expression of MSS1 in LPS-stimulated BV2 microglia.

Verification of MSS1 Gene Silencing
We used western blot analysis to confirm the gene knockdown

of MSS1 by its targeting siRNAs. After transfection with siRNAs,

the expression of MSS1 protein was decreased to 40% compared

with the negative control cells. The difference was statistically

significant (p,0.01, Figure 3).

IkBa Protein Degradation was Significantly Reduced by
MSS1 Gene Knockdown in LPS-stimulated BV2 Microglia
To examine the regulation IkBa degradation by MSS1 in LPS-

activated microglia, the BV2 cells were transfected with either

MSS1-specfic or control siRNAs for 24 h followed by LPS

stimulation at 1000 ng/mL for 30 min. Cell lysates were analyzed

for the protein expression of IkBa using western blot. Our results

demonstrated that IkBa protein degradation was significantly

reduced after MSS1 gene knockdown in LPS-stimulated BV2

microglia (Figure 4).

Downregulation of Microglial NF-kB Activation by MSS1
Gene Silencing in Response to LPS Stimulation
After MSS1 gene knockdown via RNAi, we assessed NF-kB

activation using the NF-kB reporter gene assay. The BV2 cells

were transfected with either MSS1-specfic or control siRNAs for

24 h. Cells were then incubated with LPS at 1000 ng/mL for 8 h.

NF-kB activity was determined by measuring the relative luciferase

activity. As shown in Figure 5, LPS markedly enhanced NF-kB

activity, while transfection with MSS1-targeted siRNA significant-

ly inhibited the enhancement.

Decrease of iNOS Expression and NO Production by
MSS1 Gene Knockdown in LPS-induced BV2 Microglia
To investigate the effect of MSS1 gene silencing on iNOS

expression and NO production, we measured their protein levels

as well as the accumulation of nitrite, a stable metabolite of NO, in

LPS-stimulated BV2 microglia. Transfection using MSS1-specific

siRNA greatly inhibited the LPS-induced iNOS protein expression

(Figure 6). We next evaluated the NO production in culture

supernatants by detecting nitrite levels using a Griess reaction.

Consistent with the downregulation of iNOS, transfection with

MSS1-targeted siRNAs reduced the LPS-mediated NO pro-

duction in BV2 microglia (Fig. 6). Our results indicated that MSS1

gene silencing suppressed the production of pro-inflammatory NO

by inhibiting the expression of iNOS in LPS-stimulated BV2

microglia.

Inhibition of COX-2 Expression and PGE2 Production by
MSS1 Gene Knockdown in LPS-activated BV2 Microglia
To address the effect of MSS1 gene silencing on COX-2 and

PGE2 production, we assessed their expression in LPS-induced

BV2 cells. Transfection using MSS1-targeted siRNAs signifi-

cantly inhibited the LPS-induced COX-2 protein expression

(Figure 7). We next collected the supernatant and analyzed the

concentration of PGE2 using ELISA. Transfection with MSS1-

specific siRNAs decreased the LPS-induced PGE2 production in

BV2 microglia (Figure 7). These results implied that MSS1 gene

silencing suppressed the production of pro-inflammatory PGE2

by inhibiting the expression of COX-2 in LPS-stimulated BV2

microglia.

Inhibition of MSS1 Suppresses Neuroinflammation
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Figure 1. 2D-DIGE gel images of proteins isolated from LPS-stimulated BV2 microglia with or without rifampicin pretreatment.
Arrows indicate proteins that were differentially expressed in rifampicin-treated cells compared with non-treated controls. Peptide mass fingerprint
spectra produced by MALDI-TOF-MS. Representative spectra from three independent experiments are shown. The x-axis represents mass-to-charge
ratio (m/z), and the y-axis represents relative abundance. The peptide masses are labeled and annotated with corresponding m/z.
doi:10.1371/journal.pone.0036142.g001

Table 1. Differential MSS1 protein expression identified by MALDI-TOF-MS.

Accession Number Name Molecular Weight (Dalton) pH Indicated
Ratio of Spot Density
(Rifampicin/Vehicle)

IPI 00270326 26S proteasome
regulatory subunit 7

52,867 5.97 21,000,000

doi:10.1371/journal.pone.0036142.t001
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Discussion

The immunosuppressive properties of rifampicin have been

discussed in the literature for 30 years [23–27]. Calleja et al.

discovered that rifampicin activated the human glucocorticoid

receptor (hGR), which regulated the expression of various genes

including those that encoded interleukins [28]. Further investiga-

tions uncovered that rifampicin inhibited Toll-like receptor 2

(TLR2) via the suppression of the DNA binding of NF-kB,

providing a novel mechanism contributing to the immunosup-

pression of rifampicin [29]. Our results showed that the anti-

inflammatory, neuroprotective properties of rifampicin were

mediated through the inhibition of signaling molecules, such as

NF-kB and mitogen activated protein kinases (MAPKs) in LPS-

activated BV2 microglial cells [12]. However, the mechanism by

which rifampicin reduces microglial inflammation is not com-

pletely understood.

In this investigation, we used 2-DE and MALDI-TOF-MS to

identify proteins affected by rifampicin in LPS-pretreated micro-

glia. We successfully identified MSS1 protein and showed that its

expression was downregulated (Figure 1A and 1B). The proteomic

results were verified by western blot analysis, which also

demonstrated the inhibition of the LPS-induced MSS1 expression

by rifampicin (Figure 2). Our findings suggested that MSS1 was

involved in microglial inflammation and its gene knockdown by

RNAi alleviated neuroinflammation (Figure 3) in LPS-activated

BV2 cells. Our results open the door to further study MSS1 as

a potential therapeutic target for neuroinflammation.

UPS represent an ATP-dependent protein degradation mech-

anism in eukaryotic cells. The 26S proteasome is a multi-catalytic

proteinase complex. It has a highly ordered structure composed of

two complexes, a 20S core and a 19S regulator. The 19S regulator

is composed of a base, which contains 6 ATPase subunits and 2

non-ATPase subunits, and a lid, which contains up to 10 non-

ATPase subunits [30]. Proteasomes are distributed throughout

eukaryotic cells at a high concentration and cleave peptides in an

ATP/ubiquitin-dependent process in a non-lysosomal pathway

[31]. Alterations in UPS are correlated with a variety of human

pathologies, such as cancer, immunological disorders, inflamma-

tion, and neurodegeneration [31–33].

Figure 2. Rifampicin significantly suppressed the expression of
MSS1 in LPS-stimulated BV2 microglia. Cells were treated with the
indicated doses of rifampicin for 2 h prior to the addition of LPS
(1000 ng/ml). At 24 h post-LPS incubation, cell lysates were analyzed
for the protein production of MSS1 using western blot. Rifampicin
significantly inhibited the LPS-induced MSS1 expression at protein
levels. Data were obtained from three independent experiments with
four to six replicates each. *p,0.05 compared with untreated cells and
cells treated with LPS in the absence of rifampicin.
doi:10.1371/journal.pone.0036142.g002

Figure 3. MSS1 gene knockdown reduced the expression of
MSS1 at protein levels. In order to assess the efficacy of gene
silencing, western blot analysis was performed after transfection with
siRNAs targeting MSS1. The specificity of MSS1 gene silencing was
determined by comparing with cells transfected with the scrambled
RNA duplex. The BV2 cells were transfected with either MSS1-specfic or
control siRNAs. At 24 h post-incubation, cell lysates were analyzed for
the protein expression of MSS1 using western blot. Compared with the
negative control group, the expression of MSS1 was significantly
reduced by incubation with MSS1-targeted siRNAs. Data were obtained
from three independent experiments with four to six replicates each.
*p,0.05 compared with the negative control group.
doi:10.1371/journal.pone.0036142.g003

Figure 4. MSS1 gene silencing decreased IkBa protein degra-
dation in LPS-activated microglia. The BV2 cells were transfected
with either MSS1-specfic or control siRNAs for 24 h, then cells were
stimulated with LPS (1000 ng/mL) for 30 min before cell lysates were
analyzed for IkBa expression using western blot. IkBa protein
degradation was significantly reduced after the addition of siRNAs
targeting MSS1 in LPS-induced BV2 microglia. Data were obtained from
three independent experiments with four to six replicates each.
*p,0.05 compared with the negative control group.
doi:10.1371/journal.pone.0036142.g004
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MSS1, also known as S7 or PSMC2, is a 433-amino-acid

member of the AAA ATPase family. As a chaperone-like subunit

of the 19S regulatory complex, MSS1 localizes in both the nucleus

and the cytoplasm where it participates in proteasome events

throughout the cell [18]. Additionally, MSS1 is thought to interact

with several basal transcription factors and, via this interaction,

play a role in transcriptional regulation [34]. Our data provided

strong evidence for a novel mechanism of MSS1-mediated

neuroinflammation. Additional investigations are needed to

further elucidate this pathway and address the potential of

MSS1 gene silencing as a therapy for neurodegenerative disorders.

NF-kB is an important transcription factor for the secretion of

pro-inflammatory mediators [35]. LPS is shown to increase NF-kB

activation, through IkB phosphorylation and the subsequent IkB

degradation in macrophages [36]. In the canonical pathway of

NF-kB induction, IkBs are phosphorylated at two amino-terminal

serines, thus targeting them for polyubiquitination and the

subsequent proteasomal degradation. IkB degradation enables

NF-kB to translocate to the nucleus and bind to its target genes,

including IkB. In addition, proteasomal degradation of transcrip-

tionally active p65/RelA promotes the prompt termination of NF-

kB responses [37]. The ubiquitin–proteasome pathway is consid-

ered pivotal to signal-induced IkB degradation [38–39]. In this

study, we investigated the regulation of IkB and NF-kB signaling

pathways by MSS1 gene silencing using a reporter gene assay and

western blot analysis. Our results demonstrated that LPS caused

rapid degradation of IkBa, while MSS1 gene knockdown

significantly reduced IkBa degradation in LPS-stimulated BV2

microglia (Figure 4). We also found that LPS markedly enhanced

NF-kB activity, whereas treatment with MSS1-specific siRNA

significantly inhibited the enhancement (Figure 5). These results

suggested that MSS1 gene knockdown suppressed NF-kB activa-

tion, likely through the blockage of IkBa degradation. The

downregulation of IkBa provided a novel mechanism for MSS1’s

immunomodulation in LPS-activated microglia.

Intranuclear blockage of NF-kB has been reported to suppress

the expression of iNOS and COX-2 [40]. Our results indicated

that transfection with MSS1-targeted siRNAs decreased the

production of pro-inflammatory NO by inhibiting the expression

of iNOS in LPS-stimulated BV2 microglia (Figure 6A and 6B). We

also found that gene knockdown of MSS1 reduced the production

of pro-inflammatory PGE2 through suppressing COX-2 gene

expression in LPS-induced BV2 microglia (Figure 7A and 7B).

In conclusion, we demonstrated that rifampicin inhibited the

expression of MSS1, which subsequently decreased IkBa

Figure 5. MSS1 gene silencing inhibited microglial NF-kB
activation in response to LPS stimulation. The BV2 cells were
transfected with either MSS1-specfic or control siRNA for 24 h, then
cells were incubated with LPS at 1000 ng/mL for 8 h. After that, cells
were transfected with NF-kB-luciferase reporter plasmid and pCMV-gal
control vectors using Lipofectamine reagents. NF-kB activation was
detected and expressed as relative luciferase activity. Compared with
the negative control group, treatment with MSS1-targetd siRNA
significantly suppressed the enhancement of NF-kB activity by LPS.
Data were obtained from three independent experiments with four to
six replicates each. *p,0.05 compared with the negative control group.
doi:10.1371/journal.pone.0036142.g005

Figure 6. Decreased iNOS expression and NO production by MSS1 gene silencing in LPS-activated microglia. The BV2 cells were
transfected with either MSS1-specfic or control siRNA for 24 h, then cells were stimulated for 24 h with LPS (1000 ng/mL). At 24 h post-LPS
incubation, cell lysates were analyzed for the protein production of iNOS using western blot. The Griess assay was performed to measure the
production of the NO metabolite, nitrite. Transfection with MSS1-specific siRNA suppressed the LPS-induced iNOS expression at protein levels, along
with the production of nitrites Data were obtained from three independent experiments with four to six replicates each. *p,0.05 compared with the
negative control group.
doi:10.1371/journal.pone.0036142.g006
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degradation and the production of inflammatory mediators. Our

results supported the potential application of MSS1 suppression,

together with anti-inflammatory rifampicin, for the treatment of

neuroinflammation and neurodegeneration.
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