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Abstract
Fibrous electrodes are a promising alternative to conventional particle-based
lithium-ion battery electrodes. In this contribution, we propose an efficient
computational approach for the modeling and simulation of electrochemical
phenomena taking place in fibrous electrodes during battery charge/discharge
processes. Since each fiber is explicitly modeled by means of a dimension-
ally reduced embedded fiber model, the framework enables simulations in a
three-dimensional setting with relatively modest discretization and computa-
tional requirements compared to simulations with fully resolved fiber discretiza-
tions. The approach is applied to electrodes with high volume fractions of high
aspect ratio fibers. Various local and global quantities are analyzed and results
are compared to those obtained with the standard finite element method and
the pseudo-2D model.
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1 INTRODUCTION

Fibrous electrodes are appealing alternatives to conventional particle-based electrodes for the next generation of
lithium-ion battery systems.1–4 While fibrous electrodes can be used with a liquid electrolyte solution to enhance elec-
tronic conductivity,5 their properties are better appreciated when embedded in a solid electrolyte in so-called all-solid
fibrous electrodes. These solid-state electrodes find application in multifunctional composite materials that can be used
for energy harvesting and storage.6–8 Unlike traditional particle-based electrodes, all-solid fibrous electrodes provide
structural strength. This aspect is exploited in structural batteries,9 a quite recent concept proposed, to the best of our
knowledge, by Liu et al.10 From the modeling perspective, the analysis of fibrous electrodes with classical conformal
meshing techniques requires very dense discretizations to describe the fibrous microstructure at the fiber level. Despite
the existence of efficient techniques to discretize the microstructure (References 11–17 present some applications of con-
formal meshing techniques to complex microstructures that can be used in this context), the total memory requirements
and solution time may make the calculation prohibitive on a standard desktop computer. To address this issue, we propose
an accurate and efficient embedded dimensionally reduced fiber model, to be used in a three-dimensional finite element
(FE) method framework, which enables fibrous and electrolyte domains to be discretized independently. Although we
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F I G U R E 1 (A) Simplified two-dimensional schematic of a lithium-ion battery half cell with a porous positive electrode containing
active material inclusions of arbitrary shape in the positive electrode. A fibrous electrode is represented either by means of (B) fully resolved
fibers or (C) dimensionally reduced fibers. In panel (C), nodes with the same color share the same set of DOFs (concentration cam and electric
potential 𝜙am in the fiber in red, concentration cel and electric potential in the electrolyte 𝜙el in blue, and the exchanged current iBV,am at the
active material-electrolyte interface in black). In panel (C), symbol × indicates the integration points in fiber element b. The bottom row
shows the positive electrode configurations analyzed in the example section: (D) single-fiber electrode (Section 5.1); (E) multi-fiber electrode
(Section 5.2); and (F) two-fiber electrode (Section 5.3, with the numerical simulations referring to the yellow area)

make reference to the material properties of a polymer electrolyte for comparison purposes, the focus of this work is on
the modeling and simulation of fibrous electrodes and not on a specific electrolyte type (liquid or solid).

The battery cell (schematically represented in Figure 1A) is the core structure of batteries: a layered system of a
few hundreds micrometers comprising two electrodes and a separator. Upon battery charging and discharging, ions
are inserted into or extracted from the active material thanks to electrochemical reactions taking place at the active
material-electrolyte interface. The active material content determines the nominal capacity of the cell, while the actual
capacity is the result of the interaction between components and the rate of charge/discharge processes. In general, the
microstructure of fibrous electrodes is analogous to that of particle-based electrodes. It consists of an agglomerate of fibers,
conductive binder, and electrolyte. The latter, for convenience, is represented only in terms of its electrochemical contri-
bution through the governing equations described in Section 2. In the following, we will neglect the conductive binder
phase, assuming an electrode consists of discrete fibers embedded in an electrolyte. Such a configuration is known in the
literature as one-dimensional electrode architecture, where “one-dimensional” makes reference to the use of fibers, with
diameters in the nano- to micron-scale range.

One-dimensional electrode architectures, making use of active material in the shape of fibers (Figure 1, panels (B),
(C), and (E)), are of interest for a wide range of applications since they show advantages over traditional design (e.g.,
particle-based electrodes) in terms of surface area to volume ratio, areal and/or specific capacity, and reduced diffusion
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distance between fibers. Multifunctional fibrous electrodes are suitable candidate for wearable electronics4,18 and
structural batteries6,8,10 thanks to their capability to combine energy storage, mechanical flexibility, and load-bearing
functionalities. Furthermore, they are suitable for the development of high-performance battery electrodes.1–3 Finally,
in the light of a battery-based economy that aims at widening the variety of active materials used in batteries (based
on lithium-ion chemistry and beyond), nanowire electrode architectures represent an opportunity. Thanks to recent
advances in production processes, such as electrospinning, it is nowadays possible to produce low-cost nanofibers from a
rich variety of active materials while tuning their spatial arrangement, with basically no limitations on the range of design
combinations that can be explored.1–3, 19, 20

Despite the progress in computational battery modeling, the numerical simulation of fibrous electrode architectures
has lagged behind that of particle-based battery electrodes for many reasons. Compared to particle-based battery elec-
trodes, fibrous electrodes are more difficult to model in an efficient manner because fibers are elongated objects and their
representation entails a number of additional design parameters (such as aspect ratio, curvature, spatial orientation). As
a consequence, simplified models (such as pseudo-2D models21) cannot easily be extended to simulate electrodes with
fibrous active material inclusions. To the best of our knowledge, no simplified models are currently available to model
fibrous electrodes. This implies that modeling has to follow traditional approaches, using for instance FEM, making sim-
ulations like those proposed in this work very costly using mesh conforming techniques.12,15 This applies in particular to
multiscale simulations, where several realizations with the same volume fraction of fibers are necessary to obtain statis-
tically representative information (and before that, a RVE size convergence study has to be conducted). Computational
capabilities are currently available for detailed digital representations of battery electrode microstructures and for the
simulation of the physical processes taking place within them (refer to the available reviews on the topic for details22–26).
Nevertheless, the representation of high aspect ratio fibers and the conforming discretization at the fiber-electrolyte inter-
face requires resource intensive mesh generation procedures. Furthermore, the number of fibers that comprise a full-scale
electrode with volume fractions typical of porous electrodes (tens of thousands in Section 5.2) eventually results in very
large systems of equations that require dedicated computer resources. The modeling studies of Xu et al.27 and Carlstedt
et al.28 focus on fibrous electrodes with unidirectional fibers. This electrode configuration is amenable for an investigation
of the driving processes in a two-dimensional setting, with modest discretization requirements. Such a modeling strat-
egy is however applicable with a limited set of fiber arrangements, as arbitrary electrode configurations dictate the usage
of a three-dimensional microstructure representation. The mortar-based approach proposed by Fang et al.29 represents a
step forward towards the reduction of mesh generation costs, as it allows coarse electrolyte FE meshes to be used while
employing an appropriate discretization for the active material. Active material particles and electrolyte are discretized
using shape-conformal discretizations and non-matching interface nodes, with coupling between them enforced through
constraint relations. Although this approach is considerably helpful in many applications, its use for fibrous electrodes
with high aspect ratio fibers is practically unfeasible as it could lead to very large system matrices with millions of degrees
of freedom (DOFs) even at dilute distributions. A recently proposed approach enables the estimation of the performance
of fibrous electrodes by taking into account the geometrical arrangement of the fibers alone.30 The approach can only
be used to determine the nominal electrode capacity as it relies on percolation theory and a simple equivalent resistor
network model. Since the actual electrode capacity depends on processes concurrently occurring in different electrode
components (such as ionic transport in the electrolyte and solid diffusion in the active materials) and the synergy between
them, the electrode response is sensitive to the rate of the process, as discussed in Section 5.2.

To the best of the authors’ knowledge, available three-dimensional computational models tailored for fibrous elec-
trodes simulations rely on the lattice Boltzmann’s approach and have been developed for redox flow batteries.31–33 At
variance with these approaches, we propose a FE-based dimensionally reduced fiber model (“dimensionally reduced
model” from now on) in which the fiber-shaped active material is represented by means of line elements. The approach
is derived from recently proposed versions34,35 of the embedded reinforcement model36 employed to numerically char-
acterize the mechanical response of fiber-reinforced composite materials. In computational mechanics applications, it
is customary to model the fiber-matrix interface through displacement gap-traction force constitutive laws that formally
resemble the electrochemical models (e.g., Butler–Volmer equation37) describing active materials-electrolyte interactions
in battery modeling.37 Taking advantage of this analogy, the active material-electrolyte coupling is achieved by means of
ad-hoc DOFs defined at the interface between a fiber and the electrolyte (Section 4) by making use of two completely inde-
pendent discretizations for active material and electrode domains. In Section 3, we show that the proposed strategy results
in a greatly simplified discretization procedure compared to a traditional fully resolved FE model (“fully resolved model”
from now on) as the discretization of one-dimensional active material domains is detached from the three-dimensional
discretization of the hosting electrode domain. This is demonstrated in Section 5.2 where we describe the simulations
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performed on a three-dimensional fibrous electrode with volume fraction of active material up to 70% (25,000 fibers).
The results of the dimensionally reduced model are compared with those obtained with the pseudo-2D model21 applied
on an equivalent porous battery electrode.

Regardless of the large efficiency gain, the modifications required to adapt a standard battery formulation (Section 2)
to the proposed dimensionally reduced model are minor (Section 3). This holds true for the numerical implementation
too (Section 4). Furthermore, despite the applications of the proposed approach deal with fibers in the micrometer length
size range, there are no conceptual limitation to its use for nanowires. As shown in Section 5.1, the only fiber property
that controls the correct applicability of the approach is the fiber slenderness, obviously in combination with the set of
material parameters. The results indicate that the accuracy of the dimensionally reduced model is comparable with that of
fully resolved model starting already at relatively low values of the fiber slenderness. The approach is tested with two sets
of governing equations that differ in the electrolyte constitutive model (either based on dilute or concentrated solution
theory, Section 2).

2 GOVERNING EQUATIONS AND WEAK FORM

This section summarizes the governing equations, including the interface conditions that define the interactions between
cell/electrode components. The formulation is general and applies to both sets of constitutive equations discussed in this
study. The following assumptions are made:

• only lithium-ion battery half cells consisting of homogeneous negative electrode (lithium foil), separator, and compos-
ite positive electrode are considered; and

• the positive electrode consists of active material inclusions and the surrounding electrolyte (conductive additives and
binder are not explicitly modeled).

Figure 1 shows a schematic representation of the battery cell. The active material inclusions in the positive electrode is
hereafter referred to as “active material.” Henceforth, subscripts “am,” “el,” “neg,” “pos,” and “s” indicate active material,
electrolyte, negative and positive electrode, and separator, respectively. According to Figure 1, the active material domain
is the union of nam active material inclusions in the positive electrode, that is, Vam=

⋃nam
i=1 Vam,i, and the same holds for the

active material-electrolyte interface Sint,am=
⋃nam

i=1 Sint,am,i. The electrolyte domain is defined accordingly as Vel = Vel,s ∪
Vel,pos where Vel,s = Vs and Vpos = Vam ∪ Vel,pos, with Vam ∩ Vel,pos = ∅. The identification of negative electrode domain Vneg
and negative electrode-electrolyte interface Sint,neg is straightforward.

2.1 Balance equations

The problem is formulated in terms of molar concentration c (number of moles per unit volume) and electric potential 𝜙
in the negative electrode, electrolyte, and active material of the positive electrode. Mass and charge balance in each of
these domains are assumed to obey relations

𝜕ck

𝜕t
+ div hk = 0, x ∈ Vk, t ∈ (0, tend), and (1a)

div ik = 0, x ∈ Vk, t ∈ (0, tend), (1b)

respectively, with k = neg, el, and am. Vectors h and i represent the mass flux (number of moles per unit time per unit
area), and the electric current density (electric charge per unit time per unit area), respectively, while Vk is the domain
the equation refers to.

2.2 Interface conditions

Continuity of the electric current density across the interface Sint between electrolyte and electrode material is enforced
through

ineg ⋅ nneg = −iel ⋅ nel = iBV,neg, x ∈ Sint,neg, t ∈ (0, tend), and (2a)
iam ⋅ nam = −iel ⋅ nel = iBV,am, x ∈ Sint,am, t ∈ (0, tend), (2b)
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where nneg, nel, and nam are the outward unit normals with respect to the negative electrode, electrolyte, and active
material inclusions domains, respectively. The relationships nel = −nneg, and nel = −nam hold on interfaces Sint,neg
and Sint,am, respectively. The term iBV quantifies the charge transfer across the interface and, according to Faraday’s law,
is related to lithium transfer through

hneg ⋅ nneg = − 1
𝛼BV

hel ⋅ nel =
1
F

iBV,neg, x ∈ Sint,neg, t ∈ (0, tend), and (3a)

ham ⋅ nam = − 1
𝛼BV

hel ⋅ nel =
1
F

iBV,am, x ∈ Sint,am, t ∈ (0, tend), (3b)

where F is Faraday’s constant. Coefficient 𝛼BV takes different values depending on the constitutive model used for the elec-
trolyte: 𝛼BV = DX−∕(DLi+ + DX−) is consistent with the formulation described in Table 1 (refer to Section 3 of Reference 38
for the derivation); 𝛼BV = 1 is consistent with Doyle’s formulation described in Table 2.

The charge transfer iBV is usually related to the values of the field variables at the two sides of the inter-
face through equations that describe the electrochemical reaction. For the sake of generality, we express this
relationship as

iBV = fBV (𝜙am, 𝜙el, cam, cel) , x ∈ Sint, t ∈ (0, tend), (4)

where fBV is a known function of field variables at the interface. Refer to Tables 1, 2, and 4 for explicit expressions of fBV
at interfaces Sint,neg and Sint,am.

2.3 Constitutive equations

The dimensionally reduced approach is applicable irrespective of the constitutive models employed. We perform
numerical simulations with two formulations that differ in (i) constitutive equations for the electrolyte and (ii)
constitutive equations of the charge transfer across the interfaces between electrolyte and electrode materials. Dis-
tinctive features are summarized in Tables 1 and 2. The first formulation (Table 1) makes use of dilute solution
theory (Equations 5 and 6) and linearized Butler–Volmer equation (Equations 7 and 8). The second formulation
(Table 2) makes use of concentrated solution theory (Equations 9 and 10) and exponential Butler–Volmer equation
(Equations 12 and 13).

T A B L E 1 Constitutive equations for electrolyte and interfaces: Dilute solution theory and linearized Butler–Volmer equation

Domain Definition Expression Equation

Vel Apparent mass fluxa hel = −Del∇ cel (5)

Electric current densitya iel = 𝛾c∇ cel − 𝛾𝜙cel∇𝜙el (6)

Apparent diffusivity Del =
2 DLi+ DX−

DLi++DX−

Diffusion contribution coefficient 𝛾c = F (DX− − DLi+ )

Migration contribution coefficient 𝛾𝜙 = F2

R T
(DLi+ + DX− )

Sint,neg Charge transferb fBV,neg = i0,neg
F

RT
𝜂neg (7)

Sint,am Charge transferb fBV,am = i0,am
F

RT
𝜂am (8)

𝛼BV Interface coefficient 𝛼BV = DX−

DLi++DX−

Note: Material parameters are listed in Tables 4 and 5.
aFormulation based on dilute solution theory. Details about the derivation of the constitutive equations can be found, for example, in References 38 and 39.
bSurface overpotential 𝜂k , with k = neg, am, defined in (14).

The formulations entail the same basic ingredients. The sources of nonlinearities lie both in electrolyte constitutive
models (notice the second term at the right-hand side of (6) and (10)) and in the definition of the charge transfer fBV.
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T A B L E 2 Constitutive equations for electrolyte and interfaces: Concentrated solution theory and exponential Butler–Volmer equation

Domain Definition Expression Equation

Vel Mass flux hel = −Del ∇ cel +
tel
F

iel (9)

Electric current density iel = −𝜅el ∇𝜙el + 𝜅D ∇ ln cel (10)

Diffusional conductivity 𝜅D = 2RT
F
𝜅el

(
1 + 𝜕 ln fel

𝜕 ln cel

)
(1 − tel) (11)

Sint,neg Charge transfera fBV,neg = i0,neg

(
exp

(
𝛼aF
RT

𝜂neg

)
− exp

(
− 𝛼cF

RT
𝜂neg

))
(12)

Sint,am Charge transfera fBV,am = i0,am

(
exp

(
𝛼aF
RT

𝜂am

)
− exp

(
− 𝛼cF

RT
𝜂am

))
(13)

𝛼BV Interface coefficient 𝛼BV = 1

Note: Formulation equivalent to that used by Doyle et al.21 Material parameters are listed in Tables 4 and 6.
aSurface overpotential 𝜂k , with k = neg, am, defined in (14).

Terms i0,neg and i0,am (in (7), (8), (12), and (13)) depend nonlinearly on concentrations cel and cam (Table 4), and the surface
overpotential

𝜂k = 𝜙k − 𝜙el − UOC,k, x ∈ Sint,k, with k = neg, am, (14)

adds nonlinearities through the dependence of the open circuit potential UOC on concentration cam (Table 4). An addi-
tional source of nonlinearity in the formulation presented in Table 2 is given by the dependence of terms 𝜅el and tel on
concentration cel (Table 6).

The constitutive equations for negative electrode and active material inclusions in the positive electrode are the same
for all the numerical examples and are listed in Table 3. Fick’s law describes the mass flux (Equations 15 and 17), and
Ohm’s law describes the electric current density in the active material (Equations 16 and 18).

T A B L E 3 Constitutive equations for negative electrode and active material inclusions

Domain Definition Expression Equation

Vneg Mass flux hneg = −Dneg∇ cneg (15)

Electric current density ineg = −𝜅neg∇𝜙neg (16)

Vam Mass flux ham = −Dam∇ cam (17)

Electric current density iam = −𝜅am∇𝜙am (18)

Note: Material parameters are listed in Table 4.

2.4 Boundary conditions

We exclusively simulate galvanostatic discharge processes. To this end, we apply boundary conditions

ineg ⋅ nneg = −I, x = −𝛿neg and (19a)
hneg ⋅ nneg = 0, x = −𝛿neg (19b)

at the left-hand edge of the negative electrode (at x = −𝛿neg, with reference to the choice of the coordinate system in
Figure 1), where nneg is the outward unit normal with respect to the negative electrode. According to (19a), a positive
value of I represents a discharge process, that is, lithium is extracted from the lithium foil and is inserted into the active
material of the positive electrode.

In the positive electrode, we assume there exists a fictitious electronic conductive network that is superimposed to the
active material inclusions: the network keeps the active material inclusions at the same electric potential, and no lithium
exchange occurs between it and the active material. For convenience, we set

𝜙am = 0, ∀x ∈ [𝛿s, 𝛿s + 𝛿pos], (20)
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which means that (18) does not actually come into play. A similar approach was followed, for example, by Carlstedt
et al.28 In practical applications, the condition of equipotential active material can be approached if: (i) conductive
additives in the electrode form an extended conductive network that links the whole active material to the cur-
rent collector; (ii) a perfect active material-conductive additive adhesion is attained all-over the electrode; and
(iii) the electronic conductivity of the additives is sufficiently high to make the potential losses in the conduc-
tive network negligible. For simplicity, we assume that all these conditions are met in the fibrous electrodes under
consideration.

The explicit representation and modeling of conductive additive-polymer binder mixture is desirable for porous elec-
trode design optimization,11,13,40 but it is beyond the scope of this contribution. An intermediate approach (between
setting (20) and the direct representation) would be to model the binder mixture as an homogenized matrix surrounding
the fibers (refer, e.g., to References 14 and 41, among many others). With reference to this last option, our choice (20) is
consistent with the material parameters reported by Doyle et al.21 (i.e., the reference used for the numerical simulation
setup in Section 5), who make use of a homogenized electrical conductivity of the positive electrode 𝜅pos = 104 S m−1 (𝜎
in the reference). From the rough estimate Δ𝜙pos ∼ I 𝛿pos∕𝜅pos, the potential drop across the entire positive electrode is in
the order of 10−7 V with an electrode of thickness 𝛿pos = 100 μm (refer to Section 5.2) and boundary condition (19a) set
to I = 10 A m−2 (the largest current density considered in our numerical simulations). Setting the electric potential to all
fibers according to (20) appears a reasonable option in this study.

2.5 Initial conditions

A uniform concentration of lithium at t = 0 according to

cneg = c0
neg, x ∈ Vneg, t = 0, (21a)

cel = c0
el, x ∈ Vel, t = 0, (21b)

cam = c0
am, x ∈ Vam, t = 0, (21c)

is assumed inside each cell component, where c0
el, c0

am, and c0
neg are initial concentration values. As long as no current

flows through the cell, equilibrium conditions hold and the electric potential is uniform within each cell constituent.
Since conditions iBV,neg = iBV,am = 0 hold too, both couples of definitions (7)–(8) and (12)–(13) lead to 𝜂neg = 𝜂am = 0
(c0

el and c0
am are set so that electric current densities i0,neg and i0,am are nonzero at t = 0). The initial potential values

are thus

𝜙neg = UOC,neg − UOC,am, x ∈ Vneg, t = 0, (22a)
𝜙el = −UOC,am, x ∈ Vel, t = 0, (22b)

according to (14), if
𝜙am = 0, x ∈ Vam, t = 0 (22c)

is set in agreement with boundary condition (20).

2.6 Weak form

Following a standard Galerkin approach, the weak forms of the balance equations for negative electrode, electrolyte,
and active material inclusions can be obtained. Equation (4) is weakly enforced on each interface Sint,neg and Sint,am
through

∫Sint,neg

îBV,neg
(

iBV,neg − fBV,neg
(
𝜙neg, 𝜙el, cneg, cel

))
dS = 0, (23a)

∫Sint,am

îBV,am
(

iBV,am − fBV,am (𝜙am, 𝜙el, cam, cel)
)

dS = 0, (23b)
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for each admissible test function îBV,neg restricted to Sint,neg and each îBV,am restricted to Sint,am. The weak forms resulting
from (1) over Vneg and Vam read

− ∫Vneg

∇ �̂�neg ⋅ ineg dV + ∫Sint,neg

�̂�neg iBV,neg dS = 0, (24a)

∫Vneg

ĉneg
𝜕cneg

𝜕t
dV − ∫Vneg

∇ ĉneg ⋅ hneg dV + 1
F ∫Sint,neg

ĉneg iBV,neg dS = 0, (24b)

and

− ∫Vam

∇ �̂�am ⋅ iam dV + ∫Sint,am

�̂�am iBV,am dS = 0, (25a)

∫Vam

ĉam
𝜕cam

𝜕t
dV − ∫Vam

∇ ĉam ⋅ ham dV + 1
F ∫Sint,am

ĉam iBV,am dS = 0, (25b)

respectively, for every admissible test functions �̂�neg, ĉneg, �̂�am, and ĉam. Analogously, the weak forms over Vel read

− ∫Vel

∇ �̂�el ⋅ iel dV − ∫Sint,neg

�̂�el iBV,neg dS − ∫Sint,am

�̂�el iBV,am dS = 0, (26a)

∫Vel

ĉel
𝜕cel

𝜕t
dV − ∫Vel

∇ ĉel ⋅ hel dV − 𝛼BV

F ∫Sint,neg

ĉel iBV,neg dS − 𝛼BV

F ∫Sint,am

ĉel iBV,am dS = 0, (26b)

for every admissible test functions �̂�el and ĉel, respectively. The functions to be integrated over interfaces Sint,neg and Sint,am
in (24), (25), and (26) result from (2), (3), (4), and (23), respectively.

3 DIMENSIONALLY REDUCED MODEL

A fully resolved representation of the electrode components of the type represented in Figure 1B makes the numer-
ical solution of the weak form (23)–(26) extremely demanding when electrodes consist of high aspect ratio active
fibers.1–4,6,8,18 To overcome this limitation, we introduce a dimensionally reduced model tailored for fiber-shaped active
materials (Figure 1C). Inspired by embedded reinforcement models used in computational mechanics for the simula-
tion of fiber-reinforced composites,36 we represent active fibers as one-dimensional objects (i.e., straight lines in this
study) whose discretization is independent of that of the electrolyte and consists of conventional linear one-dimensional
Lagrange elements in both two- and three-dimensions. Figure 1C.1 shows the case of two electrolyte elements crossed
by a dimensionally reduced fiber discretized with three linear elements. The independence of the two discretizations is
evident: the nodes of the fiber elements (in red) do not coincide with the intersection points between fiber axis and elec-
trolyte elements’ edges (the nodes of the electrolyte elements are drawn in blue). While any fiber discretization can be
used, in the numerical simulations fiber nodes are uniformly distributed for convenience. Most importantly, there are no
limitations on the number of fibers that can cross an electrolyte element. The fiber-electrolyte mesh-conformity restric-
tion (Figure 1B.1), proper of most fully resolved models, is therefore removed, making the fully independent discretization
of fibers and electrolyte domains possible. Finally, the connection between fibers and electrolyte is dealt with through
appropriate interface contributions. These contributions are conveniently discretized in a conforming manner along the
fibers (in Figure 1C the nodes of the fiber elements, in red, coincide with those of the interface in black).

Dimensional reduction of active fibers

The representation of a fiber as a one-dimensional object rests upon the following assumption: on an arbitrary
cross-section perpendicular to the fiber axis (“fiber cross-section” from now on) the ratio between the value of a field vari-
able at an arbitrary point on the cross section and the average cross-sectional value approaches one. Therefore, a single
value of 𝜙am, cam, and iBV,am is associated at coordinate s along the fiber axis.
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The validity of this assumption cannot be postulated beforehand because it depends on the combination of several
factors (fiber diameter and charge/discharge rate among others). Radial concentration gradients have been experimen-
tally detected by Jacques et al.42 in carbon fibers undergoing charge/discharge. A relationship between the slope of the
gradient and the charge/discharge rate was foreseen and later confirmed by the numerical study of Xu et al.27 The lat-
ter also show that modest radial concentration gradients develop with a wide range of fiber diffusion coefficients (Dam
between 10−14 and 10−11 m2 s−1) at low rates (1 C), but significant concentration gradients only develop with low diffusion
coefficient (Dam = 10−14 m2 s−1) at higher rates (10 C). In order to explore the range of applicability of the dimensionally
reduced model, the results of the dimensionally reduced and fully resolved models are compared in Section 5.1 for various
fiber geometrical features and discharge rates.

In the reminder of this section, we focus on weak forms (23b), (25), and (26), as the negative electrode is handled in
a standard fashion. In the fibrous electrode under consideration, nam indicates the number of fibers and the porosity 𝜖 =
Vel,pos∕Vpos = 1 − Vam∕Vpos quantifies the electrolyte volume fraction in the positive electrode (Figure 1A), assumed to
be uniform in space and constant in time. The formulation presented in this section applies whenever fibers can be
represented as generalized cylinders of constant cross-section. For convenience, we consider right circular cylinders of
diameter dj and length lj (Figures 1A,C) so that each jth fiber has volume Vam,j = 𝜋d2

j lj∕4. Under these assumptions,
weak forms (25) and (23b) are recast as

− Aj ∫lj

𝜕�̂�am

𝜕sj
iam dsj + Cj ∫lj

�̂�am iBV,am dsj = 0, ∀ j = 1,… ,nam, (27a)

Aj ∫lj

ĉam
𝜕cam

𝜕t
dsj − Aj ∫lj

𝜕ĉam

𝜕sj
ham dsj +

Cj

F ∫lj

ĉam iBV,am dsj = 0, ∀ j = 1,… ,nam, (27b)

and

Cj ∫lj

îBV,am
(

iBV,am − fBV,am (𝜙am, 𝜙el, cam, cel)
)

dsj = 0, ∀ j = 1,… ,nam, (28)

respectively, being sj ∈ [0, lj] the one-dimensional coordinate defined along the axis of the jth fiber (Figure 1C). Electric
current density iam and mass flux ham are indicated without boldface to emphasize their one-dimensional nature in this
modeling approach. Details about the mapping between the local coordinate sj and the global coordinate x ∈ Vpos are
provided in Section 4.1. Scalars Aj and Cj are the cross-sectional area and the circumference of the jth fiber, respectively.
For simplicity, we neglect the contributions of fiber circular edges, so that Sintj = Cj lj. In Section 5.1, we show that the
implications of this simplification are negligible for high aspect ratio fibers.

The integration over the electrolyte Vel is split into separator Vs and positive electrode Vpos domains. In the posi-
tive electrode, it is convenient to perform the integration of (26) over the volume Vpos and correct the integrals through
porosity 𝜖 to cancel out the contribution of the volume occupied by the fiber:

− ∫Vs

∇ �̂�el ⋅ iel dV − 𝜖 ∫Vpos

∇ �̂�el ⋅ iel dV − ∫Sint,neg

�̂�el iBV,neg dS −
nam∑
j=1

Cj ∫lj

�̂�el iBV,am dsj = 0, (29a)

∫Vs

ĉel
𝜕cel

𝜕t
dV + 𝜖 ∫Vpos

ĉel
𝜕cel

𝜕t
dV − ∫Vs

∇ ĉel ⋅ hel dV − 𝜖 ∫Vpos

∇ ĉel ⋅ hel dV

− 𝛼BV

F ∫Sint,neg

ĉel iBV,neg dS −
nam∑
j=1

Cj 𝛼BV

F ∫lj

ĉel iBV,am dsj = 0 . (29b)

At the interface between the separator and the positive electrode at x = 𝛿s (Figure 1A) continuity of field variables cel
and 𝜙el holds together with conditions(

hel|x∈Vs
− 𝜖 hel|x∈Vpos

)
⋅ ns = 0, and

(
iel|x∈Vs

− 𝜖 iel|x∈Vpos

)
⋅ ns = 0.

By performing the numerical integration over the total volume Vpos, rather than the actual electrolyte volume Vel,pos,
a significant operative simplification is introduced (Figure 1A clarifies the relationship between Vpos and Vel,pos): the
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discretizations of electrolyte domain and fibers and their geometrical representations do not have to be conforming.
The implications of this simplification are those commonly encountered in established battery modeling approaches.
Equation (29) presents several analogies with the treatment of the pore-filling electrolyte typical of porous electrode
theory.43 For example, concentrations cel and 𝜖 cel are equivalent to the “solution-phase concentration” and the “su-
perficial concentration, averaged over the volume of both matrix and pores” defined in Reference 43, respectively.
Similarly, terms hel and 𝜖 hel are equivalent to the “flux in the solution phase” (indicated with N∕𝜖 in Reference 43)
and the “average flux in the pore solution” (N in Reference 43) that is “averaged over the cross-sectional area of
the electrode,”43 respectively. The integrals that refer to the positive electrode domain in (29) are equivalent to the
weak forms of Equations (1), (2), (20), (23), and (24) of Newman and Tiedemann43 for a binary electrolyte without
convective motion. A crucial difference however exists with Reference 43: in the dimensionally reduced model the
interaction between each jth fiber and the electrolyte is explicitly accounted for through the integrals over the fiber
surface Sint,am,j (last term on the right-hand side of Equation 29), rather than considering a volume-averaged charge
transfer (a in in the reference). This feature is relevant to the modeling of battery electrodes in which the characteristic
length of the active material inclusion is not negligible compared to the characteristic size of the electrode. Since active
fibers can span a significant portion of the electrode thickness, the interaction between a single fiber and the response
of the electrode as a whole does not reduce to an exchange term circumscribed to a single (electrode) macroscopic
point.

The benefit of non-conformal meshes goes beyond the advantage brought by mortar-based approaches.29 Even if
they enable the use of non-conforming meshes for the discretization of active material inclusions and electrolyte, their
geometries have to conform to one another, leading to very large system of equations for fiber volumes similar to those
analyzed in this work. While mortar-based approaches can be applied to particles of any shape, our approach is ideal for
large volumes of one-dimensional fibers.

The dimensionally reduced approach is tailored for fibrous electrode modeling, and approximation are introduced to
promote its numerical efficiency. The numerical investigations described in Section 5 are performed to assess the simpli-
fications introduced and the impact they have on the accuracy of the dimensionally reduced model. The verification is
twofold. We check both the validity of the assumption of uniform fields on fiber cross section, and also the impact of the
dimensional reduction of fibers on the global response of the system.

For numerical implementation purpose, weak forms (27)–(29) are recast into non-dimensional equivalent forms
inspired by Salvadori et al.44,45 This approach should eliminate convergence issues stemming from an ill-conditioned
global tangent matrix. The interested reader can refer to Appendix A.1 in Reference 39 for an application of the
non-dimensionalization to a set of governing equations similar to the one considered here.

4 DISCRETIZATION AND FE APPROXIMATIONS

We describe the numerical implementation of the dimensionally reduced model tailored for fiber-shaped active mate-
rial inclusions. The weak form of the governing equations is obtained through the substitution of constitutive equations
provided in Table 3 and those of either Tables 1 or 2 into (23a), (24), (27), (28), and (29). The time-continuous
system of equations is transformed into a corresponding incremental form by means of a backward-Euler integra-
tion scheme; nonlinearities are addressed by means of a classical incremental-iterative nonlinear solution procedure
equipped with a Newton–Raphson iterative method.46 In this section, we only provide details about the discretiza-
tion of the positive electrode constituents as the discretization of the other cell components are treated using standard
strategies.

4.1 Spatial discretization at the element level

The electrolyte domain is discretized using isoparametric FE of the same dimensionality of the problem: eight-node hex-
ahedral in a three-dimensional setting, and four-node quadrilateral elements in a two-dimensional setting. Fibers are
discretized using one-dimensional isoparametric FEs irrespective of the dimensionality of the problem, and the same
holds for fiber-electrolyte interfaces. In practice, integration over fiber volume and fiber surface only differ by a constant:
area Aj and circumference Cj, respectively (cf. (25)/(23b) to (27)/(28)).
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Active material inclusions and electrolyte

Electric potential and concentration fields at an arbitrary location in an electrolyte element are expressed as

𝜙el = Nb 𝝓el and cel = Nb cel, (30)

respectively, with bulk shape functions

Nb =
[

Nb1 … Nbn

]
, (31)

where n is the number of nodes in a bulk element and Nbi is the ith nodal shape function. Vectors

𝝓el =
[
𝜙el1 … 𝜙eln

]T
and cel =

[
cel1 … celn

]T
(32)

collect nodal unknowns. Derivatives of bulk shape functions in the global coordinate system x are assembled in the
discrete gradient operator

Bb =
⎡⎢⎢⎢⎣
𝜕Nb1
𝜕x

… 𝜕Nbn
𝜕x

𝜕Nb1
𝜕y

… 𝜕Nbn
𝜕y

𝜕Nb1
𝜕z

… 𝜕Nbn
𝜕z

⎤⎥⎥⎥⎦ . (33)

The distribution of field variables along the axis of the fiber is described through a local scalar coordinate s (Figure 1).
Electric potential and concentration fields at location s in a fiber element are thus expressed as

𝜙am = Nf 𝝓am and cam = Nf cam, (34)

respectively, with one-dimensional fiber shape functions

Nf =
[

Nf1 … Nfm

]
(35)

and vectors of nodal unknowns

𝝓am =
[
𝜙am1 … 𝜙amm

]T
and cam =

[
cam1 … camm

]T
(36)

for fiber elements with m nodes. The derivatives of the fiber shape functions are assembled in the discrete gradient
operator

Bf =
[
𝜕Nf1
𝜕s

… 𝜕Nfm
𝜕s

]
, (37)

here expressed in the local coordinate system. In this work, we use linear elements only (m = 2).

Active material-electrolyte interface

Weak form (28) is used to evaluate the current exchanged across the fiber-electrolyte interface. By introducing degree of
freedom iBV,amj for each fiber element node and collecting the corresponding nodal values in the vector

iBV,am =
[

iBV,am1 … iBV,amm

]T
, (38)

the charge transfer can be approximated through

iBV,am = Nf iBV,am (39)
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at an arbitrary location along the fiber element. Shape functions Nf (35) are identical to those used to approximate the
distribution of cam and 𝜙am in the fiber element.

The computation of integral (28) requires the evaluation of fBV,am at the integration points of the one-dimensional
fiber element (gray cross in Figure 1C.1). The procedure is described next and requires knowledge about fiber nodes
and nodal degrees of freedom, all expressed in the global coordinate system. For each fiber element (i.e., either one of
the three segments a, b, and c in Figure 1C.1) quantities 𝝓el and cel at the electrolyte element nodes are interpolated to
quantities 𝝓f,el and cf,el at the fiber nodes through

𝝓f,el = Hf 𝝓h,el and cf,el = Hf ch,el, (40)

where, for a two-node fiber element,

Hf =

[
NA

b
||x1

0

0 NB
b
||x2

]

is a 2 × 2n array that gathers bulk shape functions of electrolyte elements A and B hosting fiber element nodes 1 and 2,
respectively (for the sake of example, refer to fiber element b in Figure 1C.1). Array Hf is constructed by identifying the
elements that contain the fiber nodes and evaluating the corresponding shape functions at that location. Since shape
functions are defined in the element natural coordinate system, an inverse mapping is needed to express the coordinate
of a fiber node, given in the global coordinate system, in the element domain. In the case of a fiber node on an element
edge, it would be enough to select just one of the elements sharing that edge. The previous expression can be generalized
to the case of a fiber element with m nodes; in that case, the array size is m × mn. Vectors

𝝓h,el =

[
𝝓A

el

𝝓B
el

]
and ch,el =

[
cA

el

cB
el

]

collect nodal unknowns of electrolyte element A and B, respectively. The expression above is valid also when both nodes
of the fiber element fall within the same electrolyte element, that is, when 𝝓B

el = 𝝓A
el and cB

el = cA
el.

Finally, electric potential 𝜙el and concentration cel at location s along the fiber element are thus expressed as

𝜙el(s) = Nf 𝝓f,el = NfHf 𝝓h,el and cel(s) = Nf cf,el = NfHf ch,el, (41)

where NfHf is a combination of electrolyte and fiber element shape functions that interpolate from the nodes of the
electrolyte elements hosting a node of the fiber element to a location along the fiber element. The procedure just described
is general and works for any discretization.

4.2 Element level implementation

We aim to provide an example of the FE implementation of the dimensionally reduced model to highlight the details of the
numerical coupling between bulk electrolyte elements and dimensionally reduced fiber elements. For the sake of example,
we consider the weak form of the governing equations obtained through the substitution of constitutive equations listed
in Tables 1 and 3 into (23a), (24), (27), (28), and (29). When the constitutive equations of Table 2 are considered instead,
the numerical implementation is analogous, just more laborious.

For simplicity, we assume that all fibers in the positive electrode have equal cross section, that is, Aj = A and Cj = C
with j = 1,… ,nam. We make use of symbol Ωe

k with k = am or el to indicate the integration over a single electrolyte or
active fiber FE, respectively.

Active material sub-matrices

The contributions to the element residual vector and tangent matrix that follow from the space-time discretization of (27)
read



GOUDARZI et al. 1525

r𝜙am = 𝜅am A ∫Ωe
am

BT
f Bf 𝝓am dΩ,

rc
am = A

Δt
∫Ωe

am
NT

f Nf Δcam dΩ + Dam A ∫Ωe
am

BT
f Bf cam dΩ,

(42)

and

K𝜙𝜙
am = 𝜕r𝜙am

𝜕𝝓am
= 𝜅am A ∫Ωe

am
BT

f Bf dΩ,

Kcc
am = 𝜕rc

am
𝜕cam

= A
Δt

∫Ωe
am

NT
f Nf dΩ + Dam A ∫Ωe

am
BT

f Bf dΩ,
(43)

respectively. Vectors 𝝓am and cam refer to the electric potential and concentration of the active material at current time
increment and previous iteration. The concentration increment Δcam is defined as the difference between the most
updated (current time increment, previous iteration) and the last converged (previous time increment) solutions for the
concentration in (36). The quantity Δt defines the time increment size.

Electrolyte sub-matrices

The contributions to the element residual vector and tangent matrix that follow from the space-time discretization (29)
read

r𝜙el = 𝛾𝜙 𝜖 ∫Ωe
el

BT
b Bb 𝝓el Nb cel dΩ − 𝛾c 𝜖 ∫Ωe

el

BT
b Bb cel dΩ,

rc
el =

𝜖

Δt ∫Ωe
el

NT
b Nb Δcel dΩ + Del 𝜖 ∫Ωe

el

BT
b Bb cel dΩ,

(44)

and

K𝜙𝜙

el = 𝜕r𝜙el
𝜕𝝓el

= 𝛾𝜙 𝜖 ∫Ωe
el

BT
b Bb Nb cel dΩ,

K𝜙c
el = 𝜕r𝜙el

𝜕cel
= 𝛾𝜙 𝜖 ∫Ωe

el

BT
b Bb 𝝓el Nb dΩ − 𝛾c 𝜖 ∫Ωe

el

BT
b Bb dΩ,

Kcc
el =

𝜕rc
el

𝜕cel
= 𝜖

Δt ∫Ωe
el

NT
b Nb dΩ + Del 𝜖 ∫Ωe

el

BT
b Bb dΩ,

(45)

respectively. Vectors 𝝓el and cel refer to the electrolyte electric potential and concentration vectors at current time
increment and previous iteration.

Interface sub-matrices

The residual vectors corresponding to the last term in each of the equations in weak form (27) read

r𝜙i
am = C ∫Ωe

am

NT
f Nf iBV,am dΩ, rci

am = C
F ∫Ωe

am

NT
f Nf iBV,am dΩ . (46)

In this section, for convenience, superscript i indicates quantities that refer to the charge transfer degrees of free-
dom iBV,am (superscript i is, therefore, not to be understood as an index). The last term in each of the equations in weak
form (29) is computed analogously, however, integrals must be evaluated for each electrolyte element that contains node
of the fiber element on which integration is performed, that is,

r𝜙i
el = − C ∫Ωe

am

NT
b Nf iBV,am dΩ, rci

el = − C
F

DX−

DLi+ + DX− ∫Ωe
am

NT
b Nf iBV,am dΩ, (47)

according to (40). According to (34) and (41), the discretization of weak form (28) leads to

ri
int = C ∫Ωe

am

NT
f Nf iBV,am dΩ − C ∫Ωe

am

NT
f fBV,am

(
Nf 𝝓am, NfHf 𝝓h,el, Nf cam, NfHf ch,el

)
dΩ. (48)
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Arrays Hf are assembled once and for all during preprocessing. The determination of the electrolyte element in which
the fiber element nodes are located can be efficiently pursued by exploiting quadtree and octree data structures at the pre-
processing stage for the structured eight-node hexahedral (Sections 5.1 and 5.2) and four-node quadrilateral (Section 5.3)
FEs used to discretize the electrolyte domain, respectively.

The dimensionally reduced model entails a certain level of approximation. The accuracy of the numerical evalua-
tion of quantities that depend on local field variables is subordinate to the validity of the assumption of uniform fields
on fiber cross-sections (Section 3). The most direct consequence is on the numerical evaluation of the charge transfer
through (48) (that particularizes according to either (8) or (13)) that is evaluated from nodal quantities 𝝓am and cam (36)
of the one-dimensional representation of the fiber (no distinction between surface and bulk values applies to the dimen-
sionally reduced model, Section 3) and nodal values of the bulk electrolyte elements interpolated at the fiber nodes 𝝓f,el
and 𝝓f,el (40). Due to this simplified treatment, the evolution of i0,am, 𝜂am, and iBV,am during the discharge process is, in
general, different compared to a fully resolved model. The quantification of the discrepancies between responses obtained
with fully resolved and dimensionally reduced models as well as the identification of the causes of the discrepancies are
addressed in Section 5.1.

The contribution of the interface terms to the tangent matrix are evaluated as follows

C𝜙i
am =

𝜕r𝜙i
am

𝜕iBV,am
= C ∫Ωe

am

NT
f Nf dΩ, Cci

am =
𝜕rci

am

𝜕iBV,am
= C

F ∫Ωe
am

NT
f Nf dΩ,

C𝜙i
el =

𝜕r𝜙i
el

𝜕iBV,am
= − C ∫Ωe

am

NT
b Nf iBV,am dΩ, Cci

el =
𝜕rci

el

𝜕iBV,am
= − C

F
DX−

DLi+ + DX− ∫Ωe
am

NT
b Nf iBV,am dΩ,

Ci𝜙am
int =

𝜕ri
int

𝜕𝝓am
= − C ∫Ωe

am

NT
f
𝜕fBV,am

𝜕𝝓am
dΩ, Cicam

int =
𝜕ri

int

𝜕cam
= − C ∫Ωe

am

NT
f
𝜕fBV,am

𝜕cam
dΩ,

Ci𝜙el
int =

𝜕ri
int

𝜕𝝓el
= − C ∫Ωe

am

NT
f
𝜕fBV,am

𝜕𝝓el
dΩ, Cicel

int =
𝜕ri

int

𝜕cel
= − C ∫Ωe

am

NT
f
𝜕fBV,am

𝜕cel
dΩ,

Cii
int =

𝜕ri
int

𝜕iBV,am
= C ∫Ωe

am

NT
f Nf dΩ.

(49)

Vectors 𝝓am, cam, 𝝓el, and cel, used to compute fBV,am and its derivatives, and vector iBV,am are evaluated at current time
increment and previous iteration.

4.3 Global system of equations

The vector of all nodal unknowns is defined as

u =
[
𝝓

T
el 𝝓

T
am c T

el c T
am i

T
BV,am

]T
,

where vectors 𝝓el, 𝝓am, cel, cam, and iBV,am collect nodal unknowns (32), (36), and (38) of all elements. At each time step
and for each kth iteration of the Newton–Raphson iterative scheme we seek for the increment 𝛿uk such that

uk = uk−1 + 𝛿uk

solving the linear system of equations

K 𝛿uk = −r k−1
,

where the residual vector

r k−1 ≡ fint ( uk−1 )
− f ext

, (50)

and
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𝛿u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝝓am

𝛿cam

𝛿𝝓el

𝛿cel

𝛿iBV,am

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, fint =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r𝜙am + r𝜙i
am

rc
am + rci

am

r𝜙el + r𝜙i
el

rc
el + rci

el

ri
int

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K
𝜙𝜙

am 0 0 0 C
𝜙i
am

0 K
cc
am 0 0 Cci

am

0 0 K
𝜙𝜙

el K
𝜙c
el C

𝜙i
el

0 0 0 K
cc
el C

ci
el

C
i𝜙am
int C

icam
int C

i𝜙el
int C

icel
int C

ii
int

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

Submatrices K
lj
am∕el collect the contributions of the corresponding element tangent matrices (43) and (45) assembled

over the active material and electrolyte domains, and submatrices C
lj
am∕el∕int gather the element contributions of the inter-

face terms (49). Subvectors rl
am∕el∕int collect the contributions of the corresponding element residual vectors (42), (44),

and (48), assembled over the active material and electrolyte domains, and interfaces. Subvectors rlj
am∕el collect the con-

tributions of the element residual vectors (46) and (47), assembled over the interfaces. We remark that, in the actual
linear system of equations, the so-called “internal global force” vector fint46 and matrix K must include also the terms
that descend from the discretization of the negative electrode. Vector r k−1 includes the boundary conditions through the
so-called “external global force” vector f ext ,46 whose definition is standard argument in FE. The representation in (51)
emphasizes the relationship established between nodal quantities that belong to different domains through iBV,am.

As shown by Goudarzi et al.,47 an advantage of the embedded approach over classical conformal FEM discretization
is the possibility of efficiently condensing out all the degrees of freedom related to fiber segments. The procedure yields a
global system of equations with the same size as that of the matrix without fibers.

5 NUMERICAL EXAMPLES

The capability of the dimensionally reduced model to simulate electrochemical processes in fibrous battery electrodes is
assessed by comparing simulation results against reference solutions from the literature and results obtained with the
fully resolved model. An analysis of the cell voltage response and the evolution of the local fields (cam, cel, and iBV) is part
of the evaluation.

In Section 5.1, we consider a single-fiber positive electrode in a three-dimensional setting. The impact of the fiber
geometrical features and discharge rate on the response of the dimensionally reduced model is evaluated using the fully
resolved model results as a reference solution. The dimensionally reduced model is tested in Section 5.2 on a positive
electrode with roughly 25,000 active fibers in a three-dimensional setting. To the best of the authors’ knowledge, this is
the first work to present a numerical tool for the modeling and simulation of arbitrary distributions of discrete fibers in a
fibrous battery electrode. Since no reference solution is available for fibrous battery electrodes and the solution of the fully
resolved model is not currently achievable for such a geometry, we select the pseudo-2D model results by Doyle et al.21 as
reference solution. A similar approach has been followed in the literature, with the pseudo-2D model providing reference
solutions for more sophisticated models (e.g., References 13, 14, and 48). Finally, Section 5.3 examines the evolution of
the charge transfer on the fiber-electrolyte interface by comparing results obtained with dimensionally reduced and fully
resolved models for a two-fiber positive electrode in a two-dimensional setting.

The numerical examples are performed using the same cell components and material parameters as Doyle et al.21

Figure 1A shows the domains forming the cell: (i) homogeneous lithium foil as the negative electrode; (ii) separator
layer of polyethylene oxide-lithium trifluoromethane sulfonate (PEO-LiCF3SO3); (iii) positive electrode made of titanium
disulfide (TiS2) active material inclusions embedded in PEO-LiCF3SO3. Quantities that are repeatedly referred to in the
discussion of the numerical example are defined next.

State of charge

We express the state of charge (SOC) of the positive electrode as

SOC =
cam,avg

cmax
am

, (52)
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where cam,avg is the average concentration of lithium in the active material of the positive electrode, and cmax
am is the

saturation limit of lithium in the active material. For a galvanostatic process, the relation

cam,avg = I t
F (1 − 𝜖) 𝛿pos

+ c0
am

holds, where I is the current applied according to boundary condition (19a), 𝛿pos is the thickness of the positive electrode,
c0

am is the initial concentration of the lithium in the active material, and t is the time elapsed since the beginning of the
process.

Cell potential

The cell potential

Δ𝜙 = 𝜙am − 𝜙neg(x = −𝛿neg)

simplifies into

Δ𝜙 = −𝜙neg(x = −𝛿neg) (53)

T A B L E 4 Material parameters and initial condition values common to all numerical examples

Domain Quantity Symbol Value Equation

Vneg (lithium foil) Li diffusivitya Dneg 1.0 × 10−11 m2 s−1

Electronic conductivitya 𝜅neg 1.0 × 106 S m−1

Initial concentration Lib c0
neg 85,000 mol m−3

Vel (PEO-LiCF3SO3) Initial concentration LiCF3SO3 c0
el 1000 mol m−3

Saturation limit LiCF3SO3 cmax
el 3920 mol m−3

Vam (TiS2) Li diffusivity Dam 5.0 × 10−13 m2 s−1

Initial concentration Li c0
am 100 mol m−3

Saturation limit Li cmax
am 29,000 mol m−3

Sint,neg Exchange current densityc i0,neg = F kneg
(

cmax
el − cel

)𝛼c c𝛼a
el (54)

Open circuit potential UOC,neg 0 (55)

Reaction rate constant kneg 7.6422 × 10−8 m s−1

Sint,am Exchange current densityc i0,am =
F kam

(
cmax

el − cel
)𝛼c c𝛼a

el

(
cmax

am − cam
)𝛼a c𝛼c

am

(56)

Open circuit potentialc UOC,am =
Uref + RT

F

(
ln

(
cmax

am −cam

cam

)
+ 𝛽cam + 𝜁

) (57)

Reaction rate constant kam 10−10 m4 mol−1 s−1

Reference open potential Uref 2.17 V

First coefficient 𝛽 −0.000558 m3 mol−1

Second coefficient 𝜁 8.10

Entire cell Faraday’s constant F 96,485.3 C mol−1

Ideal gas constant R 8.31447 J K−1 mol−1

Temperature T 373.15 K

Apparent transfer coefficients 𝛼a, 𝛼c 0.5

Note: All the data are from Doyle et al.21 unless otherwise specified.
aLithium diffusivity and electronic conductivity are chosen assuming that the negative electrode is an ideal reservoir of lithium and a perfect conductor.
bValue computed considering a theoretical specific capacity of 3860 mA hg−1 and a density of 0.59 g cm−3.49

cConcentration expressed in mol m−3.
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T A B L E 5 Material parameters suitable for the electrolyte constitutive model described in Table 1

Property Symbol Value Units

Li+ diffusivitya DLi+ 4.46 × 10−12 m2 s−1

CF3SOSO−
3 diffusivitya DX− 23.4 × 10−12 m2 s−1

aValues determined inverting expressions Dionic = 2DLi+ DX− ∕ (DLi+ + DX− ), and t0
+ = DLi+ (DLi+ + DX− ),37 where Dionic = 7.5 × 10−12 m2 s−1 and t0

+ = 0.160
are the electrolyte diffusion coefficient and transference number provided in Reference 21 for cel = c0

el, respectively. We assume constant values of DLi+

and DX− and employ the same values in separator and positive electrode.

because of (20). Since we assume that the negative electrode is a perfect conductor, the electric potential 𝜙neg is uniform
on the cross-section (yz-plane) at x = −𝛿neg (Figure 1). The numerical simulations are interrupted when the cell potential
falls below the cutoff voltage, which is set to 1.7 V according to Doyle et al.21

5.1 Dimensionally reduced versus fully resolved model: Single fiber investigation

We assess the capability of the dimensionally reduced model to approximate the response of the fully resolved model
through a numerical example that allows a direct comparison between the two approaches. The same governing equations
are used for the two models: they are obtained using the constitutive relations listed in Tables 1 and 3 into balance
equations (1) for each domain Vneg, Vel, and Vam. The material parameters are listed in Tables 4 and 5. The formulation
of Table 1 is preferred for this investigation because it is characterized by weaker nonlinearities and a smaller number of
parameters compared to the formulation of Table 2. This allows us to focus on the key aspects of the active fiber-electrolyte
interaction.

In the remainder of this section, we refer to

Δ𝜃rel =
𝜃DR − 𝜃FR

𝜃FR
× 100 (58)

as the relative difference between the values of quantity 𝜃 obtained with the dimensionally reduced (DR) and fully resolved
(FR) models.

Figure 1 (panels (A) and (D)) shows a two-dimensional schematic of the three-dimensional geometry used in the
numerical simulations. The cell consists of a lithium plate (negative electrode) and a fiber (positive) electrode of thick-
ness 𝛿neg = 10 μm and 𝛿pos = 80 μm, respectively. The latter is comprised of a single active material fiber of length lf =
60 μm and the surrounding electrolyte. The axis of the fiber is perpendicular to the lithium plate, and the fiber left end
is located at x = 𝛿s = 20 μm. The battery cell has a uniform out-of-plane cross-section with measure As = L2, with L =
100 μm, and the axis of the fiber is placed at its center. Simulations are performed with fiber diameters df such that df∕L
= 0.01, 0.05, 0.1, 0.2, and 0.4, with aspect ratio lf∕df of the fiber equal to 60, 12, 6, 3, 1.5, respectively. The geometry
with lf∕df = 1.5 by no means represents a slender object, but it is selected as the upper bound while investigating the
range of applicability of the dimensionally reduced approach. The positive electrode porosity needed for the dimension-
ally reduced model simulations (refer to Section 3) is calculated as 𝜖 = 1 − Vam∕𝛿3

pos, where Vam equals the volume Vf of
the fiber.

In the fully resolved model simulations, we use a non-structured discretization of four-node tetrahedral elements. The
number of nodes of the discretization increases from about 2500 to about 11,000 as df∕L reduces from 0.4 to 0.01 (since
fiber and electrolyte meshes are conforming at the interface, the element sizes in the fiber and surrounding electrolyte are
equally reduced). In the dimensionally reduced model simulations, lithium plate and electrolyte are discretized using a
structured mesh of 4 × 15 × 15 and 15 × 15 × 15 eight-node hexahedral elements, respectively, and the fiber is discretized
using 50 equally sized line elements. The number of discretization nodes amounts to about 5400 irrespective of the fiber
diameter. The grid is fine enough to adequately capture gradients in the solution fields for the smallest value of the diam-
eter (and too fine for the largest ones where coarser grids could have been used). Such a discretization setting has been
chosen to show that parametric studies in terms of fiber geometrical quantities (the diameter in this case) can be addressed
with just one fixed discretization in the reduced model.

We apply boundary and initial conditions described in Sections 2.4 and 2.5, respectively. In addition, we impose the
mass flux and electric current density to be null across (i) the external surfaces of the simulation domain parallel to the
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axis of the fiber and (ii) the external surface at x = 𝛿s + 𝛿pos. We perform simulations at 1 C rate discharge by applying the
current density

I =
cmax

am F Vam

As td
, (59)

where cmax
am F Vam represents the capacity of the positive electrode, and td is the discharge time set equal to 1 h. Simulations

have been performed with a constant time increment Δt = 5 s unless otherwise specified.
During discharge, the lithium insertion process stops either when the lithium concentration reaches the satura-

tion limit on the surface of the fiber or when the surrounding electrolyte is depleted of lithium, as dictated by the
exchange current density definition (56). The lithium concentration profile on a fiber cross-section is, in general, nonuni-
form. Due to the symmetry of the problem, the concentration on an arbitrary fiber cross-section far from the two
circular edges is maximum at the fiber-electrolyte interface (where lithium insertion takes place) and is minimum
at the center. Since (56) is evaluated assuming a uniform concentration over the fiber cross-section in the dimen-
sionally reduced model, the responses of the fully resolved and dimensionally reduced models differ when a strong
concentration gradient develops along the fiber radius. We aim to assess the capability of the dimensionally reduced
model to describe: (i) the local evolution of the field variables, (ii) the conditions that cause the interruption of the
charge transfer across the fiber-electrolyte interface, and (iii) the impact of these factors on the cell potential curve.
We focus on the roles of fiber geometry and discharge rate. The numerical simulations described in this section are
performed neglecting the dependence of the open circuit potential on the lithium content of the active material (57)
(we set UOC,am = Uref).

We first assess the performance of the dimensionally reduced model through an examination of local fields such
as concentration distribution within fiber and surrounding electrolyte, and fiber-electrolyte charge transfer across the
interface. As a preliminary verification of the numerical implementation, we check (post-processing stage) that equality

I As t = F ∫Vam

cam − c0
am dV (60)

holds at any time t of the numerical simulations. Satisfaction of equality (60) confirms that (i) the lithium content in
the fiber is proportional to the charge transferred and (ii) lithium is neither artificially generated nor consumed. The
right-hand side of (60) is evaluated through numerical integration over the elements representing the fiber, that is, one-
and three-dimensional elements for dimensionally reduced model and fully resolved model, respectively.

Figure 2A shows the evolution of the lithium concentration distribution along the fiber length for a selection of fiber
diameters (df∕L = 0.01, 0.05, 0.4 with lf∕df = 60, 12, 1.5, respectively). For the fully resolved model, we report the values at
the nodes located along the fiber axis. The concentration profiles obtained with dimensionally reduced and fully resolved
models are consistent: the pointwise relative difference is 11% at the most (for df∕L = 0.4, which is a very thick fiber
with aspect ratio lf∕df = 1.5). In general, the smaller the fiber diameter the better the agreement between the results of
the two models. The reason for this behavior is twofold. First, the magnitude of the concentration variation on the fiber
cross-section is directly proportional to the fiber radius. Second, the influx of lithium from the circular edges (especially
the one close to the lithium plate) is directly proportional to the surface, and thus to the radius. Since the dimensionally
reduced model is insensitive to these aspects (Section 3), it better approximates the fully resolved model response as the
fiber radius reduces.

Figure 2A shows that the curves of the concentration profile obtained with the dimensionally reduced model lie below
those obtained with the fully resolved model for df∕L = 0.01 and 0.05. The discrepancy is caused by the approximate rep-
resentation of a cylindrical volume by means of four-node tetrahedral FEs: the about 18,000 FEs discretization (about
7400 for the fiber) used to obtain the results of Figure 2 with df∕L = 0.05 leads to an underestimation of the actual fiber
volume of about 3%, and thus causes an erroneous overestimation of the concentration. Two remarks support this con-
clusion. First, we observe that Equation (60) holds irrespective of the numerical approach if the integral is performed on
the discretized domain (i.e., the actual fiber volume in the numerical simulation). Second, the extent of the mismatch is
directly proportional to the amount of lithium in the fiber: because of (60), the lithium content in the fiber is the same in
both models and therefore the concentration is on average higher in the fully resolved model because it underestimates
the fiber volume. Since the evaluation of the fiber volume is intrinsically exact with the dimensionally reduced model
(Section 3), the approach is especially convenient when the representation of a fiber with the fully resolved model requires
an unreasonably fine mesh.
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F I G U R E 2 Effect of fiber diameter on local fields obtained with fully resolved and dimensionally reduced models for a cell with one
fiber. (A) Concentration distribution along the length of the fiber at SOC = 0.14, 0.28, 0.42, 0.56, 0.69, and 0.83. Solid and dashed lines refer to
reduced and fully resolved model, respectively. The fully resolved model results refer to the fiber axis. (B) Charge transfer along the length of
the fiber for various fiber diameters at SOC = 0.5. The results of the fully resolved model (orange dots) are reported for all the nodes that
belong to the fiber-electrolyte interface

An analysis of the results of the fully resolved model shows that the maximum difference between the concentration
at the surface and at the center of the fiber cross section is modest. If we consider the concentration distribution in the
fiber at SOC = 0.83 (i.e., when the difference between fully resolved and dimensionally reduced model is maximum in
Figure 2A), the maximum difference is 0.04% with lf∕df = 60, 0.11% with lf∕df = 12, and 6.31% with lf∕df = 1.5 with
respect to the average cross section concentration. With the set of parameters considered for the active material, it is
reasonable to assume that the deviations of the local solution values on the fiber cross section from the cross-sectional
average values are negligible for fibers with high aspect ratio (i.e., for lf∕df ≥ 12).

Figure 2B shows the charge transfer distribution resulting from the two modeling approaches. The results are pre-
sented in terms of the distribution of charge transfer iBV,am (normalized by the product of applied current I and aspect
ratio lf∕df) along the fiber length at SOC= 0.5 for the same fiber diameters considered in Figure 2A. The results of the fully
resolved model are reported for the nodes at the fiber-electrolyte interface. We observe that the profiles of the dimension-
ally reduced model replicate those of the fully resolved model for slender fibers (df∕L ≤ 0.1, lf∕df ≥ 6): for a fixed axial
fiber coordinate, the maximum relative difference between the nodal value of the dimensionally reduced model and the
average over the circular interface of the fully resolved model is about 15% (for df∕L = 0.1). The weaker agreement found
for the case of thick fibers (i.e., when df∕L ≥ 0.2, lf∕df ≤ 3) can be explained as follows. First, concentration variations
along the fiber radius are directly proportional to the fiber diameter. Second, the lithium influx across the two circular
edges becomes substantial as the fiber aspect ratio reduces (as way of example, the contribution of the two circular edges
is 25% of the whole fiber-electrolyte interface surface when lf∕df = 1.5). Even if fibers with larger diameters are subject to
higher current densities (59), the contribution of the increased value of I to the mismatch between dimensionally reduced
and fully resolved models is secondary compared to the two aspects just mentioned as demonstrated by the investigation
described at the end of this section.

Figure 3 shows the concentration distribution in the electrolyte obtained with fully resolved (Figure 3A) and dimen-
sionally reduced (Figure 3B) models for df∕L = 0.05 (lf∕df = 12). The contour plots refer to SOC = 0.5 (the concentration
distribution pattern for SOC = 0.5 is representative of most of the discharge process) for a simulation performed at
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F I G U R E 3 Visual comparison between results obtained with fully resolved (A) and dimensionally reduced (B) models for df∕L = 0.05
(lf∕df = 12) in a cell with one fiber. Concentration distributions in the electrolyte during a 16 C rate discharge process (I = 1.5 A m−2) at
SOC = 0.5

F I G U R E 4 Comparison between results obtained with dimensionally reduced (solid lines) and fully resolved (dashed lines) models in
terms of discharge curve: (A) influence of fiber diameter (df∕L ranging from 0.01 to 0.4) for fixed discharge rate (1 C rate). (B) Influence of
discharge rate (C rate ranging from 0.04 to 64, with current density ranging from I = 3.6 × 10−3 to 5.9 A m−2) for a fiber with df∕L = 0.05

16 C rate (I = 1.5 A m−2). Both approaches yield visually similar results. This qualitative comparison further confirms
the previous quantitative comparisons.

Next, we evaluate the performance of the reduced model in predicting the overall cell response through the analysis
of discharge curves. Figure 4A shows the cell potential (53) as a function of the SOC (52) for all values of fiber diameter
considered in the study. The trend of the curves is dictated by the dependence of the exchange current density on the
concentration within the fiber (56). Indeed, Figure 3 shows that the concentration redistribution within the electrolyte
is modest. The cell potential drops when the fiber concentration cam approaches the saturation limit cmax

am on a large
portion of the fiber surface because the exchange current density (56) approaches zero. The results of the dimensionally
reduced and fully resolved models show the same trend: the maximum cell potential relative difference (58) is 3% at the
most (df∕L = 0.4, lf∕df = 1.5). Since the fiber surface concentration determined with the fully resolved model exceeds the
average cross-sectional concentration determined with the dimensionally reduced model (for assigned instant of time and
fiber cross-section), the exchange current density (56) and the cell potential (53) evaluated with the fully resolved model
drop to zero at a slightly lower SOC.

The cell potential determined with the fully resolved model exceeds that of the dimensionally reduced model in all the
numerical simulations performed at 1 C rate (Figure 4A). This is attributed to the twofold contribution of the circular edges
to the lithium insertion process. First, since the distance between negative electrode and circular edge of the fiber is shorter
than the distance between negative electrode and fiber body, the length of the lithium ion transport path reduces, and so
does the resistivity of the system. Second, the different fiber-electrolyte interface surfaces of the two fiber representations
(dimensionally reduced and fully resolved models) impact the average value of iBV,am. The fiber surface available for charge
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T A B L E 6 Concentration-dependent material parameters suitable for the electrolyte constitutive model described in Table 2

Property Symbol Value/expression Units

Electrolyte diffusivitya Del 7.5 × 10−12 m2 s−1

Electrolyte conductivitya 𝜅el a0 + a1 cel + a2 c2
el + a3 c3

el S m−1

a0 = −5.0891863844 × 10−3

a1 = 8.38645199394 × 10−5

a2 = −5.19747901855 × 10−8

a3 = 8.0832709407 × 10−12

Transference numberb tel 0.0107907 + 1.48837 × 10−4 cel –

Mean molar activity coefficient variationb 𝜕 ln fel
𝜕 ln cel

0 –

Note: Concentration cel should be expressed in mol m−3.
aValues from References 50 and 51 for triflate in PEO.
bValues from Reference 21.

transfer exceeds that of the dimensionally reduced model and thus a lower overpotential is needed to transfer the same
amount of charge.

Figure 4B shows the impact of the current density on the dimensionally reduced model response when a fiber
with df∕L = 0.05 (lf∕df = 12) is discharged at C rate ranging from 0.04 to 64. The values of the current density I (19a)
are I = 0.0036, 0.092, 0.37, 1.5, and 5.9 A m−2, and they correspond to 1 C rate discharge for the five fiber diameters con-
sidered so far. In this set of simulations, Δt is adapted to each simulation to ensure that the increment of the SOC (for each
time increment) is the same at all C rates. The reference is a time increment Δt = 5 s for a 1 C rate process. The results of
the dimensionally reduced model replicate the trends of the results obtained with the fully resolved model irrespective of
the value of the applied current. Differences between the results of the two models are detectable for I = 5.9 A m−2 (i.e.,
64 C rate), which is a rather high value. For example, the results reported in Section 5.2 show that the average current
density experienced by a single fiber with aspect ratio lf∕df = 15 is about 0.2 A m−2 at the most when the fiber is part of a
fibrous electrode subject to an overall 10 A m−2 current density (corresponding to a 0.2 C rate discharge process).

5.2 Porous electrode

In this section, we illustrate the capability of the dimensionally reduced model to simulate electrodes with multiple
active fibers. The governing equations are obtained using the constitutive relations listed in Tables 2 and 3 into balance
equations (1) for domains Vneg, Vel, and Vam. The material parameters are listed in Tables 4 and 6. The formulation is
equivalent to the formulation by Doyle et al.,21 whose results are used to validate our dimensionally reduced model.
In the investigation performed by Doyle et al.,21 the thicknesses of separator and positive electrode are 𝛿s = 50 μm
and 𝛿pos = 100 μm, respectively. Spherical active particles of diameter dp = 2 μm occupy 70% of the positive electrode
volume.

We consider the same cell geometry as Doyle et al.21 but we replace the positive particle-electrode with a
fibrous-electrode. We consider fibers with diameter df = 2∕3 dp = 1.3 μm to ensure that the specific surfaces per
unit volume of fibrous- and particle-electrodes are equal (being the fibers surface evaluated as Sf = 𝜋dflf). We
also chose a fiber length lf = 20 μm to ensure that ratios lf∕df = 15 and df∕L = 0.013 fall in the range where the
dimensionally reduced model performance corresponds to the best compromise between accuracy and computa-
tional efficiency (Section 5.1). The thickness of the lithium plate and the size of the simulation domain in y
and z directions are arbitrarily set equal to 𝛿neg = 30 μm and L = 100 μm, respectively. A two-dimensional schematic
is depicted in Figure 1A, with the positive electrode reported in Figure 1E; Figure 5 shows the actual fiber
distribution.

The active material volume fraction in the positive electrode is the same as Doyle et al.21 (𝜖 = 0.3). The positive
electrode geometry is generated using the random sequential adsorption technique52 by selecting fiber coordinates and
orientation angles from a uniform distribution and allowing fibers to overlap. The resulting fiber distribution is homo-
geneous, with no apparent preferential orientation: the uniform porosity assumption in Section 3 is thus met. This
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F I G U R E 5 Contour plots of the positive electrode for I = 10 A m−2 discharge. (A) Concentration in the active fibers at SOC = 0.084,
0.16, and 0.41 (to be compared with the concentration profiles in Figure 7B). Concentration distributions on three yz-slices in the positive
electrode (at x = 𝛿s + 0.2 𝛿pos, 𝛿s + 0.5 𝛿pos, and 𝛿s + 0.8 𝛿pos): (B) on the active fibers intersected by the planes, and (C) in the electrolyte.
Each point in panel (B) represents a fiber cross-section. All the contour plots in panels (B) and (C) refer to SOC = 0.41. The results have been
obtained with the finest discretization (20 elements for each fiber and nmsh = 30 for the electrolyte)

arrangement is not necessarily realistic, but it approximates the configuration investigated by Doyle et al.,21 where a uni-
form distribution of particles was considered. For the purpose of this study, it was not deemed necessary to perform a
statistical analysis and a single distribution of about 25,000 fibers in the positive electrode is considered representative.
The fiber distribution is periodic in y and z directions: if a fiber crosses the external boundary of the domain the portion
of fiber that falls out of the boundary is replicated at the opposite edge.

Initial and boundary conditions described in Sections 2.4 and 2.5, and further detailed in Section 5.1, are applied.
We perform simulations with I = 5, 7, and 10 A m−2, that is, within the 0.1–0.2 C rate range. The external surface of the
positive electrode is insulated, that is, neither mass nor charge transfer across it.

The numerical simulations are performed using uniform discretizations: 10 equally sized segments for each fiber
unless otherwise specified, and nmsh × nmsh × nmsh eight-node hexahedral elements for the electrolyte domain. We per-
form simulations with nmsh = 12, 21, and 30, resulting in a number of nodes ranging between 250,000 and 280,000 in
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the positive electrode. Emphasis is given to the presentation of results for I = 10 A m−2 to provide a detailed compar-
ison with the outcomes of Reference 21, where the distribution of local fields cel, cam, and iBV,am is shown exclusively
for I = 10 A m−2.

Substantial differences exist between the simulation settings by Doyle et al.21 and our own. The differences lie in
electrode microstructure and active material-electrolyte interaction modeling. Doyle et al.21 focus on particle-based elec-
trodes and their model is tailored for particles. They describe the electrolyte using a one-dimensional model where
the microstructure associated to each electrode location x is represented through a single spherical particle. The
particle-electrolyte interaction is described through the pore wall flux of lithium ions (jn in the reference) which is
assumed to be uniform on the particle surface. It turns out that the averaging procedure (from particle- to cell-scale) at
the core of the pseudo-2D model used by Doyle et al.21 makes the model insensitive to interaction between particles. We
replace TiS2 spherical inclusions with fiber-shaped inclusions (and this is justified by the use of TiS2 nanotubes in battery
applications53,54) and test a dimensionally reduced model tailored for fibers. A fiber is an elongated oriented object whose
interaction with the surrounding electrolyte occurs over a broad region. The electric potential and concentration of the
electrolyte in contact with the fiber depend on the location along the fiber-electrolyte interface. Concentration redistri-
bution takes place along the fiber length too. The combination of these circumstances results in a nonuniform charge
transfer along the fiber-electrolyte interface (refer to paragraph Fiber-electrolyte charge transfer: Global response), and in
a range of fiber responses at a given x-location within the electrode Figure 5 (panels (B) and (C)). Furthermore, the elec-
trochemical interaction between a fiber and the surrounding electrolyte affects the response of other fibers (more about
this in Section 5.3).

Due to the differences just highlighted, a one-to-one match between our results and those by Doyle et al.21 cannot
realistically be expected. However, the work by Doyle et al.21 is a good reference for multiple reasons. First, the reference
solution is based on a half cell and thus the computational costs at the verification stage are halved compared to a full cell.
Second, Doyle et al.21 demonstrate that (radial) diffusion limitations in the active particles are negligible in their system,
which is the assumption underlying the formulation of the dimensionally reduced model (Section 3). Third, Doyle et al.21

report a comprehensive set of results, thus allowing to compare not just variables profiles, but also their trends. To the best
of the author’s knowledge, no reference solutions exists about local field distributions for battery electrodes with arbitrary
arrangement of fibers. It follows that either a qualitative comparison is performed considering a different system (which
is the case here), or a full-scale simulation of a fibrous electrode is performed to produce a reference solution (as the one in
Section 5.1 which was performed for just one fiber). The latter option is excluded due to the very high computational cost.

With the numerical example at hand, we aim to show the capability of the proposed approach in dealing with fibrous
electrodes where large amount of fibers are involved. Examples of target applications can be found in References 55
and 56. However, the results presented here are not necessarily representative of the actual response of realistic fibrous
electrodes. For example, we match the 70% volume fraction used in Doyle et al.21 for the sake of validation only. We are
aware that achieving such a volume fraction of randomly distributed fibers is hardly possible in practical applications.
Moreover, the prediction of the response of densely packed fiber ensembles and intersecting fibers would require ad-hoc
formulation. The investigation of these and other aspects, which are critical to fibrous electrode design, falls beyond the
scope of the current study.

Contour plots of the positive electrode are reported in Figure 5 for the numerical simulations performed with I =
10 A m−2. Panel (A) shows the utilization of fibers at three stages of the discharge process (SOC = 0.084, 0.16, and 0.41).
The progression of the utilization front is basically one-dimensional—from the separator (x = 𝛿s) toward the rightmost
edge of the positive electrode (x = 𝛿s + 𝛿pos)—but the concentration distribution is not strictly uniform on yz-planes at
a given x-coordinate. This is evident from the cross-sections in panels (B) and (C) that refer to SOC = 0.41 and x = 𝛿s +
0.2 𝛿pos, 𝛿s + 0.5 𝛿pos, and 𝛿s + 0.8 𝛿pos. The variability of the concentration in fibers intersected by the same cutting plane
amounts to 0.06 cmax

am at the most (x = 𝛿s + 0.8 𝛿pos, panel (B)), while the variability of the concentration in the electrolyte
on a given cross section amounts to 0.05 c0

el at the most (x = 𝛿s + 0.2 𝛿pos, panel (C)). Apart from the visible role of the
boundaries (boundary effect should however vanish by enlarging the simulation domain in x and y directions), local
differences are appreciable also in the inner part of the cross section.

Lithium concentration in the electrolyte

Figure 5C shows that the concentration field is not uniform on a cross section. The variation is however modest, and
it is therefore reasonable to assume the response along any line parallel to the x axis as equivalent for representation
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F I G U R E 6 Concentration profiles within the electrolyte in the separator and positive electrode at various SOC with electric current
densities (A) I = 5 A m−2 and (B) I = 10 A m−2. The results refer to the finest discretization for the electrolyte domain (nmsh = 30). Data have
been extracted along the axis parallel to x-direction located at the center of yz-plane. The results by Doyle et al.21 (their Figures 3 and 4)
for I = 10 A m−2 at times t = 10, and 20 s (inset), and times t = 50, 200, 400, 1400, and 12,600 s (main plot) are reported with dashed lines in
panel (B). The same color is used for our results and those of the reference when the SOC coincides

purposes. For convenience, data shown in Figure 6 have been sampled along the axial line of the half cell in the separator
and electrode domain (the axial line passes through the center of the separator-electrode interface region and is parallel
to the x axis).

The evolution patterns of the concentration profile are similar for I = 5 A m−2 (Figure 6A) and 10 A m−2 (Figure 6B):
a linear distribution in the separator, then a rapid decrease at the separator-positive electrode interface x = 𝛿s fol-
lowed by a plateau. When I = 5 A m−2 the concentration gradient is modest and the depletion of the electrolyte
(cel ≤ 0.07 c0

el) is attained in about 20% of the positive electrode thickness (region at the rightmost edge of the
domain x = 𝛿s + 𝛿pos) by the end of the process (SOC = 0.98). A pronounced concentration gradient develops with I =
10 A m−2, causing the depletion of the electrolyte (cel ≤ 0.07 c0

el) in roughly 50% of the electrode thickness at
SOC = 0.45.

In Figure 6B, we report the results by Doyle et al.21 for comparison. A good agreement is evident in the
initial simulation steps; the concentration dip at the separator-positive electrode boundary is clearly captured
(inset of Figure 6B). Concentration gradients and electrolyte depletion are more pronounced in the fibrous elec-
trode at SOC > 0.006. Discrepancies in the overall evolution are attributable to the intrinsic differences (dis-
cussed above) between our simulation setting and that of the reference. The main difference between the fibrous
and particle-based electrode simulations is that the first one stops at SOC = 0.45 (as it cannot proceed fur-
ther), while the second proceeds up to about SOC = 0.83. A discussion about the causes of the early simula-
tion interruption is postponed to paragraph Fiber-electrolyte charge transfer: Global response. Since Doyle et al.21

report the electrolyte concentration profiles up to SOC = 0.65, this curve is shown as well in Figure 6B for
completeness.

Lithium concentration in the fibers

Figure 7 shows the local utilization of the active material in the positive electrode for I = 5 A m−2 (Figure 7A) and
10 A m−2 (Figure 7B) in terms of the average concentration cam calculated as the mean fiber concentration on the
electrode cross-sections orthogonal to the x-direction. For I = 5 A m−2, the gradient of the utilization profile is mod-
est. The variation of cam across the electrode is about 0.15 cmax

am at the most, and the active material is fully exploited
(up to SOC = 0.98, Figure 7A) by the end of the simulation. For I = 10 A m−2, the active material utilization is
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F I G U R E 7 Concentration profiles within the active material in the positive electrode at various SOC for electric current densities
(A) I = 5 A m−2 and (B) I = 10 A m−2. The results refer to the finest discretization for the electrolyte domain (nmsh = 30). On the vertical axis,
we report the average concentration cam calculated over the electrode cross-sections orthogonal to the x-direction. The results by Doyle
et al.21 (their Figure 6) at times t = 40, 1640, 3240, 8040, and 14,400 s are reported with dashed lines in panel (B). The same color is used for
our results and those of the reference when the SOC coincides

nonuniform (Figure 7B): intense near the separator (cam∕cmax
am ≈ 0.76 at the most at x = 𝛿s), and modest at the right-

most edge (cam∕cmax
am ≈ 0.18 at the most at x = 𝛿s + 𝛿pos), with the difference between these two values that widens

as the SOC increases. Our results (continuous lines in Figure 7B) qualitatively agree with those by Doyle et al.21

(their Figure 6) up to SOC = 0.16: the two sets of results show modest differences up to SOC = 0.084 (black line),
but show different patterns thereafter. At SOC = 0.41, the fibrous electrode is characterized by a higher utilization
of the active material closer to the separator and a lower utilization of the active material at the rightmost edge of
the domain compared to the particle-based electrode. In Figure 7B, we show both the utilization profile at the last
stage of our simulation (SOC = 0.45) as well as the utilization profile at the last reported stage in the reference
(SOC = 0.74).

Cell potential

Figure 8 shows the cell potential as a function of the SOC for I = 5, 7, and 10 A m−2 and for discretizations nmsh = 12, 21,
and 30. The active material utilization progressively reduces (the maximum achievable SOC reduces) as the discharge
rate increases, in agreement with the results by Doyle et al.21 Figure 8A shows that there are no appreciable differences
between the results obtained with different meshes when I = 5 A m−2 is applied, suggesting that the converged solution is
obtained with the coarsest mesh (nmsh = 12). Similar arguments apply to the results obtained with I = 7 A m−2. With I =
10 A m−2, the results obtained with different nmsh overlap, but the maximum achievable SOC increases with nmsh (the
maximum SOC is 0.36, 0.43, and 0.45 with nmsh = 12, 21, and 30, respectively). Since a steeper concentration gradient
develops in the electrolyte at higher rates (compare panel (A) with panel (B) in Figure 6), a proper representation of the
cell response requires a finer mesh.

Numerical simulations are performed with time step Δt ranging between 1 and 20 s. We observe that the effect of the
time step size on the outcome of the simulations is secondary compared to that of the spatial discretization, as differences
between the results obtained with different time step setting are not appreciable in the discharge curve.

The results by Doyle et al.21 for I = 5 and 10 A m−2 are reported in Figure 8B for comparison. The cell potential
of the particle-based electrode exceeds that of the fibrous electrode with both I = 5 and 10 A m−2. This is consis-
tent with the comparison reported in Figures 6B and 7B. Figure 7B indeed shows that fibers near the separator are
filled more quickly than particles and, at the same time, shortage of lithium at the rightmost edge of the cell (x >
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F I G U R E 8 Discharge curve for galvanostatic discharge processes. (A) Mesh refinement study at I = 5, 7, and 10 A m−2; simulations
have been performed with structured meshes with nmsh = 12, 21, and 30. (B) Comparison with the results by Doyle et al.21 (their Figure 2)
for I = 5 and 10 A m−2

F I G U R E 9 Charge transfer profiles for I = 10 A m−2 at four stages of the discharge process. Each point of the shaded regions
represents the charge transfer averaged on the surface of a fiber and plotted at its midpoint. Solid lines represent the polynomial fits of the
data. The results by Doyle et al.21 (their Figure 5) at times t = 200 (SOC = 0.014), 1000 (SOC = 0.055), 2800 (SOC = 0.14), and 7000 s
(SOC = 0.36) are reported as well (dashed lines)

𝛿s + 𝛿pos∕2) occurs earlier in the fibrous electrode (Figure 6). These circumstances concur to the accelerated reduction
of the cell potential of the fibrous electrode (irrespective of the current applied) that ultimately results in a reduc-
tion of the active material utilization compared to the particle-based electrode. At I = 10 A m−2, the ultimate SOC
reduces from 0.83 to 0.45 switching from particle-based to fibrous electrode (this aspect is further discussed in the
next paragraph).

Fiber-electrolyte charge transfer: Global response

To complete the validation of the dimensionally reduced model, Figure 9 shows the evolution of the charge transfer iBV,am
for 10 A m−2 and SOC between 0.014 to 0.36. The shaded regions represent the envelope plots of the charge transfer
values sampled at the fiber discretization nodes. This compact representation shows the fluctuations of iBV,am through the
electrode thickness (i.e., along the x-direction) caused by the randomness of the fiber dispersion. The wider the shaded
area the larger the spread of the exchange current over the electrode cross-section, to such an extent that the charge
transfer changes sign at some location of the positive electrode, as Figure 9D shows. This is further discussed in the next
paragraph (Fiber-electrolyte charge transfer: Local response). The polynomial fits of the data (solid lines) are shown to ease
comparison against the results reported by Doyle et al.21 in their Figure 5 (dashed lines).
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The charge transfer distribution resulting from the dimensionally reduced model is (in average) in good agree-
ment with the results of the pore wall flux reported by Doyle et al.21 Even if the polynomial fits do not perfectly
overlap with the reference solution, the overall evolution shows the same trend. The distinctive nature of the two
approaches emerges from Figure 9. Since Doyle’s model is based on a homogenization procedure, a single value
of iBV,am is associated to a given x-coordinate. This is not the case for the dimensionally reduced model at hand.
Since each fiber of the electrode is explicitly represented, the spreading of the charge transfer over yz cross-sections
at given x is visible. Figure 9 shows that the extent of the variability of iBV,am is directly proportional to SOC, that
is, when concentration gradients in electrolyte (Figure 6) and active material (Figure 7) are pronounced, the charge
transfer is nonuniform at locations equidistant from the separator even if fibers are uniformly distributed within the
electrode.

The progression of the active material utilization front (visible from Figure 5A) is apparent in Figure 9. At the begin-
ning of the discharge process (panel (A)), lithium insertion into fibers occurs mainly at the leftmost edge of the electrode
(x = 𝛿s). As the process continues (panels (B) to (D)), fibers near the separator fill up and the reaction front shifts towards
the body of the electrode. The transition is initially driven by the concentration-dependence of UOC,am (57), as a rela-
tively small increase in fiber concentration has a large effect on the potential.21 At a later stage, the intensification of
charge transfer at the rightmost end of the electrode results in electrolyte depletion (Figure 6B), and transport limi-
tations in the electrolyte become the most crucial aspect. Since the concentration-dependent conductivity approaches
zero as cel approaches 63 mol m−3 (definition of 𝜅el Table 6) the electric current approaches zero in 50% of the electrode
thickness at SOC = 0.45 (refer to Equation (10) and Figure 6). It follows that 50% of the positive electrode (the portion
at x ≥ 𝛿s + 0.5𝛿pos) is actually unavailable for lithiation at SOC = 0.45. The remaining portion of the positive electrode
cannot sustain the lithium uptake necessary to fulfill boundary condition I and the simulation simply stops. This is evi-
dent from Figure 8, where the curve for I = 10 A m−2 is truncated at SOC = 0.45 and Δ𝜙 = 1.93 V. A similar behavior
is reported by Doyle et al.,21 but at a higher discharge rate (their cell potential vs. SOC curve for I = 20 A m−2 is trun-
cated at SOC = 0.3 and Δ𝜙 = 1.86 V). We thus conclude that the time evolution of the field variables cel (Figure 6B),
cam (Figure 7B), and iBV,am (Figure 9) and cell potential Δ𝜙 (Figure 8) predicted with the dimensionally reduced model
show trends similar to those reported by Doyle et al.21 The overall evolution of the system is consistent with the results
reported by Doyle et al.,21 but the insurgence of steep gradients within the positive electrode occurs at lower SOC. For
example, Doyle et al.21 determine electrolyte depletion in 10% of the particle-based electrode thickness at SOC = 0.65,
while the dimensionally reduced model predicts electrolyte depletion in 50% of the fibrous electrode thickness at SOC =
0.45 (Figure 6B). Based on the (qualitative) comparisons conducted so far against the results by Doyle et al.21 we believe
that the approach is sound irrespective of the number of fibers (i.e., just one as in Section 5.1 or thousands as in this
section).

Fiber-electrolyte charge transfer: Local response

The charge-transfer across the fiber-electrolyte interface is not uniform on the fiber boundary. Figure 10B shows the dis-
tribution of the charge transfer along the axis of the fibers highlighted in Figure 10A (SOC= 0.014). The distances between
the midpoints of the fibers and the separator are approximately (1) 0.15𝛿pos, (2) 0.30𝛿pos, (3) 0.43𝛿pos, and (4) 0.67𝛿pos, with
corresponding average values of iBV,am∕I equal to (1) −1.1 × 10−2, (2) −6.2 × 10−3, (3) −3.9 × 10−3, and (4) −2.4 × 10−3,
and average iBV,am values between −0.11 and −0.02 A m−2. The response of the fibers is representative of the behavior of
fibers located at the same distance from the separator, as evident from the comparison with Figure 9A (orange line).

The profiles shown in Figure 10B present a distinctive feature compared to those shown in Figure 2B (single-fiber
investigation): iBV,am is positive in a portion of the fiber. The outcomes of the numerical simulations thus suggest that a
local extraction of lithium takes place (iBV,am > 0) while the boundary conditions promote lithium insertion (iBV,am < 0).
Before this aspect of the results is further discussed in Section 5.3, a few remarks are in order. First, the profiles shown
in Figure 10B do not change by refining the fiber discretization, as we observed no appreciable differences between the
results obtained with fibers discretized with 10 or 20 equally sized elements (the latter are reported in Figure 10B). Second,
the shape of the profile is unaffected by the spatial orientation of the fibers (which is different for all of them). Third, the
extent of the spikes at the tips reduces when the distance between fiber and separator increases, suggesting a dependence
on the magnitude of the load experienced by the fiber. However, the applied current alone does not justify the steep
gradient at the tips, because the loading conditions of the single fiber electrode in Section 5.1 are far more severe. Figure 2B
shows that the average iBV,am ranges between−8.05 and−0.19 A m−2. Since the most notable difference with the numerical
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F I G U R E 10 Charge transfer for I = 10 A m−2. (A) Fibrous electrode geometry. (B) Charge transfer along the length of a selection of
fibers at SOC = 0.014. Plots in panel (B) refer to the fibers highlighted in panel (A). The results have been obtained with the finest
discretization (20 elements for each fiber domain and nmsh = 30 for the electrolyte domain)

examples of Section 5.1 is the coexistence of multiple fibers, in the next section we focus on the effect of their mutual
interaction.

5.3 Charge transfer investigation

To the best of the authors’ knowledge, there are no previous studies investigating the causes of a possible sign inversion of
the charge transfer on the same active material inclusion (either from the mathematical or physical perspective). Even if
an extensive study falls beyond the scope of this contribution, we aim to demonstrate that the gradients at the fiber tips and
the sign inversion of iBV,am reported in Figure 10 are not artifacts of the dimensionally reduced model. Indeed, the usage
of the fully resolved model leads to the same results. To this end, we perform numerical simulations in a two-dimensional
setting and focus on the battery cell configuration comprised of the positive electrode of Figure 1F into the half cell of
Figure 1A. Both dimensionally reduced and fully resolved models are used. The cell is made of (i) a lithium plate of
thickness 𝛿neg = 20 μm, (ii) a separator of thickness 𝛿s (we consider two values: 𝛿s = 90 and 45 μm), and (iii) a positive
electrode containing two elongated inclusions (we will refer to them as fibers, from now on) with their longest axis parallel
to the x-direction. We restrict the simulated domain to the strip highlighted in yellow in Figure 1F. The thickness 𝛿pos of the
positive electrode is such that 𝛿s + 𝛿pos = 150 μm, and the size of the simulation domain in the y direction is L = 20 μm.

We apply the initial and boundary conditions described in Sections 2.4 and 2.5. External surfaces other than the edge
defined by x = −𝛿neg (refer to Figure 1F) are insulated. We perform simulations with electric current density I = 15 A m−2,
distance between fibers 𝛿gap = 1 μm, and a combination of parameter values (selected through a trial-error search) that
allow the sign inversion of iBV,am to manifest. Although very convenient from the modeling perspective, a combination of
parameter values that cause the sign inversion of iBV,am cannot be systematically identified using a setup with few fibers
due to the large number of variables that come into play.

Operative constraints further complicate this analysis: on the one hand, the number of fibers must be limited in
order to solve the problem with the fully resolved model; on the other hand, the active material volume fraction must be
sufficiently high to allow concentration gradients to develop before the process terminates. For these reasons the length
and thickness of fibers are set to lf = 20 μm and tf = 6 μm, respectively, corresponding to tf∕L = 0.3 and lf∕tf = 3.33, that
is, outside the range of values that guarantee the best match between dimensionally reduced and fully resolved models
(Section 5.1). Note that the thickness tf is used in place of diameter df due to the two-dimensional setting. Nevertheless,
Figure 11 shows that the two approaches lead to the same pattern and that the sign inversion of iBV,am emerges with both
numerical approaches.
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F I G U R E 11 Electrolyte concentrations and interface currents for the two-fiber problem with fibers placed at two different locations in
the electrolyte: far from the negative electrode (A, B) and close to the negative electrode (C, D). Due to the interaction between fibers, the
current distribution around them is not uniform. The results predict a sign change close to the fiber tips when the fiber is far from the left
electrode or where the electrolyte concentration is low. Similarly, choosing a higher diffusivity for the electrolyte results in a higher minimum
concentration in the electrolyte and therefore positive currents are not observed. Results are shown at SOC ≈ 0.7 with an applied external
current I = 15 A m−2

In the dimensionally reduced model simulations, 35 equally spaced segments are used for the discretization of each
fiber, and about 51,000 bilinear quadrilateral elements are used for the discretization of separator and electrolyte in the
positive electrode. In the fully resolved model simulations, we use a non-structured discretization of linear triangular ele-
ments (with about 2750 elements for both separator thicknesses). The number of elements of the dimensionally reduced
model exceeds that of the fully resolved model because an unstructured mesh with a local refinement around fiber tips was
used in the second case. In the fully resolved model simulations, the corners of the fibers are round-shaped (three-knots
B-spline) to avoid current density concentration due to sharp edges (see, e.g., Reference 39). The results shown in Figure 11
have been obtained with the constitutive model described in Table 1 and with the material parameters listed in Tables 4
and 5 unless otherwise specified.

Figure 11 shows results at SOC≈ 0.7 for separator thicknesses 𝛿s = 90 and 45 μm obtained with dimensionally reduced
(continuous lines) and fully resolved (dashed lines) models. Panels (A) and (C) shows the concentration profile in the
electrolyte of the cell (separator and positive electrode) along the symmetry axis of the domain. The results of the dimen-
sionally reduced model show also the profile at the fiber location in the electrolyte domain (recall that fiber and electrolyte
meshes overlap in the dimensionally reduced model), while those of the fully resolved model show the profile along the
fiber-electrolyte interface (data are ordered based on the x-coordinate). The pointwise difference between the two mod-
els is 10% at the most. Panels (B) and (D) shows the charge transfer profiles along the surface of the fibers. The fully
resolved model profiles are roughly constant in the central portion of the fiber, and show local (global) maxima near (at)
the fibers’ ends, with sharp drops towards the tips with the exception of a few cases. The dimensionally reduced model
profiles show a similar pattern but without local maxima. Differences are due to the low aspect ratio of fibers (and are
consistent with the results reported in Figure 2B). The profiles obtained with the dimensionally reduced model for fiber 1
are identical to those shown in Figure 10B irrespective of the separator thickness. The steep gradient at the right tip of
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F I G U R E 12 Comparison of the evolution of field variables at the right tip of fiber 1 (x = 𝛿s + lf on the axial line, refer to Figure 1F)
obtained with the fully resolved model for 𝛿s = 45 and 90 μm: (A, D) concentration in electrolyte and fiber; (B, E) relative difference between
the results in terms of fiber concentration cam and electrolyte electric potential 𝜙el; and (C, F) charge transfer (8) or (13) and
overpotential (14). Results in panels (A–C) have been obtained using the constitutive model described in Table 1 and with material
parameters listed in Tables 4 and 5. Results in panels (D–F) have been obtained with the constitutive model described in Table 2 and material
parameters listed in Tables 4 and 6

fiber 1 is visible also with the fully resolved model. Both approaches predict the sign inversion of iBV,am with 𝛿s = 90 μm
but not with 𝛿s = 45 μm. Many factors contribute to the local distribution of iBV,am. For example, Figure 11 shows that
increasing DLi+ and DX− by a factor of 10 (orange line) reduces the concentration gradient in the electrolyte and prevents
the sign inversion of iBV,am for any of the considered values of 𝛿s.

We now discuss the factors that contribute to the sign inversion of iBV,am focusing on the evolution of the field variables
at the location where iBV,am attains the largest positive value. Panels (A) to (C) report result obtained with the constitutive
model described in Table 1 and with the material parameters listed in Tables 4 and 5 (the same setting that led to the results
of Figure 11), while panels (D) to (F) report result obtained with the constitutive model described in Table 2 and with the
material parameters listed in Tables 4 and 6. Figure 12 shows the evolution of field variables as a function of the SOC at
the right tip of fiber 1 (x = 𝛿s + lf on the axial line, i.e., at the fiber-electrolyte interface) for 𝛿s = 90 and 45 μm. The results
refer to the fully resolved model solution. Panel (A) shows the temporal counterpart of Figure 11 (panels (A) and (C) as
well as the concentration evolution inside the fiber (orange line; we only report cam for 𝛿s = 90 μm because the deviation
from the solution for 𝛿s = 45 μm is not appreciable in this plot, as clarified by panel (B)). Panel (C) shows the temporal
counterpart of Figure 11 (panels (B) and (D). With 𝛿s = 90 μm the charge transfer iBV,am is positive for most of the dis-
charge process starting at SOC ≈ 0.3, while with 𝛿s = 45 μm the charge transfer is always negative. The results reported in
panel (D) are basically equivalent to those of panel (A), while those of panel (F) show that the sign inversion takes place
with both geometrical setting when the constitutive models of Table 2 are used, even if the maximum value achieved is
strongly reduced with 𝛿s = 45 μm. These observations suggest that the sign inversion may manifest or not depending on
the constitutive model used.

According to expression (8) (equivalently (13)), the sign inversion of iBV,am is determined by the surface over-
potential 𝜂am (14), being the exchange current density i0,am (56) non-negative by definition (exponents 𝛼a = 𝛼c = 0.5
in Table 4). The evolution of 𝜂am ultimately depends on 𝜙el and cam because of the assumed 𝜙am = 0 (20) and def-
initions (14) and (57). Panel (B) shows that the instantaneous values of 𝜙el and cam differ by 0.12% at the most
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between the solutions for 𝛿s = 90 and 45 μm (the difference is up to 0.56% in panel (E)). Despite these small dif-
ferences, the interplay between 𝜙el and cam (through UOC,am, (57)) results in a remarkably different evolution of 𝜂am
panel (C) and to a sign inversion with 𝛿s = 90 but not with 45 μm. The values of cam and cel have an impact on
the magnitude of iBV,am (8) through the exchange current density i0,am (56). These results agrees with the results
presented by Gupta et al.57 who performed an extensive sensitivity analysis to assess the influence of variables cam,
cel, 𝜙am, and 𝜙el and their gradients on the charge transfer. Gupta et al.57 conclude that the cross-interaction
between cam, 𝜙am, and 𝜙el determines the local charge transfer at the active material-electrolyte interface through the
overpotential 𝜂.

With reference to the fully resolved model results shown in Figure 12, we add that a flux of lithium passing through
fiber 1 takes place when iBV,am > 0 in Figure 12 (panels (C) and (F) insertion takes place on the left tip and extraction
at the right tip). The flux of ions in the electrolyte surrounding the fiber results in a gradient of the electric potential 𝜙el
along the fiber-electrolyte interface. At the same time, lithium insertion into the fibers take place at different rates at
different location of the same fiber, resulting in a nonuniform evolution of cam and UOC,am along the fiber
surface. This location-dependent evolution of fields ultimately result in a location-dependent evolution of the over-
potential 𝜂am along the fiber-electrolyte interface, thus inducing a flux of lithium through the fiber under certain
circumstances.

In view of the discussion provided in this section, we conclude that the sign inversion of the charge transfer is not an
artifact of the dimensionally reduced model as it can manifest with the fully resolved model too.

6 CONCLUDING REMARKS

Structural batteries10 inspired this work. A comprehensive modeling approach for such a multifunctional compos-
ite would require a coupled electrochemical-mechanical constitutive model. In this work, we focused on the elec-
trochemical modeling and simulation of electrochemical processes in fibrous electrodes, neglecting mechanics and
its coupling to electrochemistry. The focus is on the efficient modeling of the fibrous microstructure through a
dimensionally reduced embedded fiber model and the corresponding constitutive model. We consider this a nec-
essary first step towards the previously mentioned comprehensive modeling. The model, inspired by the embed-
ded reinforcement model,36 entails some simplifications. First, the distributions of field variables, namely elec-
tric potential and concentrations, are assumed to be spatially uniform, although temporally variable, at each fiber
cross-section—this assumption makes the method suitable for high aspect ratio fibers in which fields are approxi-
mately uniform on the fiber cross-section. Second, electrochemical-mechanical coupling effects are neglected to sim-
plify the formulation and limit the number of parameters—coupled electrochemical-mechanical effects are however
known to affect battery cell performance58 and might be extremely relevant in fiber electrodes for multifunctional
applications.7,42,59–61

The proposed dimensionally reduced model ensures efficiency without sacrificing accuracy. The results presented
in Sections 5.1 demonstrate that the accuracy of the dimensionally reduced model is comparable to that of the fully
resolved model over a wide range of electrical loading conditions, and the agreement between the outcomes of the
two approaches improves as the aspect ratio of the fibers increases. The dimensionally reduced model enables sim-
ple geometry discretization procedures and yields a remarkable reduction in the total number of degrees of freedom
compared to the fully resolved model. In the example discussed in Section 5.1 the reduction amounts to 50% in
terms of the discretization nodes for a single slender fiber with aspect ratio 60. We also show that the dimension-
ally reduced model is not competitive for relatively “thick” fibers, but those have to be considered as limit cases for
which the dimensionally reduced model should not be used. While other aspects might influence the total simula-
tion costs, the savings in terms of degrees of freedom are already evident with a single fiber, and it is reasonable to
speculate that they increase with volume fraction and slenderness of the fibers. This makes the dimensionally reduced
model inherently suitable for three-dimensional numerical simulations of nanowire electrodes that would otherwise
be quite costly to perform using conformal meshing techniques12,15 (the electrodes simulated in Section 5.2 contain
up to 25,000 fiber, corresponding to a volume fraction of 70% of active material). We further show that the results are
consistent with those obtained with the porous-electrode theory if equivalent microstructures—equivalent in terms of
porosity—are considered. The dimensionally reduced model is, therefore, a valuable alternative to the fully resolved
model for the modeling and simulations of battery electrodes comprised of high aspect ratio one-dimensional active
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materials whose diameter is orders of magnitude smaller than the thickness of the electrode. Nanowire battery elec-
trodes and fibrous multifunctional electrodes with high volume fractions of active materials are therefore suitable
applications.

In view of the investigation described in Section 5.3, we conclude that interactions between active material
fibers affect the solution fields’ local distribution and can determine the sign inversion of the charge transfer iBV,am
(extraction in place of insertion) in part of the fiber surface. This effect is further amplified if the distance between
fibers is of the same order as the characteristic size of the fibers (or smaller). An investigation about the phys-
ical meaning of the sign inversion of iBV,am is beyond the scope of this study. We do however stress that when
two fibers are close to each other, as in Section 5.3, the results of the dimensionally reduced model are consis-
tent with those of the fully resolved model, as the sign inversion of iBV,am is present in both. This suggests that
the sign inversion of the charge transfer is an intrinsic feature of the governing equations; a feature that mani-
fests itself under special conditions (combination of constitutive model, geometry, material parameters, and boundary
conditions) and cannot be therefore considered an artifact of the approximations introduced in the development of
model.
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