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Colorectal cancer (CRC) is one of the most common malignant tumors with a

high incidence rate and mortality. LncRNA is an important regulator of the

immune system. It is of great significance to study immune-related lncRNAs (IR-

lncRNAs) for CRC. In this study, we screened IR-lncRNAs differentially

expressed in normal and CRC tissues, and Univariate Cox regression and the

Least Absolute Shrinkage and Selection Operator were applied to construct IR-

lncRNA prognostic signature in TCGA training dataset, and its predictive

capability for the prognosis of CRC patients was verified in

GSE39582 validation dataset. The novel signature was identified as an

independent predictor of prognosis in CRC patients. In addition, the

signature could accurately predict the feature of the immune

microenvironment and therapeutic response in CRC patients. The CMap

database was adopted to screen for small molecule candidate drugs that

can reverse and treat high-risk CRC patients. Finally, the expression of six

IR-lncRNAs were verified by qRT-PCR in clinical specimens from our patient

cohort. In conclusion, we construct an IR-lncRNA prognostic signature, which
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is a powerful biomarker of CRC and can accurately predict the prognosis,

immune microenvironment feature, and therapeutic response of CRC patients.
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Introduction

Colorectal cancer is one of themost commonmalignant tumors

in the world. According to the global tumor epidemic Statistics

(Globalcan 2020) released by the international agency for research

on cancer (IARC) of the World Health Organization, it is estimated

that there will be 1931600 new cases and 935,200 deaths of colorectal

cancer in the world in 2020, ranking third and second among all

malignant tumors respectively (Sung et al., 2021). The latest

epidemiological survey shows that the incidence of the disease in

males is more than that in females, and the age of onset is getting

younger (Siegel et al., 2020). Although much remarkable progress

has been made in early screening, surgical treatment, chemical

therapy, and immunotherapy of colorectal cancer, which has

improved the prognosis of colorectal cancer patients, the

mortality is still high (Sumransub et al., 2021). At present, the

clinical treatment and prognosis evaluation of colorectal cancer are

mainly based on the TNM staging system. However, this evaluation

method ignores the differences between individuals and the

heterogeneity within the tumor and lacks the support of gene

level (Lin et al., 2021). Molecular markers of CRC commonly

used in clinical practice include RAS, BRAF and PI3KCA, which

can assist in the diagnosis, staging, prognosis and clinical treatment

of CRC. Studies have shown that patients with RAS mutation or

BRAF mutation tend to have a poor prognosis (Jones et al., 2017;

Venook et al., 2017). However, molecular typing of single genes has

great limitations in accurate diagnosis and treatment of CRC.

Therefore, The CRC Subtyping Consortium (CRCSC) proposed

consensus Molecular subtype (CMS) typing based on gene

expression in 2015 (Guinney et al., 2015). There are four types of

CMS, including microsatellite stable (MSS) and immune activation

type (CMS1), classic colorectal cancer type (CMS2), metabolic type

(CMS3) and interstitial type (CMS4). CMS typing has been studied

all over the world, but it has not been widely recognized and

accepted, and its guiding role in clinical practice is limited

(Valenzuela et al., 2021). Therefore, it is of great significance to

explore accurate and reliable biomarkers to predict the prognosis for

the individualized treatment of CRC patients.

Tumor microenvironment (TME) is defined as the local internal

environment in the process of tumor genesis and development,

which can provide a scaffold and barrier for the growth and

metastasis of tumor cells, thus provide a “hotbed” for the

occurrence and development of tumors (Chen et al., 2021a). The

pathogenesis and development of colorectal cancer is a long-term and

continuous pathological process, which has experienced stages from

normal tissues, polyps, and adenomas to high-grade intraepithelial

neoplasia, and then slowly transformed to malignant tumors. In this

long transformation, the tumor immunemicroenvironment plays an

extremely important role (Chen et al., 2021b). As an important

component of TME, tumor immune microenvironment is regarded

as the “seventh marker feature” of the tumor, which is mainly

composed of immune cells (including lymphocytes, neutrophils,

macrophages, etc.), structural components (such as fibroblasts,

extracellular matrix, etc.), and intercellular communication-related

molecules (chemokines, cytokines, growth factors, exosomes, etc.)

(Chen et al., 2015). It is found that different degrees of immune cell

infiltration in colorectal cancer tissues is closely related to the clinical

stage of the tumor, suggesting that the local immune response status

of tumor tissues can significantly affect the progression and clinical

prognosis of colorectal cancer (Yoon et al., 2020). Therefore, the

features of tumor immune microenvironment are increasingly

considered as novel biomarkers affecting the development and

prognosis of colorectal cancer.

A large number of studies have found that long non-coding

RNA (lncRNA) plays an important regulatory role in tumor

immune microenvironment of colorectal cancer, and can

influence the differentiation, infiltration, and functional

formation of immune cells (Yu et al., 2018). LncRNA is a

functional RNA molecule that cannot be translated into

proteins. LncRNA is usually long, ranging from 200 to

100000 nucleotides, which do not encode proteins and have

mRNA-like structures. Their mechanisms of action are complex,

diverse and play an important role in epigenetic, cell cycle, and

cell differentiation regulation (Kopp and Mendell, 2018).

LncRNA plays an important role in pre-transcriptional,

transcriptional, and post-transcriptional levels. LncRNA can

recruit chromatin remodeling complexes to mediate the

silencing of some genes, act as decoys and bind to

transcription factors to inhibit mRNA transcription, or act as

sponges to absorb microRNA or directly bind to mRNA to

degrade or inhibit mRNA translation (Bridges et al., 2021).

Lnc-ITSN1-2 can promote the proliferation and activation of

CD4+T cells and promote their differentiation into Th1/Th17 by

targeting miR-125a and upregulating IL-23R (Nie and Zhao,

2020). Downregulation of lncRNA 2900052N01Rik (lnc-290)

inhibits LPS-induced B cell proliferation, activation and

differentiation by blocking LPS/TLR4 signaling pathway

(Wang et al., 2021). At present, great progress has been made

in the study of tumor immune microenvironment of colorectal

cancer, but the role of lncRNAs in tumor immune

microenvironment of CRC and its correlation with CRC

prognosis and clinical characteristics have not been clarified.

Frontiers in Genetics frontiersin.org02

Zhou et al. 10.3389/fgene.2022.962575

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.962575


Therefore, it is of great value and significance to explore immune-

related lncRNAs (IR-lncRNAs) as biomarkers to predict survival,

tumor immune microenvironment feature and therapeutic

response in colorectal cancer.

In this study, the Cancer Genome Atlas Project (TCGA)

database was used to screen the key IR-lncRNAs in CRC, explore

their role in the pathogenesis and development mechanism of

CRC, and finally, develop a novel prognostic signature based on

six IR-lncRNAs. Further research showed that this novel IR-

lncRNA signature was not only a valid independent predictor of

survival in CRC patients but also could accurately predict the

feature of tumor immune microenvironment (immune cell

infiltration, chemokines, immune and stromal scores, etc.) and

therapeutic response (chemotherapy and immunotherapy). This

novel signature was validated in GEO dataset, and the results

were consistent with the prediction of the constructed prognostic

model. Finally, the expression of six IR-lncRNAs were also

verified by quantitative real-time PCR (qRT-PCR) in CRC

clinical specimens.

Materials and methods

Collection of data and clinical information

In this study, the TCGA-COAD dataset was used as the

discovery set. The gene expression profiles of 519 CRC patients

(41 non-tumor samples and 478 tumor samples) and relevant

TABLE 1 Clinical characteristics of CRC patients in TCGA and GSE39582 datasets.

Characteristics TCGA
dataset (N = 409)

GSE39582 dataset (N = 510)

Age

<60 115 139

≥60 294 370

Unknown 0 1

Gender

Male 224 275

Female 185 235

T

Tis 1 3

T1 10 11

T2 70 41

T3 280 336

T4 48 99

Unknown 0 20

N

N0 236 272

N1 98 120

N2 75 89

Unknown 0 29

M

M0 301 442

M1 58 49

Unknown 50 19

Stage

I 67 31

II 155 239

III 118 188

IV 58 48

Unknown 11 4

Status

Alive 319 353

Dead 90 157
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clinical information were downloaded from TCGA (https://

portal.gdc.cancer.gov/) (Colaprico et al., 2016). GSE39582 was

downloaded from the GEO database (http://www.ncbi.nlm.nih.

gov/geo)as an external validation set, containing a total of

585 CRC samples. The baseline information for all CRC

individuals in TCGA and GSE39582 is presented in Table 1.

LncRNA is identified by GTF files downloaded from Ensembl

(http://asia.ensembl.org) for annotation and subsequent analysis.

In addition, a list of immune-related genes (IRGs) can be

obtained from the immune database (import) (https://www.

immport.org/) (Bhattacharya et al., 2014) and the somatic

mutation data file for CRC individuals is obtained from

TCGA. The patients in the TCGA dataset and

GSE39582 dataset do not receive any form of treatment

before specimen collection.

Identification of differentially expressed
IR-lncRNAs (DEIR-lncRNAs)

Pearson correlation analysis was conducted between lncRNAs

and IRGs, and the correlation coefficient greater than 0.3 and p

value less than 0.01 were considered immune-related lncRNAs

(IR-lncRNAs). Differentially expressed genes (DEGs) were

obtained using the R package “edgeR” for differential

expression analysis of transcriptome data from the TCGA

dataset (Robinson et al., 2010). DEIR-lncRNAs were identified

by the intersection of DEGs and IR-lncRNAs. The threshold is set

as |log2 Fold Change|>1 and false discovery rate<0.01.

Establishment of IR-lncRNA prognostic
signature and independent prognosis
factor analysis

A total of 409 patients from the TCGA dataset with complete

overall survival (OS) information were used as the training set to

construct a prognostic model. First, Univariate Cox proportional

risk regression was used to screen IR-lncRNAs (p < 0.05). The

Least Absolute Shrinkage and Selection Operator (LASSO) is

confirmed as a better method which can select the variables. This

technique is a kind of compression estimation. By constructing a

penalty function to obtain a relatively refined model, it

compresses some regression coefficients and prevents the risk

of overfitting, so as to obtain fewer and dominant effective

variables. Therefore, based on Cox regression analysis, LASSO

regression was used to further screen IR-lncRNAs associated

with prognosis, and regression coefficients of each IR-lncRNA

were obtained by the “glmnet” R package to establish CRC

prognostic signature (Friedman et al., 2010). CRC individual

riskscore is calculated as follows: riskscore = expression of

lncRNA a × regression coefficient of lncRNA a + expression

of lncRNA b × regression coefficient of lncRNA b +. . .. . .+

expression of lncRNA n × regression coefficient of lncRNA n

(Chen et al., 2017). Then, taking themedian value of the riskscore

in the training group as the risk threshold, all CRC individuals in

the training set and validation set were divided into the high-risk

group and the low-risk group. We performed the univariate and

multivariate regression analysis of riskscore based on IR-lncRNA

signature to determine whether the riskscore could be an

independent prognostic factor for CRC individuals. Principal

component analysis (PCA), Kaplan -Meier survival curve,

receiver operating characteristic curve (ROC) were used to

evaluate the predictive capability of riskscore for CRC

individual’s prognosis in training set and validation set. The

Kaplan-Meier survival curves of single IR-lncRNA in prognostic

signature were also constructed in TCGA training set and GEO

external validation set. Finally, we evaluated the prognosis

predictive capability of the riskscore for each of the

individuals with CRC in various clinical subtypes and

investigated the association between the clinical characteristics

and the riskscore.

Construction of clinical nomogram
prediction model with IR-lncRNA
signature

Age, gender, T stage, N stage, M stage, and riskscore were

included in the prognostic analysis. The prognostic nomogram

model was established by using the “rms” R package in the TCGA

dataset and GSE39582 dataset respectively, and the overall

survival (OS) of 1, 3, and 5 years of CRC individuals were

predicted respectively. Multivariate Cox regression analysis

was used to verify the results, and calibration function was

used to draw the calibration curve for predicting the OS rate

at 1-, 3- and 5-years to evaluate the prediction consistency of

nomogram. Finally, the ROC curves of the nomogram for

predicting the OS rate of patients were constructed in the

TCGA dataset and GSE39582 dataset respectively, so as to

evaluate the prediction accuracy of the nomogram.

Mutation analysis

The mutation annotation file (MAF) of TCGA-COAD

mutation data was downloaded from the TCGA database

(https://portal.gdc.cancer.gov/). The mutation data were

analyzed by maftools, and the tumor mutation burden (TMB)

was calculated (Mayakonda et al., 2018).

Screening of candidate drugs

Connectivity map (CMap; https://clue.io/) database is a

valuable database in the field of pharmacogenomics. The
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database collects genome-wide transcriptional expression data of

cultured human cells processed with bioactive small molecules

and simple pattern matching algorithm. Based on the

differentially expressed genes between the high-risk and low-

risk groups, we uploaded them to identify related small molecule

compounds. Enrichment fraction close to -100 indicates that the

small molecule compounds have antagonistic effect on these

DEGs and is a candidate drug for the reversal and treatment of

high-risk CRC patients. Finally, the 3D structures of these small

molecule compounds were obtained from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/).

Exploration of immunemicroenvironment
features and immunotherapy sensitivity
evaluation in CRC individuals

The “CIBERSORT” R package is a novel deconvolution

algorithm to estimate the proportion of immune cells based on

RNA-Seq data and microarray expression data. We calculated

the proportion of 22 immune cells in the immune

microenvironment of each tumor sample in the TCGA

dataset and GSE39582 dataset by the “CIBERSORT” R

package (Newman et al., 2015). The “ESTIMATE” R

package can calculate the immune and stromal scores of

each sample through RNA-Seq data, and then evaluate the

purity of the tumor. There are 4 scoring indicators: immune

score, stromal score, ESTIMATE score and tumor purity

(Kang et al., 2020). We used the “ESTIMATE” package to

compare immune score, stromal score, and tumor purity in

the high-risk and the low-risk groups. The cytolytic score is an

important index to evaluate the function of cytotoxic immune

cells. It is mainly calculated by the average expression of five

granzymes (GZMA, GZMK, GZMM, GZMB, GZMH) and

perforin-1 (PRF1) (Rooney et al., 2015). We also compared

the expression of chemokine, chemokine receptor, and human

leukocyte antigen in the high-risk group and the low-risk

group in the TCGA dataset and GSE39582 dataset to explore

the features of tumor immune microenvironment of CRC

individuals.

We compared the expression levels of tumor immune

checkpoints (ICs) in the high-risk and low-risk groups, and

analyzed the correlation between the novel signature and the

expression of ICs, to predict the sensitivity of immunotherapy.

Previous studies have shown that Mismatch Repair (MMR)

status (dMMR and pMMR) and TMB are important markers

for predicting sensitivity of immune checkpoint inhibitors

(Picard et al., 2020). Therefore, we compared TMB in the

high-risk and the low-risk groups in the TCGA dataset. We

also analyzed the relationship between MMR status and the

riskscore by investigating the expression levels of four MMR

proteins (MLH1, MSH2, MSH6, PMS2) in both high and low risk

groups.

Single-sample gene set enrichment
analysis (ssGSEA)

ssGSEA is an enrichment analysis for a single sample, which

can be used to evaluate the infiltration degree of immune cells in

the tumor microenvironment. We adopted the “GSVA” R

package to evaluate the infiltration degree of 28 types of

immune cells in each CRC sample (Yu et al., 2020), which

were divided into tumor-promoting and tumor-inhibiting

types. The correlation between tumor-promoting and tumor-

inhibiting activity in the immune microenvironment of each

sample was also calculated.

Prediction of therapeutic response

IC50 refers to the drug concentration when the growth is

inhibited by 50%, which is an important indicator of drug

sensitivity. The “pRRophetic” R package is used to calculate

the IC50 of common chemotherapeutic drugs for CRC (Paul

et al, 2014). GSE16066, GSE19862, GSE28702, and

GSE62080 downloaded from the GEO database were used to

verify the capability of the novel signature to predict therapeutic

response.

Functional enrichment analysis

We used the “clusterProfiler” R package to enrich and

analyze Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) in R software (Yu et al., 2012).

p < 0.05 was considered statistically significant, and the

“ggplot2″ R package was used for visual analysis (Ito and

Murphy, 2013).

Expression validation of the IR-lncRNA
signature in CRC clinical specimens

The UALCAN database was employed to verify the

expression level of the six IR-lncRNAs in CRC tumor and

non-tumor samples (Chandrashekar et al., 2017).

Furthermore, 36 matched tumor and non-tumor tissue

specimens were collected from Ruijin Hospital, Shanghai

Jiao Tong University School of Medicine after approved by

the local ethics committee of Ruijin Hospital (No. 2020-384).

The patients did not receive any form of treatment before

specimen collection. The total RNA of tissue specimens was

extracted with RNA isolater (Vazyme, China), and then, one μ

g of total RNA was reverse transcribed into cDNA with

Hiscript III RT Supermix and gDNA wiper (Vazyme,

China). ChamQ universal SYBR qPCR Master Mix

(Vazyme, China) was used for real-time fluorescence
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TABLE 2 Primer sequences used in PCR.

Symbol Sequence

CATIP-AS1 Forward primer: CCCTACGGGTGTGCATTTCA; Reversed primer: ACCACACTGGGGGTTAGAGA

GABPB1-AS1 Forward primer: AAATCGCGGGGATGATCTGG; Reversed primer: CCACCGGATGTGGAAGTTGA

MMP25-AS1 Forward primer: GGCTCATTTCATCGGCAAGC; Reversed primer: TTGTCTCAGGTTCCTCGCCT

PCAT6 Forward primer: CTTCGCCCCTAGATACACCC; Reversed primer: GGTGGTGGTAGAAGCACGAG

NSMCE1-DT Forward primer: TGGAAGCTTTGATGGTGGTCA; Reversed primer: GACTTAGGCCATGGATGGGT

TSPEAR-AS2 Forward primer: CAAACATCCGGGGACCCTTA; Reversed primer: TTGAGAGCAGAGTCGCGCA

GAPDH Forward primer: TGAAGGTCGGAGTCAACGG; Reversed primer: CCTGGAAGATGGTGATGGG

FIGURE 1
Construction of IR-lncRNA prognostic signature. (A) Venn diagram to show the intersection of IR-lncRNAs and DEGs; (B) Volcano plot of the
DEIR-lncRNAs between CRC normal and tumor samples; (C) Heatmap to show the difference in the expression of the top 20 and low 20 DEIR-
lncRNAs in normal and tumor samples from the TCGA dataset; (D) Forest plot to show the results of the univariate cox regression analysis between
DEIR-lncRNAs and prognosis; (E–F) LASSO-Cox regression analysis to screen the prognostic signature; (G)Correlation between six IR-lncRNAs
and IRGs; (H) Correlation chord diagram of the six IR-lncRNAs.
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quantitative PCR (qRT-PCR) analysis, and the expression

level of GAPDH served as an internal control. The cycle

scheme is 95°C for 5 min, 40 cycles at 95°C for 15 s, 60°C

for 60 s, 72°C for 5 min. All primers were synthesized by

Tsingke (Beijing, Shanghai) company and primer sequences

are presented in Table 2. The comparative Ct (2−ΔΔCt) method

was adopted to calculate the relative expression level of the six

IR-lncRNAs.

Statistical analysis

All statistical analyses were performed by R Software

(Version 4.1.0) and GraphPad Prism 6.0 (GraphPad Inc., San

Diego, CA, United States). The p value of all statistical data were

tested by bilateral statistical test, p < 0.05 was considered

statistically significant. Wilcoxon rank-sum test was used to

compare differences between the two groups. K-W test was

used to compare three or more groups. Kaplan-Meier analysis

was used to assess survival differences between the low-risk and

the high-risk groups.

Results

Identification of DEIR-lncRNAs

The process of this study is shown in Supplementary Figure

S1. First, we identified 22898 DEGs in 41 normal and 478 tumor

samples in the TCGA-COAD dataset. LncRNAs were annotated

according to the GTF file downloaded from Ensembl, and co-

expression was conducted between the known IRGs from the

import database and lncRNAs. A total of 4897 IR-lncRNAs were

identified. Venn diagram showed the intersection of IR-lncRNAs

and DEGs, including 1866 DEIR-lncRNAs (Figure 1A). The

volcano plot showed 1866 DEIR-lncRNAs between CRC

normal and tumor samples and the expression of six IR-

lncRNAs were significantly up-regulated in tumor samples

(Figure 1B). The Heatmap showed the difference in the

expression of the top 20 and low 20 DEIR-lncRNAs in

normal and tumor samples (Figure 1C).

Construction of IR-lncRNA prognostic
signature

67 OS-related IR-lncRNAs were screened by univariate cox

regression analysis, of which LINC00513, LINC01555, and

SNHG16 were the protective factors of CRC, and CATIP-AS1,

GABPB1-AS1, PCAT6 and other lncRNAs were the risk factors

of CRC (Figure 1D). The optimal lambda value was obtained by

LASSO Cox regression and cross-validation. Finally, six IR-

lncRNAs were screened to construct the prognostic signature

(Figures 1E,F). The full names and coefficients of the six lncRNAs

are shown in Table 3. The riskscore based on the signature of

these six IR-lncRNAs can be used to predict the prognosis of

CRC individuals. The calculation formula of riskscore is as

follows: 0.0322 × expression of CATIP-AS1 + 0.0073 ×

expression of GABPB1-AS1 + 0.0041× expression of MMP25-

AS1 + 0.0625 × expression of NSMCE1-DT + 0.0990 ×

expression of PCAT6 + 0.0870 × expression of TSPEAR-AS2.

We also analyzed the correlation between six IR-lncRNAs and

IRGs, the results showed that six IR-lncRNAs were significantly

associated with IRGs (Figure 1G). The correlation of the six IR-

lncRNAs was represented by a chord diagram (Figure 1H).

Evaluation and verification of the IR-
lncRNA signature

In the TCGA dataset and GSE39582 dataset, CRC

individuals were divided into the high-risk group (with high

riskscore) and the low-risk group (with low riskscore)

according to the median value of riskscore calculated

according to the above formula. Univariate Cox regression

and multivariate cox regression analyses were used to

determine whether the riskscore based on six IR-lncRNAs

was an independent risk factor for predicting the prognosis

of CRC in the TCGA training set and GSE39582 validation set.

Univariate cox regression analysis showed that age, T stage, N

stage, M stage and TNM stage were significantly correlated with

OS of the TCGA training set (p < 0.05) (Figure 2A).

Multivariate regression analysis showed that the riskscore

was an independent risk factor for OS of the TCGA training

TABLE 3 The information of six IR-lncRNAs.

IR-lncRNA Full name Coefficient

CATIP-AS1 Ciliogenesis Associated TTC17 Interacting Protein Antisense RNA 1 0.0322

GABPB1-AS1 GA Binding Protein Transcription Factor Subunit Beta 1 Antisense RNA 1 0.0073

MMP25-AS1 Matrix Metallopeptidase 25 Antisense RNA 1 0.0041

NSMCE1-DT NSE1 Homolog, SMC5-SMC6 Complex Component Divergent Transcript 0.0625

PCAT6 Prostate Cancer Associated Transcript 6 0.0990

TSPEAR-AS2 Thrombospondin Type Laminin G Domain and EAR Repeats Antisense RNA 2 0.0870
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set (HR: 22.38,95% CI = 7.70-65.05, p < 0.05) (Figure 2C). This

result was verified in the GSE39582 validation set (Figures

2B,D). PCA analysis showed that the riskscore could well

distinguish the high-risk and low-risk groups (Figures 2E,F).

Kaplan-Meier analysis further showed that the OS of patients in

the high-risk group was significantly shorter than that in the

low-risk group, indicating that the riskscore was an important

index to predict the prognosis of CRC (Figures 2G,H).

FIGURE 2
The IR-lncRNA signature is the independent risk factor for the prognosis of CRC. Results of the univariate and multivariate Cox regression
analyses regarding OS in the TCGA (A,C) and the GSE39582 (B,D) datasets; PCA analysis to distinguish high-risk and low-risk groups in TCGA (E) and
GSE39582 (F) datasets; Kaplan-Meier analysis to show theOS of patients in high-risk and low-risk groups in the TCGA (G) andGSE39582 (H) datasets.
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FIGURE 3
Prognostic value of the IR-lncRNA signature. The survival status plots, riskscore distribution plots and the heatmap of six prognostic IR-lncRNAs
in the TCGA (A–C) and GSE39582 (D–F) datasets; AUC of time-dependent ROC curves for the riskscore in the TCGA (G) and GSE39582 (H) datasets;
The relationship between the riskscore and the clinicopathological features (M, N and stage) in the TCGA (I) and the GSE39582 (J) datasets. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.
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In the TCGA training set, the survival status plot showed that

in the high-risk group, the survival time of CRC individuals was

significantly shorter than that in the low-risk group, and their

prognosis is generally poor (Figure 3A). The riskscore

distribution plot showed the distribution of riskscore

(Figure 3B). The heatmap showed the expression patterns of

the six IR-lncRNAs. The expression of IR-lncRNA in the high-

risk group was significantly higher than that of the low-risk group

(Figure 3C). Similarly, this result was verified in the

GSE39582 dataset (Figures 3D–F). The ROC curves for

FIGURE 4
Establishment of a Nomogram based on the IR-lncRNA signature. Nomograms for predicting 1-year,3-years and 5-years OS in the TCGA (A)
and GSE39582 (B) datasets; Calibration curves for the nomogram predicting 1-,3- and 5-years OS in the TCGA (C) and GSE39582 (D) datasets; AUC
of time-dependent ROC curves for the nomograms in the TCGA (E) and GSE39582 (F) datasets.
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FIGURE 5
Mutation analysis based on the IR-lncRNA signature. MAF-summary plots, oncoplots and oncogenic pathways of the somatic mutation
between the high-risk (A,C,E) and low-risk (B,D,F) groups in the TCGA dataset.
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predicting the survival rate of 1-year, 2-years, and 3-years in the

TCGA training set (Figure 3G) and GSE39582 validation set

(Figure 3H) showed that the signature of six IR-lncRNAs could

effectively evaluate the prognosis of CRC individuals.

We found that the novel signature was closely related to the

clinicopathological features of CRC individuals and can be widely

used in CRC populations with different clinicopathological

characteristics. The results showed that among the subgroups

stratified according to the clinicopathological features in the

TCGA dataset, the prognosis of the low-risk group was

significantly better than that of the high-risk group, and the

survival rate of individuals in the low-risk group was higher (p <
0.05) (Supplementary Figure S2A). It was also verified in the

GSE39582 dataset (Supplementary Figure S2B), there were

significant differences in riskscore based on six IR-lncRNAs in

N stage, M stage, and TNM stage (p < 0.05) in the TCGA

(Figure 3I) and GSE39582 (Figure 3J) datasets.

Establishment of a nomogram based on
the novel signature

The clinicopathological features such as age, gender, T stage, N

stage, M stage, and riskscore were included in Nomogram, and the

prognostic models based on the signature of the TCGA training set

(Figure 4A) and the GSE39582 validation set (Figure 4B) were

constructed. The calibration curve showed that the prediction

effect of 1-, 3- and 5-years survival rate of CRC individuals indicate

an excellent capability (Figures 4C,D). The ROC curve showed that

the accuracy of the model for predicting the 1-, 3-, and 5-years

survival rate was high (Figures 4E,F).

Mutation analysis based on the novel
signature

We downloaded and analyzed the gene mutation annotation

file (MAF) in the TCGA dataset to analyze the difference of gene

mutation between the high-risk group and the low-risk group

according to the signature. The MAF-summary plots of gene

mutation in the high-risk group (Figure 5A) and low-risk group

(Figure 5B) were shown in the figure. The oncoplots showed that

APC(79%), TP53 (64%), TTN (46%), KRAS (43%), SYNE1(28%)

and PIK3CA(23%) were the top six genes with the highest

mutation frequency in the high-risk group (Figure 5C), while

APC(72%), TTN (51%), TP53 (49%), KRAS (44%),

PIK3CA(33%) and MUC16(32%) were the top six genes with

the highest mutation frequency in the low-risk group

(Figure 5D). TP53 was relatively high-mutated while PIK3CA

was relatively low-mutated in the high-risk group. The mutant

genes in the high-risk group and low-risk group were

significantly enriched in RTK-RAS, WNT and NOTCH

signaling pathways (Figures 5E,F).

The exploration of tumor immune
microenvironment feature and
immunotherapy sensitivity based on IR-
lncRNA signature in CRC individual

In order to study the different features of immune

microenvironment between the high-risk group and the low-

risk group, based on CIBERSORT, we analyzed and compared

the scores of 22 kinds of immune cell infiltration between the

high-risk and the low-risk groups in the TCGA training set and

the GSE39582 validation set. The columnar accumulation

diagram showed the whole landscape of 22 kinds of immune

cell infiltration in CRC individuals (Figures 6A,B). The heatmap

showed the differences of 22 kinds of immune cell infiltration in

different CRC individuals (Figures 6C,D). The results of

CIBERSORT analysis showed that plasma cell, CD8+T cell,

Macrophages M1, follicular helper T cell and CD4 memory

activated T cell were significantly different between the high-

risk and the low-risk groups in the training set and validation set.

Plasma cell was significantly up-regulated in the high-risk group,

while CD8+ T cell, macrophages M1, follicular helper T cell, and

CD4 memory activated T cell were significantly up-regulated in

the low-risk group (Figures 6E,F). Based on CIBERSORT, we

analyzed the correlation between the six IR-lncRNAs and the

above five immune infiltrating cells, and of which PCAT6 was the

most closely related to immune cell infiltration (Supplementary

Figure S3). The expression of HLA gene family, CXC chemokine

family, CXCR receptor family between the high-risk and low-risk

groups were analyzed in the TCGA (Figures 7A,C,E) and

GSE39582 (Figures 7B,D,F) datasets. Through the “

ESTIMATE” package, we found that the tumor purity of

tissues in the high-risk group was significantly higher than

that in the low-risk group (Figure 7G), and the immune and

stromal scores of individuals in the high-risk group were

significantly lower than those in the low-risk group in the

TCGA and GSE39582 datasets (Figure 7H). At the same time,

the cytolytic score of immune cells in the high-risk group was

significantly lower than that in the low-risk group (Figure 7I). We

also analyzed the correlation between six IR-lncRNAs and HLA

gene family, CXC chemokine family, CXCR receptor family in

the TCGA (Figure 7J) and GSE39582 (Figure 7K) datasets. In

addition, we conducted ssGSEA analysis of 28 immune cells in

the training set and validation set, and the boxplot showed the

differences of 28 immune cell infiltration in high-risk and low-

risk groups (Supplementary Figure S4A,B). The heatmap showed

the infiltration differences of 28 immune cells in CRC individuals

(Supplementary Figure S4C,D). Finally, we divided 28 types of

immune infiltrating cells based on ssGSEA into “Anti-tumor and

Immune Activation” and “Pro-tumor and Immune Suppression”

categories and analyzed the correlation between the two types of

immune cell infiltration in the training set and validation set. The

results showed that in the tumor microenvironment, immune

activation and immune suppression existed at the same time,
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there was a feedback effect between each other, and the two

promoted and inhibited each other (Supplementary Figure

S4E,F).

Immune checkpoint inhibitor is an important treatment

option for CRC. Tumor immune checkpoint (IC) is an

important factor influencing the effect of tumor

immunotherapy. Generally speaking, the higher the expression

of ICs, the higher the sensitivity of immunosuppressant therapy,

and the better the effect of immunotherapy. We analyzed the

expression of 20 ICs between the high-risk and the low-risk

FIGURE 6
The distribution of 22 tumor-infiltrating immune cells between the high-risk and low-risk groups. The barplots, heatmaps and boxplots of
22 tumor-infiltrating immune cells distribution between the high-risk and low-risk groups in the TCGA (A,C,E) and GSE39582 (B,D,F) datasets. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Ns, no significance.
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groups in the TCGA dataset and the GSE39582 dataset. The

results showed that most ICs in the low-risk group had higher

expression and better effect of immunotherapy (Figure 8A).

Then, we showed the correlation between the six IR-lncRNAs

and 20 ICs in the TCGA (Figure 8B) and GSE39582 (Figure 8C)

datasets. Previous studies have shown that Microsatellite Stability

(MSI)/Mismatch Repair (MMR) and Tumor Mutation Burden

(TMB) are important biomarkers of CRC immunotherapy

sensitivity. MSI-H/dMMR status and higher TMB score

suggest that immunotherapy is more sensitive. At present, the

clinical detection of MSI/MMR mainly detects the expression of

four MMR proteins (MLH1, MSH2, MSH6, and PMS2). We

analyzed the expression of four MMR proteins in the high-risk

group and the low-risk group of the TCGA dataset (Figure 8D)

and analyzed their correlation with riskscore (Figure 8E). Further

analysis showed that in the TCGA training set and

GSE39582 validation set, the TMB score of the low-risk group

was higher than that of the high-risk group (Figure 8F), while the

riskscore of dMMR status was significantly lower than that of

pMMR status (Figure 8G).

Prediction analysis of the therapeutic
response

We predicted the IC50 value of four common

chemotherapeutic drugs (cisplatin, bleomycin, gemcitabine,

and etoposide) in the high-risk group and low-risk group of

the TCGA dataset. The results showed that the four

chemotherapeutic drugs had higher sensitivity in the low-risk

group than in the high-risk group (Supplementary Figure S5A).

Then, we obtained gene expression data and therapeutic response

FIGURE 7
Exploration of the features of immune microenvironment between the high-risk and low-risk groups in colorectal cancer. The expression of
HLA gene family between the high-risk and low-risk groups in the TCGA (A) and GSE39582 (B) datasets; The expression of CXC chemokine family
between the high-risk and low-risk groups in the TCGA (C) and GSE39582 (D) datasets; The expression of CXCR receptor family between the high-
risk and low-risk groups in the TCGA (E) and GSE39582 (F) datasets; The tumor purity, immune and stromal score and the cytolytic score
between the high-risk and low-risk groups in the TCGA and GSE39582 datasets (G–I); The correlation between six IR-lncRNAs and HLA gene, CXC
chemokine and CXCR receptor in TCGA (J) and GSE39582 (K) datasets. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Ns, no significance.
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information of bevacizumab treatment, FOLFIRI treatment,

FOLFOX treatment, and methotrexate treatment from

GSE19862, GSE62080, GSE28702, and GSE16066 datasets.

The results showed that CRC patients sensitive to

bevacizumab and methotrexate had lower riskscore, while

CRC patients sensitive to FOLFIRI and FOLFOX had higher

riskscore (Supplementary Figure S5B). Therefore, we believe that

the novel signature can better predict the response of CRC

individuals to therapeutic response and provide some

guidance for drug selection of CRC patients.

Functional enrichment analysis in the
high-risk and low-risk groups and
screening of candidate drugs

In order to understand the biological functions and signal

pathways related to the IR-lncRNA signature, we performed

GO and KEGG analysis on DEGs between the high-risk group

and low-risk group of the TCGA dataset. Go enrichment results

showed that DEGs are enriched in the signal pathways related

to immune response such as neutrophil activation, neutrophil

mediated immunity and neutrophil activation involved in

immune response, and DEGs are enriched in the molecular

function of immune-related molecules such as ATPase activity,

nucleoside binding and ribonucleoside binding (Figure 9A).

KEGG pathway analysis showed that DEGs were mainly

enriched in Salmonella infection, Pathogenic Escherichia coli

infection, TNF signaling pathway and p53 signaling pathway

(Figure 9B). GSEA analysis between the high-risk group and

low-risk group of the TCGA dataset showed that immune-

related signal pathways such as B cell receptor signaling

pathway, C-type lectin receptor signaling pathway,

Chemokine signaling pathway and Natural-killer-cell-

mediated cytotoxicity were significantly enriched

(Figure 9C). The up-regulated and the down-regulated DEGs

in the high-risk group were uploaded into the CMap database to

predict related small molecule drugs, top 40 small molecule

drugs were selected based on enrichment score (Supplementary

Table S1). We also found that these potential small molecule

drugs may act through mechanisms of action such as

glucocorticoid receptor agonist, tubulin inhibitor, dopamine

receptor agonist, cyclooxygenase inhibitor, acetylcholine

receptor antagonist and serotonin receptor antagonist

(Figure 9D). The 3D structures of the top six small molecule

drugs were obtain from PubChem database (Figure 9E).

FIGURE 8
Immunotherapy sensitivity in the high-risk and low-risk groups in colorectal cancer. (A) The expression of Immune checkpoints between the
high-risk and low-risk groups in the TCGA and GSE39582 datasets; The correlation between six IR-lncRNAs and immune checkpoints in the TCGA
(B) and GSE39582 (C) datasets; (D) The expression of mismatch repair genes (MLH1, MSH2, MSH6, PMS2) between the high-risk and low-risk groups
in the TCGA dataset; (E)The Correlation analysis of mismatch repair genes (MLH1, MSH2, MSH6, PMS2); (F) The comparison of tumor mutation
burden (TMB) between the high-risk and low-risk groups in the TCGA dataset; (G) The comparison of mismatch repair status between the high-risk
and low-risk groups in the TCGA and GSE39582 datasets. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Ns, no significance.
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FIGURE 9
Functional analysis of differentially expressed genes (DEGs) between the high-risk and low-risk groups and screening for small molecule drug.
GO, KEGG, GSEA analysis of DEGs between the high-risk and low-risk groups in the TCGA (A–C); (D) The mechanisms of action of the top 40 small
molecule drugs; (E) 3D structures of the top six small molecule drugs.
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FIGURE 10
Expression validation of six IR-lncRNAs in CRC clinical specimens by qRT-PCR and UALCAN database. (A) Expression validation of six IR-
lncRNAs in UALCAN database; (B) Expression validation of six IR-lncRNAs in CRC clinical specimens by qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001.
Ns, no significance.
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Validation of the expression levels of the
six IR-lncRNAs in UALCAN database and
CRC clinical specimens by qRT-PCR

We verified the expression of six IR-lncRNAs in normal and

tumor tissues of the TCGA-COAD dataset in UALCAN database

(Figure 10A). We collected 36 matched clinical specimens from

Ruijin Hospital, Shanghai Jiao Tong University School of

Medicine to verify the expression of six IR-lncRNAs by qRT-

PCR. The results showed that CATIP-AS1, GABPB1-AS1,

MMP25-AS1, PCAT6, NSMCE1-DT and TSPEAR-AS2 were

highly expressed in CRC tissues (Figure 10B).

Discussion

Colorectal cancer is one of the most common malignant

tumors, with a high incidence rate and mortality rate. Distant

metastasis is the main cause of colorectal cancer death (Malki

et al., 2020). It has been reported that the 5-years survival rate of

patients with local colorectal cancer is about 90%. Once

metastasis occurs, the survival rate decreases rapidly (Osumi

et al., 2019), and the mortality of patients aged ≤50 years is 13%
higher than that of patients aged >50 years (Siegel et al., 2017). In
addition, research shows that more than half of colorectal cancer

patients will have distant metastasis, and about 20% of patients

will have distant metastasis at the first diagnosis. Immunotherapy

combined with chemotherapy, radiotherapy and targeted

therapy can significantly improve the curative effect and

benefit of patients (Micheal et al., 2018; Lehrer et al., 2019).

Therefore, accurate prognosis and active treatment are very

important to improve the survival rate of colorectal cancer

patients. Traditional TNM staging and tumor biomarkers such

as CA125, CA199 and CEA are the main basis for guiding

treatment and predicting the prognosis of cancer patients (Jin

et al., 2019). However, because the clinical characteristics,

therapeutic response, and prognosis of CRC patients are also

affected by many factors, such as epigenetic status and

microenvironment leading to CRC heterogeneity, traditional

TNM staging and tumor biomarkers are difficult to accurately

evaluate the prognosis of CRC patients and guide individualized

treatment, which cannot meet the actual clinical needs

(Linnekamp et al., 2015). Therefore, the development of

effective biomarkers to predict the prognosis of CRC patients

and the construction of clinical prediction models are of great

significance for clinicians to accurately predict the survival status

of CRC patients, guide clinical individualized treatment and

improve the survival rate of patients.

In this study, we screened the six IR-lncRNAs (CATIP-AS1,

GABPB1-AS1, PCAT6, MMP25-AS1, NSMCE1-DT and

TSPEAR-AS2) from the public database and used them to

construct a prognostic model for predicting the survival of

CRC patients. Interestingly, the analysis results of the TCGA

training dataset and GSE39582 validation dataset show that the

novel signature is not only an independent predictor of the

prognosis of CRC patients but also can accurately predict the

tumor immune microenvironment features and therapeutic

response of CRC individuals. The name of CATIP-AS1 is

CATIP antisense RNA 1. At present, the research about

CATIP-AS1 in CRC has not been reported, only Rao et al.

found for the first time that the down-regulation of CATIP-

AS1 is related to the longer disease-free survival time of patients

with thyroid cancer (Rao et al., 2020). The name of GABPB1-AS1

is GABPB1 antisense RNA 1, Ou et al. reported that the high

expression of GABPB1-AS1 is associated with the poor prognosis

of HPV16 positive cervical cancer patients. GABPB1-AS1 can

release the inhibition of its target gene Notch2 and promote the

progress of cervical cancer by binding with miR-519e-5p (Ou

et al., 2020). In gliomas, the high expression of GABPB1-AS1 can

lead to the activation of cell cycle signal pathway and the

progression of glioma cells (Li and Wang, 2021), while Qi

et al. found that the high expression of GABPB1-AS1 is

related to the improvement of overall survival of patients with

hepatocellular carcinoma and can inhibit the antioxidant

capacity of tumor cells (Qi et al., 2019). The name of

PCAT6 is prostate cancer-associated transcript 6. There are

many studies on the mechanism of PCAT6 in various types of

malignant tumors. Huang et al. found that PCAT6 is up-

regulated in colon cancer tissue, which is related to poor

survival status. PCAT6 can inhibit apoptosis and promote the

progress of colon cancer by forming a complex with EZH2

(Huang et al., 2019). A study of bladder cancer showed that

overexpression of PCAT6 can promote the progression of

bladder cancer by targeting miR-513a-5p (Xia et al., 2020).

The name of MMP25-AS1 is MMP25 antisense RNA 1. At

present, the research on MMP25-AS1 is only reported in

renal cell carcinoma. Tan et al. found that the high expression

of MMP25-AS1 was significantly correlated with the poor

survival of patients with early and advanced diseases.

MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis may be a novel

mechanism to promote the progression of renal clear cell

carcinoma (Tan et al., 2021). The name of NSMCE1-DT is

NSMCE1 divergent transcript. At present, there is no relevant

research. This is the first time that we propose that the high

expression of NSMCE1-DTmay be a risk factor for the prognosis

of CRC. The name of TSPEAR-AS2 is TSPEAR antisense RNA 2.

There are still few studies on TSPEAR-AS2. Ma et al. found that

TSPEAR-AS2 can promote the progression of gastric cancer by

inhibiting the expression of GJA1 and up-regulating the

expression of CLDN4 (Ma et al., 2020). In CRC, only Peng

et al. found that the high expression of TSPEAR-AS2 could lead

to poor prognosis in CRC patients (Peng et al., 2021). Finally, the

expression of six IR-lncRNAs were verified in CRC and normal

clinical specimens by qRT-PCR.

Immunity is an important life activity to maintain the

homeostasis of the internal environment. It has the function
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of immune monitoring, defense and regulation. Studies have

shown that the state of immune microenvironment is not only an

important biological feature of tumor, but also an important

factor in prognosis. Immune escape, immune activation and

tumor-promoting inflammation have become new tumor

markers (Khalaf et al., 2021). Various components of the

immune system involved in the pathogenesis and

development of tumors have been proved to be the key

factors of tumors. As an important regulatory factor in the

immune system, lncRNA plays an important role in the

pathogenesis and development of tumors. However, there are

few studies on how lncRNA regulates tumor immune

microenvironment and immune cell infiltration. Huang et al.

found that inhibiting lncRNA NKILA can regulate the tumor

microenvironment by reducing T cell apoptosis and enhancing

its killing ability (Huang et al., 2018). An analysis of single-cell

sequencing data of liver cancer immune cells found that lncRNA

MIAT was significantly enriched in Foxp3+ CD4+ T cells,

PDCD1+ CD8+ and GZMK+ CD8+ T cells, which mediated

the immune escape of liver cancer (Peng et al., 2020). Zhou

et al. found that the expression of lncRNA SNHG4 was up-

regulated in CRC tissue. Through targeted down-regulation of

miR-144-3p, it induced CD4+ T cell apoptosis and activated PD-

1/PD-L1, which mediated the immune escape of colorectal

cancer (Ning et al., 2021). In this study, the features of

immune microenvironment in high-risk and low-risk groups

based on the IR-lncRNA signature were significantly different.

Compared with the low-risk group, the high-risk group had

higher tumor purity, lower immune score and cytolytic activity,

and the high-risk group had more immunosuppressive cell

infiltration and less immune-activated cell infiltration in the

microenvironment. The immune microenvironment of the

high-risk group mainly showed immunosuppression, while the

low-risk group mainly showed immune activation. Correlation

analysis showed that the expression of CATIP-AS1 was positively

correlated with the infiltration of plasma cells, the expression of

NSMCE1-DT was negatively correlated with the infiltration of

CD8+ T cells, the expression of PCAT6 was positively correlated

with the infiltration of plasma cells, and negatively correlated

with the infiltration of M1 macrophages and CD4+ memory

activated T cells. Thus, lncRNA plays an important role in the

regulation of tumor immune microenvironment.

Immunotherapy is a new milestone in tumor therapy. It has

become another effective means after surgery, radiotherapy,

chemotherapy and targeted therapy. Keynote-177 clinical study

found that themedian PFS (16.5months) of pembrolizumab single

drug first-line treatment was twice that of the control

chemotherapy group (8.2 months) (HR = 0.60; 95% CI:

0.45–0.80; p = 0.0002), while the objective response rate (ORR)

of pembrolizumab treatment group was only 43.8% and that of

chemotherapy group was 33.1% (Andre et al., 2020). The

checkmate-142 clinical study found that the ORR and disease

control rate (DCR) of patients treated with Ipilimumab and

nivolumab were 69% (95% CI: 53-82) and 84% (95% CI: 70.5-

93.5), respectively, while the complete remission rate was only 13%

(Hein-Josef et al., 2022). Therefore, immunotherapy improves the

prognosis of CRC patients to a certain extent and is a promising

treatment option. However, at present, only some CRC subtypes

have good immune response to immunotherapy. Therefore, in the

future, it is necessary to further explore effective biomarkers,

further accurately stratify CRC patients, find out more accurate

immunotherapy dominant groups, and select the optimal

treatment scheme to benefit more CRC patients. In this study,

compared with the high-risk group, tumor immune checkpoint

(IC) is highly expressed in the low-risk group, suggesting that

patients in the low-risk group may have a better response to

immune checkpoint inhibitor treatment. A large number of studies

have shown that high TMB andMSI-H/dMMR are effective tumor

markers for immunotherapy. In this study, compared with the

high-risk group, patients in the low-risk group have higher TMB

and more MSI-H/dMMR subtypes, which further indicates that

the low-risk group may be more sensitive to immunotherapy and

benefit from immunotherapy. Therefore, the above results show

that the IR-lncRNA signature in this study can well predict the

sensitivity of CRC patients to immunotherapy and provide

guidance for personalized treatment.

Based on the differentially expressed genes in the high-risk and

low-risk groups, we further explored and identified new strategies for

the treatment of CRC. We used the CMap database to screen for

40 small molecule drugs that could potentially reverse and treat high-

risk patients. These potential small molecule drugs may act through

mechanisms of action such as glucocorticoid receptor agonist, tubulin

inhibitor, dopamine receptor agonist, cyclooxygenase inhibitor,

acetylcholine receptor antagonist and serotonin receptor

antagonist. This not only provides a new solution to the problem

of poor prognosis in high-risk CRC patients, but also lays a

theoretical foundation for further drug development.

In conclusion, by screening immune related lncRNAs, we

finally constructed a novel IR-lncRNA signature that can

accurately predict the prognosis, immune microenvironment

features and therapeutic response of CRC patients. Although

there have been studies on the prediction of prognosis by IR-

lncRNAs in colorectal cancer, our study still has the following

advantages. Firstly, we systematically screened IR-lncRNAs,

constructed and verified a novel IR-lncRNA signature that can

accurately predict the prognosis of CRC patients for the first time

by using TCGA dataset and GSE39582 dataset. Secondly, we

found that this IR-lncRNA signature can not only accurately

predict the prognosis of CRC patients, but also has potential

clinical value in the features of immune microenvironment and

therapeutic response. Then, the six IR-lncRNAs were highly

expressed in CRC patients and verified by qRT-PCR in our

own clinical samples. NSMCE1-DT, CATIP-AS1, GABPB1-AS1

and MMP25-AS1 are the risk factors for the prognosis of CRC

patients that we found for the first time. Among them, NSMCE1-

DT has not been reported in various malignant tumors, which is

Frontiers in Genetics frontiersin.org19

Zhou et al. 10.3389/fgene.2022.962575

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.962575


worthy of further study on its function and mechanism. Finally,

this novel signature may also have good predictive value for the

prognosis and immune microenvironment characteristics of

other tumors, but it needs to be further verified. At the same

time, our research also has limitations. Since we used the

retrospective data of the public database as the training

dataset and validation dataset, a prospective, multicenter

clinical cohort may be needed in the future to further verify

its clinical predictive value and its relationship with the clinical

characteristics of CRC patients. In addition, the function and

specific mechanisms of these six IR-lncRNAs in CRC deserve

further exploration in order to better understand the role of

lncRNA in the pathogenesis and development mechanism

of CRC.

Conclusion

In conclusion, we constructed and verified a reliable and effective

IR-lncRNA prognostic signature, which can not only accurately

predict the prognosis of CRC patients, but also effectively predict

the immune microenvironment features and therapeutic response of

CRC individuals. This novel IR-lncRNA signature provides a new

idea for the prognosis stratification and individualized treatment

management of CRC, or will become a newly accurate prediction tool

to evaluate the prognosis of CRC patients and therapeutic response.

At the same time, it also lays a foundation for understanding the

regulatory role of lncRNAs in the tumor immunemicroenvironment.

Finally, we screened small molecule compounds that could be used to

treat and reverse the high-risk patients based on the DEGs between

high-risk and low-risk patients.
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