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Polymorphism in the structure of amyloid fibrils suggests the existence of many differ-
ent assembly pathways. Characterization of this heterogeneity is the key to understand-
ing the aggregation mechanism and toxicity, but in practice it is extremely difficult to
probe individual aggregation pathways in a mixture. Here, we present development of a
method combining single-molecule fluorescence lifetime imaging and deep learning for
monitoring individual fibril formation in real time and their high-throughput analysis.
A deep neural network (FNet) separates an image of highly overlapping fibrils into sin-
gle fibril images, which allows for tracking the growth and changes in characteristics of
individual fibrils. Using this method, we investigated aggregation of the 42-residue
amyloid-β peptide (Aβ42). We demonstrate that highly heterogeneous fibril formation
can be quantitatively characterized in terms of the number of cross-β subunits, elonga-
tion speed, growth polarity, and conformation of fibrils. Tracking individual fibril for-
mation and growth also leads to the discovery of a general nucleation mechanism
(termed heterogeneous secondary nucleation), where a fibril is formed on the surface of
an oligomer with a different structure. Our development will be broadly applicable to
characterization of heterogeneous aggregation processes of other proteins.

single-molecule spectroscopy j amyloid j protein aggregation j deep neural network j fluorescence
lifetime imaging

Protein aggregation is implicated as the cause of pathology in various diseases (1–3).
During aggregation, proteins form amyloid fibrils, long fibers with parallel (or antipar-
allel) β-sheet structures (cross-β structure). Interestingly, there are variations in the
fibril structures (4–6), depending on various factors such as aggregation conditions.
This polymorphism indicates that the entire aggregation process, including oligomeri-
zation, should be heterogeneous. Understanding this diversity can be clinically very
important, as revealed by recent studies that found correlations between the disease/
clinical phenotype and fibril structures (7–10). However, biophysical and biochemical
characterizations of the parallel aggregation pathways are very difficult, and a lack of
quantitative experimental results on heterogeneity prevents building comprehensive
aggregation models. Single-molecule spectroscopy can be an effective tool to probe
heterogeneity because molecular species can be observed one at a time without separa-
tion (11). This technique has the potential to identify toxic species. In this study, we
combine single-molecule fluorescence lifetime imaging (FLIM) and image analysis
using a newly developed deep neural network (FNet) to interrogate the aggregation
process of proteins.
For a complete and high-throughput individual fibril analysis of the entire dataset it

is necessary to identify and separate individual fibrils and follow their changes over
time. However, as the aggregation proceeds, existing fibrils grow and new fibrils appear,
which leads to overlap of many fibrils. In many cases, it is not possible to split the fluo-
rescence intensity of overlapping regions into different fibrils in a single image. This
problem can be solved by using FNet, which is trained to distinguish the growth of
existing individual fibrils and appearance of new fibrils by tracking the history of the
entire FLIM movies. Starting from the easiest problem, the initial frames where fibrils
(i.e., oligomers) do not overlap, the deep neural network builds up information to
track, characterize, and separate overlapping fibrils in later frames iteratively.
We emphasize that FNet and the experimental and analysis methods presented in

this study are generally applicable to quantitative characterization of any amyloid fibril
formation. As a first step, we applied this method to studying aggregation of the
42-residue amyloid-β (Aβ) peptide (Aβ42). Aβ is a peptide fragment consisting of 37
to 43 amino acid residues, which is produced by successive proteolytic cleavages of the
amyloid precursor protein (APP) (12). Its aggregation to form fibrils that are found in
brain tissue is one of the key characteristics of Alzheimer’s disease. Despite tremendous
effort to understand aggregation of Aβ to form oligomers and fibrils, experimental
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results vary widely and there is no consensus on the model for
these processes (13). For example, diverse morphologies and
elongation of individual fibrils of Aβ and their fragments have
been studied using total internal reflection fluorescence (TIRF)
microscopy (14–17) and atomic force microscopy (18–22) at
various conditions. However, the fibril growth rate differs by
several orders of magnitude. One of the difficulties in studying
Aβ may result from its hydrophobicity because it is a part of
the transmembrane domain of APP. Aβ also interacts with
many proteins either specifically or nonspecifically as a mono-
mer and various oligomeric forms (23). A more fundamental
reason for the difficulty may be the heterogeneity of the aggre-
gation process, which can be very sensitive to the environment
and experimental conditions (24). Various simulation studies
have shown the diversity of aggregation pathways depending on
how and when fibril-like conformations are formed (25, 26),
which can be as early as small oligomers including monomers
(27–32).
Our method provides direct experimental visualization of

various heterogeneous characteristics of individual fibril forma-
tion and growth and their high-throughput analysis. Previous
studies of Aβ fibril formation relied mostly on manual picking
of individual fibrils, which led to the analysis of a small fraction
of the data (up to 200 to 300 fibrils). Since our method ana-
lyzes the entire data and extracts individual fibril images (7,050
fibrils), quantitative information such as length, fluorescence
intensity, and lifetime can be determined accurately for further
analysis with better statistics and for the detection of rare
events. We show that diverse Aβ42 fibrils can be categorized
into three groups based on the fluorescence lifetime (i.e., con-
formation) and the monomer density in fibrils (i.e., number of
fibril subunits), each of which consists of rapid-growing and
nongrowing fibrils. In addition, most fibrils grow in one direc-
tion (polarized growth). We also identify the growth of fibrils
from oligomers with different structures, which we term
“heterogeneous secondary nucleation,” a previously unknown
type of nucleation mechanism in Aβ42 aggregation. Impor-
tantly, these heterogeneous characteristics vary over different
experiments at the same condition, which explains highly
diverse results of previous experimental studies.

Results

FLIM of Aβ42 Aggregation. To monitor formation of individual
fibrils using FLIM, we incubated 500 nM of Aβ42 labeled with
Alexa 594 at the N terminus (SI Appendix, Fig. S1) in a poly-
ethylene glycol (PEG)-coated glass surface chamber (Fig. 1A).
We verified that the aggregation features of dye-labeled Aβ42
are similar to those of unlabeled Aβ42 (SI Appendix, Figs. S2
and S3). First, the aggregation time is similar between labeled
and unlabeled Aβ42 (SI Appendix, Fig. S2 A and B). In addi-
tion, 5% addition of the sonicated sample after aggregation of
labeled Aβ42 eliminates the lag phase, indicating that dye-
labeled Aβ42 can form aggregation seeds similar to unlabeled
Aβ42 (SI Appendix, Fig. S2C). Furthermore, electron micro-
scope images of fibrils of Alexa 594-labeled Aβ42 are indistin-
guishable from those of unlabeled Aβ42 (SI Appendix, Fig. S3).
Together, these results strongly suggest that fluorophores inter-
fere minimally with aggregation.
Immediately after the start of incubation of Alexa 594-

labeled Aβ42 at room temperature, 16 (4 × 4) – 36 (6 × 6)
10- × 10-μm2 regions of the sample were sequentially scanned.
After completion of one set of scans, the stage was moved back
to the first region and scans were repeated. Scanning 36 regions

takes about 50 min, for example, 24 repetitions produce 36,
20-h-long movies (∼50 min frame rate) of fluorescence inten-
sity and lifetime of oligomers and fibril elongation (Movies
S1–S3; see also Movies S4–S8 for the entire aggregation movies
of five different experiments). Fig. 1 B and C show snapshots
of Movies S1 and S2 that capture various features of large olig-
omer formation and fibril elongation. Since Alexa 594-labeled
Aβ42 is not immobilized, all detected short and long fibrils are
those that sedimented from the solution. The appearance of
fibrils on the surface does not result from permanent sticking
because some fibrils suddenly disappear (dissociation from the
surface, 37% of the fibrils that appeared during the measure-
ment dissociated before the end of the measurement) and small
movements of fibrils are observed over time.

The movies and snapshots in Fig. 1 show that fibril elonga-
tion is highly heterogeneous. There are relatively short fibrils,
which do not grow or grow slowly (green/blue). These mole-
cules could be large nonfibrillar oligomers or protofibrils (33,
34). In addition, there are long fibrils that elongate much faster
(orange and red). Overall, the fluorescence lifetime is shorter
than that of Alexa 594 of the monomer (3.67 ns), which can
be explained by self-quenching of fluorescence when dyes are
placed close to one another (35). Interestingly, the fluorescence
lifetimes of short, slowly growing fibrils (green and blue) are
shorter than those of long, fast-growing fibrils (orange and red).
Different lifetimes indicate that the structure (i.e., arrangement
of monomers) is different for short, slowly growing and long,
fast growing fibrils.

Architecture of FNet. More detailed and quantitative aggrega-
tion features can be obtained from characterization of individ-
ual fibrils. For the analysis of individual fibrils, it is necessary to
identify and separate fibrils and follow their changes over time.
However, as fibrils grow they start to overlap, and in many
cases it is unclear how to split the changes of photon counts in
overlapping regions into different fibrils in a single image (SI
Appendix, Fig. S4B).

A state-of-the-art method for semantic segmentation of
touching and overlapping biological objects such as cells is a
mixed two-dimensional (2D)–3D deep neural segmentation
network using object bounding boxes, which are located at spe-
cific reference points (37). In the case of overlapping fibrils,
defining such reference points and bounding boxes is impossi-
ble due to the simple shape of fibrils (there is no structure like
a nucleus in a cell as a reference point). Therefore, instead of
segmenting fibrils directly from an image of a single frame, we
exploited temporal information by comparing two consecutive
image frames. We assume that there exists a correct fibril seg-
mentation in the previous image frame and using this segmen-
tation it is possible to predict the segmentation in the next
frame iteratively. The first assumption is always true, because at
the beginning of an experiment only a few small oligomers are
present and there is no overlap. To predict the next frame
segmentation, we first tried a classification-based image segmen-
tation deep neural network, U-Net (38), which shows good
performances in segmentation of biological objects. However,
U-Net showed very poor performance in segmentation of over-
lapping regions of fibrils (Discussion). Therefore, we developed
and trained a neural network (FNet) for the photon count esti-
mation of highly overlapping transparent biological objects
(Fig. 2).

This neural network consists of four subnetworks: 1) classifi-
cation network, 2) growth prediction network, 3) background
prediction network, and 4) comparison network (Fig. 2). The
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overall information flow is as follows. First, the classification
network encodes features from a new input image and decodes
them into feature maps of different resolution. The growth pre-
diction network encodes features of individual known fibrils
from the previous image and then decodes them together with
the feature maps of the same resolution from the classification
network which contains the information of the new image. The
background prediction network has the same structure as that

of the prediction network, but it takes the previous background
image as an input and uses independent weights. The classifica-
tion, the growth prediction, and the background prediction
networks generate single feature image outputs which stand for
their prediction power for how many photons of each pixel
result from known fibrils, new fibrils, and background, respec-
tively. Then, the comparison network (Fig. 2B) compares rela-
tive prediction powers from the prediction networks and
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Fig. 1. Monitoring of Aβ42 aggregation by FLIM. (A) A PEG-coated surface was incubated with 500 nM of Alexa 594-Aβ42. Immediately after starting incuba-
tion at room temperature, 16 (4 × 4) – 36 (6 × 6) 10- × 10-μm2 regions were sequentially scanned. After completing one set of scans, the stage was moved
back to the first region and the scans were repeated. (B and C) Three snapshots of Movie S1 (B) and Movie S2 (C). Fast growing ends are indicated by white
arrows. Incubation times are indicated on the lower left corner of each image. Fluorescence lifetime (τ) images were masked by count rates and smoothed
using total variation denoising (36). (Scale bars: 1 μm.)
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Fig. 2. Deep neural network (FNet) architecture. (A) Classification network and prediction network. Each network takes an image as an input. The input of
the classification network is a new frame image. The background prediction network uses a background prediction image of the previous frame as an input,
and the growth prediction network uses prediction images of individual fibrils of the previous frame (known fibrils) as an input. The prediction network con-
nects the hidden features of the classification network to generate predictions (feature communications). (B) The output of the classification network and
the prediction networks are compared to generate the final prediction. The comparison network has two applications of a convolution, a batch-
normalization and an ReLU activation layer, followed by a convolution and a PReLU activation layer. The output of PReLU activation is normalized pixel by
pixel to make the number of photons in each pixel of the summed output image equal to that of the original input image of the new frame. This results in
an image of new fibrils, a background image, and the updated images of the known fibrils from the previous frame (see Fig. 3A). (C, Left) Highly overlapping
fibril images from Experiment 1. The 4 × 4 (10- × 10-μm2) scanned images are the last frames of the experiment (26-h incubation). (C, Right) Segmentation of
fibrils in the same image data on the left side using FNet. Peripheries of individual fibrils are colored in yellow. The fibrils touching the boundaries of 10- ×
10-μm2 areas were merged with the continuing fibrils in the adjacent areas.
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generates photon count images of known fibrils, newly appear-
ing fibrils, and background (codes are available at https://
github.com/hoisunglab/FNet). See Materials and Methods and
SI Appendix, Fig. S4 for more details of the networks, training,
validation, and performance of FNet on an image of extremely
highly overlapping fibrils, in which it is impossible to separate
fibrils manually. The segmentation results of highly overlapping
fibrils from the last frames of the experiments are shown in Fig.
2C and SI Appendix, Fig. S5 (Movies S4–S8 for the entire
aggregation movies and the segmentation of fibrils of five differ-
ent experiments).

Individual Fibril Analysis. Using FNet, we analyzed 3,893
image frames from five experiments and characterized 116,504
images of 7,050 individual fibrils. Figs. 3 and 4 illustrate

separation of fibrils and quantitative characterization of the het-
erogeneity of aggregation. Five fibrils, a through e, are shown as
examples in Fig. 3. After separation, the lengths of the fibrils
are measured and the number of photons and fluorescence life-
times are calculated from the photons and their delay times
(i.e., photon arrival times after pulsed laser excitation) collected
in those fibril regions. This results in a 2D plot of fluorescence
lifetime vs. photon density (i.e., number of photons per unit
length), which is proportional to the monomer density in
fibrils. As seen in Movies S1–S3 and in Fig. 1, there are large
variations in the fluorescence lifetime and intensity. By cluster-
ing these 2D data, we classified fibrils longer than 500 nm,
which is about twice the size of the point spread function (PSF,
2σ = 247 nm), into three groups using Gaussian mixture mod-
els (39) (see Materials and Methods). Based on their lifetimes,
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Fig. 3. Flowchart of individual fibril analysis. (A) Identification and separation of individual fibrils using FNet. Individual fibril images of frame t and the new
image of frame t + 1 are processed in FNet (images inside the orange area), which results in the updated individual fibril images (inside the yellowish-green
area) and new fibrils. The procedure is repeated for the entire time series of images of the same region. Five individual fibrils a through e with different
characteristics are shown in the subregions on the right and bottom sides of the image as examples. Each subregion consists of only one fibril (black), but
nearby fibrils (gray) are also shown for comparison. Red, green, and blue squares of the subregion indicate fibril groups 1, 2, and 3 in B, respectively. White
arrows indicate the overlapping regions of fibrils before separation. Red arrow in the subregion of fibril c at t + 1 indicates the growth of a fibril. (B, Right)
After separation, fibrils in each image are characterized by various properties: length (L) measured on the fibril image, fluorescence lifetime, and size in
terms of the number of monomers (N), which is calculated using the fluorescence intensity and lifetime. Using these parameters, other time-dependent vari-
ables are extracted: growth rate in terms of the length and size (number of monomers) and changes of the monomer density and lifetime of fibrils. (B, Left)
Using the variables from these characterizations, a 2D plot of fluorescence lifetime vs. photon density (number of photons per unit length) is constructed.
The distribution of individual fibrils with a measurable length (i.e., twice larger than the PSF size) are clustered into three groups (three different colors). The
error bars located at the center of each cluster indicate the shot noise (SD) of the density and lifetime determined from the smallest number of photons of
the fibrils in the experiment (412, 436, and 323 photons for groups 1, 2, and 3). The much smaller error compared to the width of the distribution of all
three groups may indicate additional fibril heterogeneity. Nongrowing fibrils (SI Appendix, SI Text for the definition) are characterized only by the fluorescence
lifetime (Inset). Letters a through e and arrows indicate the locations of the five fibrils in the plot.
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fibrils in groups 1, 2, and 3 appear in red (fibril c), yellow
(fibril a, b), and green/blue (fibril d, e), respectively, in the
image (Fig. 3A). Using the photon density and fluorescence
lifetime, it is also possible to estimate the number of subunits
in a fibril (i.e., polymorphism) from the length of a fibril and
the number of monomers in it (see Materials and Methods for
the calculation). Fig. 3B shows that group 1, 2, and 3 fibrils
consist of two, four, and three subunits, respectively. In addi-
tion, there are nongrowing fibrils (fibril e in Fig. 3A), the
majority of which are shorter than the measurable size (i.e.,
twice the PSF size). Since the density cannot be defined, these
fibrils (or oligomers) are classified based on their lifetimes
(group 1: τ > 2.04 ns, group 2: 1.35 ns < τ ≤ 2.04 ns, group
3: τ ≤ 1.35 ns) (Fig. 3 B, Inset).

Fig. 4 A–C shows detailed statistics of fibril elongation analy-
sis that reveals highly heterogenous aggregation features even in
the same fibril groups. Some of long fibrils touch the bound-
aries of 10- × 10-μm2 image areas (see Fig. 1). We identified
continuing fibrils in the images of the adjacent regions and
combined information of those fibrils (see Materials and Meth-
ods, Fig. 2C, and SI Appendix, Fig. S5 for stitched fibrils in
adjacent image regions). We first compared the average growth
rate (increase of the number of monomers per hour) of the
long (i.e., measurable) and short (i.e., unmeasurable) fibrils of
different groups (Fig. 4A). The growth rate of the short fibrils
is very low for all three groups, indicating these fibrils are classi-
fied as mostly nongrowing fibrils. In addition, most short fibrils
belong to group 3 with short fluorescence lifetimes (compare
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the height of the histograms in Fig. 4A), which is consistent
with the observation from the example movies (Fig. 1). Among
the long fibrils, the growth rate of group 3 is also the lowest.
The growth rates of group 1 and 2 are similar, but the number
of subunits of group 2 is twice as many as that of group 1 (Fig.
3B). Therefore, the apparent growing speed of group 1 in terms
of length in movies looks twice as fast as that of group 2. In
addition, there is a long tail in the group 1 distribution (Fig.
4A), resulting from extremely fast-growing fibrils as seen in
Fig. 1 (fibrils colored in red). The variation of the growth rate
distribution of growing fibrils over different experiments is not
large for all three groups (SI Appendix, Fig. S6A). The growth
trajectories of individual fibrils (SI Appendix, Fig. S6B) show
that the growth rate vary largely over time, which is consistent
with stop-and-go behavior observed in previous studies (14, 16,
17, 19–21). The maximum size of fibrils that is reached at the
end of the experiments ranges widely between 1,000 and
50,000 monomers (SI Appendix, Fig. S7).
We define nongrowing fibrils as the fibrils that do not grow

to the measurable size (∼500 nm, twice the PSF size) at the
end of experiments (24 h), the growth rate of which corre-
sponds to 132 monomers per h (79.2 photons per h). Fig. 4 B
and C compare the characteristics of growing and nongrowing
fibrils. First, the average fluorescence lifetime of nongrowing
fibrils is shorter than that of the growing fibrils, consistent with
the visual characterization of the movies (Fig. 1). The distribu-
tion varies depending on the sample batches. SI Appendix, Fig.
S8 shows the comparison of the fluorescence lifetimes of non-
growing and growing fibrils from five experiments with two dif-
ferent sample batches (i.e., two different expressions of Aβ42
and labeling) (Experiments 1 and 2 are from batch 1 and 3 to
5 are from batch 2).
In addition to this overall distribution and classification, it is

important to characterize how these different fibril groups change
over time as aggregation proceeds. Fig. 4C compares the evolu-
tion of the population of nongrowing and growing fibrils of
Experiments 2 and 3. SI Appendix, Fig. S9 shows the results of all
five experiments. In general, the fraction of growing fibrils
increases because of their higher growth rates. However, at the
beginning of aggregation, the fraction of the growing fibrils varies
widely between 20 and 80%. The changes of the fraction of dif-
ferent fibril groups are more diverse. Overall, group 3 is domi-
nant in the nongrowing fibril group (SI Appendix, Fig. S9B). On
the other hand, for growing fibrils, group 3 dominates at the
beginning of aggregation (except for Experiment 3), but other
groups catch up at later times (SI Appendix, Fig. S9C). In batch 1
(Experiments 1 and 2), the fraction of group 1 fibrils is very low
over the entire time course, whereas both group 1 and 2 increase
with time in batch 2 data.

Polarized Growth and Heterogeneity within Fibrils. Fig. 1B
shows a fibril (indicated by an arrow on the left side) that grows
to only one direction. This polarized fibril growth has been
observed experimentally (14, 16, 19, 40) and in molecular
dynamics simulations (41). To obtain statistics of unidirectional
and bidirectional fibril growth, we divided fibrils into short frag-
ments (10 pixels in length) (Fig. 4D) and tracked the growth of
individual fibrils. Fig. 4E shows that the fibril growth is predomi-
nantly unidirectional in all three fibril groups. This result indi-
cates that fibrils may not be structurally homogeneous. Therefore,
we compared 2D fluorescence lifetime-density plots of the entire
fibrils of each group and their fragments. As shown in SI
Appendix, Fig. S10, most fragments belong to the same group of
the fibrils, indicating fibrils are predominantly homogeneous.

The penetration of the distributions of fragments into other
groups results from larger errors in the determination of the
lifetime and density values from smaller number of photons.
However, when we compare the lifetimes of the growing and
nongrowing end fragments, there is a clear difference for the
group 2 fibrils with high polarity (≥0.5) (Fig. 4F, indicated by
double red arrow). The lifetime of the nongrowing end is shorter
than that of the growing end, implying that the character of a dif-
ferent group (i.e., group 3) is mixed in the nongrowing end frag-
ment. In addition, we observed fibrils with mixed density and
fluorescence lifetime characteristics in more complex ways. These
will be further discussed in the next section.

Heterogeneous Secondary Nucleation from Oligomers. Since
it is possible to follow the growth of each individual fibrils, we
backtracked the growth of fibrils with a measurable length to
identify the fibril group at their first appearance (i.e., origin) as
an oligomer (or protofibrils, <500 nm). Fig. 5A shows this dis-
tribution. First, group 3 fibrils originate mostly from oligomers
of their own group (group 3). However, the majority of group
2 fibrils grow from group 3 oligomers when they appear at the
beginning of aggregation (0 to 1 h). The fraction of fibrils
grown from the same group (group 2) increases as the oligom-
ers appear at later times. Finally, the origin of group 1 fibrils is
more diverse at the early stage of aggregation but gradually
converges to group 1 oligomers at later times. This apparent
interconversion between different groups may support the
mechanism of the aggregation seed formation by conforma-
tional conversion (42, 43). However, abrupt structural conver-
sion of large oligomers would be highly improbable because
many monomers need to almost simultaneously convert confor-
mations into the same structure. Instead, we interpret this
apparent interconversion of groups as the formation of a new
fibril (nucleation) on the surface of an oligomer with a different
structure. In this case, as a fibril grows, the group identity will
change gradually from one group (original oligomer) to another
(new fibril) as new monomers with a different structure group
are added over time. Indeed, the fluorescence lifetime of indi-
vidual fibrils in Fig. 5C (lifetime trajectories) gradually increases
from group 3 to group 2 as fibrils grow (Movies S9 and S10),
supporting this mechanism (SI Appendix, Figs. S11D and S12
and Movies S11–S18). This behavior is summarized in the life-
time distributions of fibrils before and after the transition from
group 3 to group 2 in Fig. 5B. The lifetime distributions of the
frames immediately before (blue) and after (orange) the identi-
fied transition (±1) (see group trajectories in Fig. 5 C and D)
are close and overlap, which are located in the middle of the
average lifetimes of group 2 and group 3 fibrils (vertical dashed
lines). However, the distributions are separated more and
become closer to the average values as the frames are away from
the transition interval. This type of nucleation is similar to the
secondary nucleation mechanism (44, 45) but different because
the nucleation occurs on the surface of oligomer/protofibril
rather than long fibrils. In addition, the structure of a newly
formed fibril is different from the structure of the original
oligomer/protofibril. Therefore, we call this “heterogeneous
secondary nucleation” (see Fig. 6).

The oligomers that lead to heterogeneous secondary nucleation
may be nongrowing oligomers because growing oligomers will
grow into fibrils of the same group (SI Appendix, Fig. S11 A–C
for the fibrils that grow homogeneously). In this case, the growth
of fibrils should appear polarized, and the lifetime of the non-
growing end can be different from the growing end as shown in
Fig. 5C and SI Appendix, Fig. S11D. This is also consistent with
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Fig. 5. Heterogeneous secondary nucleation from oligomers. (A) Oligomer origin of the three fibril groups (three columns). The growth of individual fibrils
of the three groups was backtracked to identify the group of oligomers or short fibrils (<500 nm) at their appearance during the time period of 0 to 7 h. The
majority of group 3 fibrils originate from the oligomers of their own group, whereas the majority of group 2 fibrils originate from group 3 oligomers when
they appear at the beginning of aggregation (0 to 1 h). The origin of group 1 fibrils is more diverse at the early stage of aggregation, which gradually con-
verges to group 1 oligomers at later times. (B) The distributions of fluorescence lifetimes of fibrils before (blue) and after (orange) the transition from group
3 to group 2 at different frame separations from the transition interval: ±1 to ±10 frames. Vertical dashed lines show the average fluorescence lifetimes of
group 2 (green) and group 3 (blue) fibrils. (C) Time-dependent changes of the fibril group and average fluorescence lifetime of individual fibrils and snapshot
images of two fibrils exhibiting heterogeneous secondary nucleation (group 3 ! 2). See Movies S9 and S10 for these fibrils and additional examples in SI
Appendix, Fig. S11D and Movies S11 and S12. (D) Example of fibrils that grow both directions with different lifetimes. The fibril grows from a group 3 oligo-
mer. In the last frame (23.1 h) upper (red A, above the upper horizonal dashed line) and lower (cyan B, below the lower dashed line) parts of the fibril show
distinct density and fluorescence lifetimes as shown in the 2D plot on the right side (double heterogeneous secondary nucleation). See Movie S13 and more
examples in SI Appendix, Fig. S12 and Movies S14–S18. (C and D) Horizontal dashed lines in the lifetime trajectories indicate the lifetime criteria for the sepa-
ration of the oligomer groups (1.35 ns and 2.04 ns). Note that the fibril density is also used for the fibrils of measurable size at later stages of aggregation.
Upper image panels are fluorescence intensity images of a 10- × 10-μm2 area at three different time points. Lower panels are fluorescence lifetime images
(5 × 5 μm2) of single fibrils inside the orange square in the corresponding intensity images. (Scale bars: 1 μm.)
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the result for the group 2 fibrils with the high growth polarity
(Fig. 4F). In addition, there are other variations in this heteroge-
neous growth of fibrils as shown in Fig. 5D and SI Appendix, Fig.
S12. In several cases, fibrils grow bidirectionally from group 3
oligomers and one end shows group 1 characteristics whereas the
other end shows group 2 characteristics, which looks like double
heterogeneous secondary nucleation. This result indicates that
there are much more complex and diverse aggregation pathways
that may not even be detected in our experiments.

Discussion

The key technical development in this work is FNet that can
separate a highly crowded fibril image into individual fibril
images for further quantitative analyses. As shown in Fig. 2C
and SI Appendix, Figs. S4 and S5, it is impossible to distinguish
individual fibrils in a single frame image. FNet uses temporal
information (i.e., history) of fibril growth to overcome this
problem. Since fibrils do not overlap at the beginning of an
experiment, using earlier frame information fibrils at later
frames can be separated iteratively. Another big challenge in the
fibril segmentation is proper allocation of the photon counts in
overlapping regions to the corresponding individual fibrils. The
nature of classification-based image segmentation deep neural
networks [e.g., U-Net (38)], which classify a pixel into a certain
class, introduces discontinuity in the classification probability
(p) in a single fibril image (e.g., p = 1 for the nonoverlapping
region and p = 0.5 for the region where two fibrils overlap).
This is not appropriate for splitting fluorescence intensity of a
pixel into multiple fibrils. FNet solves this issue by introducing
a modified classification network which can generate continu-
ous prediction images.
The major problem in characterizing Aβ42 aggregation is that

the experimental results vary widely depending on experimental
methods and often vary even at the same condition. The size of
stable oligomers, for example, which have been reported to show
biological toxicity, ranges from dimers to large protofibrils (13).
The most quantitative model for the aggregation mechanism that
explains the long lag time and its nonlinear concentration

dependence is the double (primary and secondary) nucleation
model (44, 45) of Ferrone et al. (46) that accounted for the lag
phase and large nucleus size for the aggregation of sickle hemo-
globin. However, there is no connection between the kinetic
model and the heterogeneity of the aggregation process and poly-
morphs of fibrils, which can be critical for the assessment of the
clinical phenotype and toxicity (7, 8).

Our experimental results directly demonstrate the heteroge-
neity in the aggregation in terms of the number of subunits,
length, elongation speed, and structure of fibrils, which varies
widely over samples prepared at different times (different
batches) as well as experiments performed using the same batch
of sample. These results suggest that a wide variation in experi-
mental results using different protocols and techniques is fully
expected due to the heterogeneous nature of Aβ42 aggregation.
In one experiment, one set of oligomerization and aggregation
pathways are preferred, while under even slightly different con-
ditions a different set of pathways is preferred, or the selection
of aggregation pathways can be entirely stochastic.

A model of heterogeneous aggregation based on our observa-
tions is shown in Fig. 6. Initially, monomers form dimers or
small oligomers with various conformations, which can grow
into oligomers of larger size. However, many of these oligomers
may stop growing into long fibrils (i.e., nonfibrillar oligomers)
as indicated by two type I pathways in Fig. 6 as examples.
These pathways correspond to the formation of short and
slowly growing or nongrowing fibrils in Fig. 4. Since these
oligomers are observed in all three fibril groups, there must be
much more pathways that belong to type I.

Some of the oligomers would grow into long fibrils, which
correspond to fast elongating fibrils in the experiment (two
type II pathways in Fig. 6). However, the stage where the con-
formations of Aβ peptide become similar to those in the fibrils
is unknown. Type II pathways in Fig. 6 are drawn such that
fibril-like structures are formed at the dimerization stage. Simu-
lation studies by Thirumalai and coworkers (28, 47) have
shown that the dimerization in type II pathways can be initi-
ated from transiently populated fibril-like monomer conforma-
tions. For example, two fibril-like monomers can form a dimer
or a fibril-like monomer can serve as a template for the dimer
formation with an unfolded monomer, which can lead to the
diversity of the fibril conformation. It has been proposed that
Aβ forms oligomers without β-structures first, which is followed
by the structural conversion to cross-β structures that promote
the fibril elongation (42, 43) (type III pathway in Fig. 6). Sim-
ulation studies by Wolynes and coworkers (30, 31) have shown
that this conformational conversion can occur at early aggrega-
tion stages (i.e., small oligomers) by breaking prefibrillar con-
tacts and forming fibrillar contacts, which is called
“backtracking” observed in Aβ40 simulation. If this structural
conversion happens, it may appear as transitions between differ-
ent groups as shown in Fig. 5. However, abrupt structural con-
version of large oligomers (larger than 100-mer) would be
highly improbable because many monomers need to almost
simultaneously convert conformations. We therefore propose
another mechanism in which fibril elongation occurs on the
surface of (potentially) nongrowing oligomers. The gradual
changes in fluorescence lifetime support this mechanism (Fig. 5
B and C and SI Appendix, Fig. S11D). This is similar to the
secondary nucleation mechanism, in which the nucleation
occurs on the surface of existing fibrils, but in our case, the
structure of the new fibril is different from that of the parent
oligomer (or short fibril). To distinguish our observation from
the original mechanism, we call this process “heterogeneous

Monomer Oligomer Fibril

...

...

...

...

...

Dimer

I

II

III

IV

...
...

Type

...
...

...

Fig. 6. Model of heterogeneous Aβ42 oligomerization and aggregation. Ini-
tially, monomers form dimers or small oligomers with different structures,
which are followed by diverse oligomerization and aggregation pathways. In
type I pathways, the assembly stops in oligomeric stages. Type II and III path-
ways lead to fibril elongation, but the stage where fibril-like conformations
are formed is different for the two types (see Discussion). Type III requires
conformational conversion from non-β structures to cross-β structures. There
are fibrils growing on the surface of oligomers with different structures (het-
erogeneous secondary nucleation, type IV pathway). The heterogeneity
observed in the experiment suggests that multiple different pathways exist in
each type of aggregation pathways indicated by vertical dots.
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secondary nucleation” (type IV pathway in Fig. 6). A recent
study by Knowles and coworkers (17) using TIRF imaging has
reported the detection of the branch-like fibril formation in the
middle of existing fibrils as the original (homogeneous) second-
ary nucleation process. In our data, we could not detect such
events that are clearly distinguishable from a simple overlap of
two fibrils. However, this does not reject the original mecha-
nism because small nuclei would not be detected in our experi-
ment and oligomers that nucleate on parent fibrils may rapidly
detach (48). In Fig. 5A, the origins of group 1 and 2 fibrils
change over time from different groups (0 to 1 h) to their own
groups (6 to 7 h), which suggests that original (homogeneous)
secondary nucleation process becomes more dominant as aggre-
gation proceeds. In addition, our observation does not exclude
the possibility of conformational conversions between small
oligomers or backtracking (type III pathway in Fig. 6), which
cannot be detected in our experiment due to the low photon
count rates from small oligomers and their low populations.
The observation of highly heterogeneous pathways that may

be sensitive to the environment suggests that oligomerization and
aggregation pathways in vivo may be quite different from those
observed in vitro. The physiological concentration of Aβ42 is
much lower than 1 μM, and, therefore, aggregation by Aβ42
alone would be very improbable. Since Aβ can interact with
many other cellular components nonspecifically, these interac-
tions may promote oligomerization, nucleation, and eventually
fibril formation similar to the heterogeneous secondary nucleation
process that we observed. Difference in the structures between
the fibrils grown in vitro without seeding and those grown from
brain-derived aggregation seed supports this hypothesis (7, 49).
Given that various structural polymorphs of fibrils are found in
other neurodegenerative proteins (6), characterization of the het-
erogeneity in the context of cellular toxicity will be critical to
understand the disease mechanism and to discover targets for
drug therapy for various diseases involving protein aggregation.
As demonstrated in this paper, our fluorescence imaging and
detailed single fibril analyses using FNet are best suited for this
type of characterizations.

Materials and Methods

Sample Preparation, Plate Reader Experiments, Electron Microscopy,
and FLIM. Details of the sample preparations including protein expression,
purification and dye labeling, and experimental procedures for characterization
of Aβ aggregation including plate reader experiments, electron microscopy and
FLIM are described in SI Appendix, SI Text.

Deep Neural Network.
Classification network and prediction network. The base structure of the clas-
sification network and the prediction networks are U-Net (38)-like deep
encoder–decoder networks. The classification network takes a photon count
image as an input (160 × 160 × 1, 10 pixels were padded to the original image
of 150 × 150 × 1 pixels) and the growth prediction network takes photon count
images of individual fibrils from the previous frame as inputs (126 images) (Fig.
2A). The encoding blocks (convolution, batch-normalization, rectified linear unit
[ReLU] activation, and max pooling) of the classification network initially encodes
four features (160 × 160 × 4). The following encoder blocks reduce the image
width and height by half and add four additional features. The decoder blocks
are similar to the encoder blocks but double the image width and height and
reduce the number of features by four. The decoder blocks also have skip con-
nections from the encoder blocks of the same image size. The prediction network
has the same structure as that of the classification network, but decoder blocks
of the prediction network have connections from the decoder blocks of the classi-
fication network (feature communications; Fig. 2A). The background prediction
network has the same structure as that of the growth prediction network but
with independent weights.

Comparison network. Each input from the classification network and the predic-
tion networks generates single-channel image output. The comparison network
takes these images as an input and generates final-result images by twice opera-
tions of a convolution, a batch-normalization, and an ReLU activation, followed
by a convolution and a PReLU activation. The result is photon count prediction
images of newly appearing fibrils, background, and updated known fibrils in the
new image frame. The result images are then normalized pixel by pixel so that
the number of photons of a pixel of the summed result image is equal to that of
the corresponding pixel of the original input image. Multiple fibrils in the pre-
diction image of newly appearing fibrils are subsequently separated into single
fibril images for the prediction of the next time frame image. Overlapping new
fibrils were occasionally observed and these fibrils were excluded from
the analysis.
Training data generation. Using the Experiment 1 data, we identified potential
single fibril locations by clustering high-intensity pixels. By visual inspection, we
extracted 1,483 non-overlapping single-fibril movies. Training images were gener-
ated by randomly rotating, reflecting, and placing fibrils with variations of photon
counts by multiplying a random factor ranging from 0.5 to 1.5 to the original fibril
movies. Background photons with Poissonian statistics were generated with a
mean value of 3.
Adaptive supervised learning. A training image set that mimics the actual exper-
imental data resulted in many incorrect segmentations for overlapped and fast-
growing fibrils, probably due to the relatively small fraction of photons resulting
from those rare events. Therefore, we employed an adaptive learning strategy to
enhance learning. In this method, new training data were generated based on the
previous training result by changing four parameters: 1) number of initial fibrils,
2) number of newly appearing fibrils, 3) length distribution of fibrils, and 4)
growth speed (acceleration). For the length distribution of fibrils, we categorized
fibrils into three groups, short (number of pixels < 200), mid (200 ≤ number of
pixels < 400), and long (number of pixels ≥ 400) fibrils and adjusted their rela-
tive population. For the growth speed acceleration, a certain number of frames
were omitted when generating a next frame image. For each generation, three to
seven training datasets were generated with different parameters. Starting from
the initial model (a set of weights of the neural network) that was trained with the
data that mimic the real experimental data, we trained models with these modi-
fied training datasets. Once training was completed, we tested each model with
the real data of Experiment 1. The best model inherits its weights to the next gen-
eration model and new training datasets were generated by increasing the occur-
rences of the poorly characterized events. For examples, if a model predicts a new
fibril as growth of a nearby existing fibril, we increased the number of newly
appearing fibrils in the new training. If a model predicts a fast-growing event as
the appearance of a new fibril, we increased the growth speed acceleration. This
process was repeated until the prediction is indistinguishable from the result by
human inspection. The neural network was trained using TensorFlow 1.14 with a
Tesla P100 GPU of NIH HPC Biowulf cluster.
Hyperparameters. An Adam optimizer (50) with a learning rate of 0.001 was
used with dice loss metric.
Loss function and validation of image segmentation. For the training, we
introduced a dice loss function L:

L ¼ 1� 1þ 2∑i,jI
Pred
ij ILabelij

1þ∑i,jðIPredij Þ2 þ∑i,jðILabelij Þ2
, [1]

where IPredij and ILabelij are the pixel intensities at location (i, j) of the prediction
image and the label image, respectively.

Eighty percent of simulated images were used for training and 20% of
images were used for the validation using the same loss function L in Eq. 1.

Validation Statistics and Prediction Accuracy of FNet. We performed
detailed analyses of the accuracy of the fibril segmentation as shown in SI
Appendix, Fig. S4. We simulated 1,000 fibril growth images (10 × 10 μm2) for
four cases with different fibril densities mimicking various stages of aggregation:
1) an early phase with 5 to 10 fibrils per image consisting of 80% short (< 150
pixels in area) and 20% intermediate (150 ≤ pixels < 250) fibrils; 2) a mid-
phase with 11 to 20 fibrils consisting of 60% short, 35% intermediate, and 5%
long (≥ 250 pixels) fibrils; 3) a late phase with 21 to 30 fibrils consisting of
40% short, 50% mid, and 10% long fibrils; and 4) an extreme case used for the
training, with 126 fibrils consisting of 10% short, 30% mid, and 60% long fibrils
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with a 10 times accelerated growth speed. Example images are shown in SI
Appendix, Fig. S4D. SI Appendix, Fig. S4C shows the comparison of image seg-
mentations with the ground-truth images for the extreme case (SI Appendix, Fig.
S4B). Examples of mispredicted fibrils are shown inside the orange rectangle.
We calculated the fraction of mispredicted fibrils using Dice coefficient (1 – L in
Eq. 1) (SI Appendix, Fig. S4D), which is very low even at the late phase of
aggregation.

Identification and Stitching of Continuing Fibrils in Adjacent Image
Regions. Long and fast-growing fibrils reach boundaries of image areas at certain
time points. In this case, continuing fibrils were identified in the adjacent image
regions if they have more than three neighboring pixels and a continuous fibril
can be determined uniquely, and the information was combined for the analysis
of fluorescence intensity, lifetime, and length (Fig. 2C and SI Appendix, Fig. S5).
However, when multiple fibrils are present at the boundary in the adjacent
image, a unique image of a continuous fibril cannot be reconstructed. In addi-
tion, in some cases a single fibril was fragmented into multiple fibrils. To collect
all the available information, we inspected all images and manually stitched the
remaining fibrils that can be uniquely stitched (77 fibrils were manually stitched).
Finally, all the fibril images were inspected again to exclude artifacts from the
stitching process, which resulted in total 7,050 fibrils for further analyses.

Determination of Fluorescence Lifetime of Each Fibril. The fluorescence
lifetime of each fibril was calculated using the mean delay time of the photons
contained in the image pixels of a fibril corrected for the mean delay time of
background photons and the offset by the instrument response function of the
detector (51). We determined the average lifetime of background photons by
averaging lifetimes of background pixels, the intensity of which is lower than
90% of the average count rate of the predicted background image.

Estimation of Number of Subunits in a Fibril. Solid-state NMR structures
have revealed the polymorphism of Aβ fibrils, which consist of different numbers
of subunits with distinct structures. We estimated the number of subunits of
each fibril using the length from the image and the number of monomers com-
prising the fibril.

To determine the length of a fibril, the individual fibril image was rotated to
make the fibril axis approximately parallel to the x axis using a linear fitting.
Next, pixels were segmented to have a length along the x axis smaller than 10
pixels for a segment. Individual segments were fitted to a third-order polynomial
from the left to the right with restricting the ends of two consecutive segments
are continuously connected. Fibrils shorter than 500 nm (approximately twice the
size of PSF) were excluded from the further analyses that use length information.

The number of monomers in a fibril (N) was calculated by comparing the
number of photons and fluorescence lifetime of the fibril (Np,fibril and τfibril) with
those of the monomer (Np,monomer and τmonomer) measured at the same illumi-
nation intensity to account for the reduced intensity of Alexa 594 in fibrils due to
fluorescence quenching as

N ¼ A
Np;fibril

Np;monomer

τmonomer
τfibril

: [2]

Here, a conversion factor A (= 2.7) was used to make the photon densities of differ-
ent fibril groups integer multiples of a common photon density because the num-
ber of subunits should be an integer. However, small oligomer signals with only a
few photons often lead to unreasonable lifetime values after background correction
(shorter than 0 ns or longer than the unquenched monomer lifetime). Therefore,
we set the maximum and the minimum values of the lifetime for the quenching
correction in Eq. 2. The minimum lifetime for the quenching correction is 0.15 ns,
which is the 10th percentile of an exponential distribution with the shortest lifetime
(1.4 ns) of fibrils with more than 5,000 photons which show strong quenching in
the late phase of the experiments. The maximum lifetime for the quenching correc-
tion is 3.67 ns, the unquenched lifetime of the monomer.

In the calibration experiment, a direct measurement of the number of photons
from the monomer after excitation at 485 nm is not possible due to the very low
fluorescence intensity from the monomer at low illumination intensity for fibril
imaging. Therefore, we used pulse-interleaved excitation using 2-ps pulsed lasers
(485 nm, LDH-D-C-485 and 595 nm, LDH-D-TA-595; PicoQuant). Monomers can
be easily identified in an image collected using 595-nm excitation. The pixels
comprising each monomer image were saved and used for the calculation of

photons emitted by 485-nm excitation after subtraction of the background. The
average number of photons emitted from the monomer, Np,monomer = 1.60 and
the lifetime of Alexa 594 attached to the monomer is τmonomer = 3.67 ns.

Clustering of 2D Plot of Lifetime and Photon Density. Fibrils from five
experiments were clustered into three groups using Gaussian mixture models
(39) (Fig. 3B). However, we observed slight fluctuations of the photon density in
different experiments. Therefore, we normalized photon counts using group 1
(the longest-lifetime group), which shows the smallest overlap with the other
groups in the 2D plot. After normalization, we calculated the average photon
density of each group and conversion factors to convert the number of photons
into the number of monomers. Since the ratios of the photon densities of groups
1, 2, and 3 are close to 2:4:3, we assumed that the number of subunits of the
three groups are 2, 4, and 3, respectively, in the calculation of the conversion
factors. The average of the conversion factors of the three groups was used in fur-
ther analyses (A in Eq. 2). Short fibrils without length information were clustered
using their lifetime distances from the average lifetimes of the fibril groups
(group 1: τ > 2.04 ns, group 2: 1.35 ns < τ ≤ 2.04 ns, group 3: τ ≤ 1.35 ns).

Fibril Growth Analysis. In the analysis of individual fibril growth, we removed
the frames of a fibril containing less than 10 photons which can result from the
background fluctuation. When a fibril grows and reaches the boundary region
(three pixels from the edge of a 10- × 10-μm2 image), continuing fibrils are iden-
tified in the adjacent area images and analyzed together as described above. We
selected the longest continuous frame sequence for the growth analysis of
each fibril.

In the growing and nongrowing fibril analysis, to minimize the possibility of
including stochastically slowly growing fibrils in the nongrowing group, the
fibrils that do not grow to the measurable size (∼500 nm, twice the PSF size) at
the end of experiments (24 h), which corresponds to 132 monomers/h (79.2
photons per h), were identified as nongrowing fibrils.

For the lifetime histograms (Fig. 4B and SI Appendix, Fig. S8), lifetimes were
calculated from fibrils containing more than 200 photons.

Fragmentation Analysis of Fibrils and Polarized Fibril Growth Analysis.

To characterize the heterogeneity within individual fibrils, we divided fibrils into
multiple fragments. A fibril image was fitted to a straight line and then the fibril
was divided into fragments of 10 pixels long along the straight line (the last
fragment can be shorter than 10 pixels; see Fig. 4D). The 2D lifetime-photon
density plots of the three group fibrils and their fragments are compared in SI
Appendix, Fig. S10.

To find the locations of growing parts of a fibril (longer than 500 nm) between
two consecutive image frames for the polarized growth analysis, newly appeared
pixel locations of a fibril were collected by excluding the area of the fibril in the
previous frame. The newly appeared pixels were clustered by the mean shift clus-
tering algorithm (52). To select significant growth which can be distinguished
from the changes by the stage drift and thermal motion of fibrils, clusters with a
size of 15 pixels or less were discarded. For each growing event detected, we
compared the proximity of the newly appeared growing part to the previous
growing part and to the rest of the fibril of the previous frame (nongrowing part).
If the newly growing part is closer to the previous nongrowing part, we recorded
the event as a switching event of the growing direction. The polarity (p) of a grow-
ing fibril was calculated by counting the growing events at the two ends as

p ¼ j N1 � N2 j
N1 þ N2

, [3]

where N1 and N2 are the numbers of growing events of fibril ends 1 and 2,
respectively.

Data Availability. Custom codes for the deep neural network, training with
examples, and construction of individual fibril database are available at https://
github.com/hoisunglab/FNet. All other data are available in the article and/or
supporting information. Materials used in this study are available upon request.
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