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When studying brain connectivity using fMRI, signal intensity time-series are typically
correlated with each other in time to compute estimates of the degree of interaction
between different brain regions and/or networks. In the static connectivity case,
the problem of defining which connections that should be considered significant in
the analysis can be addressed in a rather straightforward manner by a statistical
thresholding that is based on the magnitude of the correlation coefficients. More
recently, interest has come to focus on the dynamical aspects of brain connectivity and
the problem of deciding which brain connections that are to be considered relevant
in the context of dynamical changes in connectivity provides further options. Since
we, in the dynamical case, are interested in changes in connectivity over time, the
variance of the correlation time-series becomes a relevant parameter. In this study,
we discuss the relationship between the mean and variance of brain connectivity
time-series and show that by studying the relation between them, two conceptually
different strategies to analyze dynamic functional brain connectivity become available.
Using resting-state fMRI data from a cohort of 46 subjects, we show that the
mean of fMRI connectivity time-series scales negatively with its variance. This finding
leads to the suggestion that magnitude- versus variance-based thresholding strategies
will induce different results in studies of dynamic functional brain connectivity. Our
assertion is exemplified by showing that the magnitude-based strategy is more
sensitive to within-resting-state network (RSN) connectivity compared to between-RSN
connectivity whereas the opposite holds true for a variance-based analysis strategy.
The implications of our findings for dynamical functional brain connectivity studies are
discussed.
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Introduction

In functional brain connectivity analysis we implicitly make the assumption that a temporal
correlation between two regions (or alternatively, nodes) is indicative of an interaction between
them. As it is often the case, measures of connectivity are derived by computing the correlation
between signal intensity time-series in their entirety, that is, we achieve static measures of
brain connectivity. In the case of static connectivity analysis, the underlying assumption is
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straightforward: a higher magnitude of correlation implies a
larger degree of interaction between separate brain regions
during the time span of measurement. This view of assessing
functional brain connectivity has proven fruitful to identify
functional networks during both resting-state and task conditions
(Damoiseaux et al., 2006; Fox and Raichle, 2007). Moreover,
resting-state networks (RSNs) are characterized by a strong
degree of within-network connectivity, and in some cases,
negative between-network connectivity (Fox et al., 2005;
Fransson, 2005). Thus, at a macroscopic level, studies of
functional connectivity together with previous work on the
brain’s anatomical circuitry form the foundational stones for
the notion that the flow of information in the brain is both
segregated and integrated (Sporns, 2011; Bullmore and Sporns,
2012).

Recently, interest has been focused toward the dynamical
aspects of brain connectivity (for a recent review, see Hutchison
et al., 2013). It may seem appealing to apply the same kind
of thinking as described above to the case of dynamical
connectivity: if we find that the magnitude of correlation between
two brain regions is large at a certain point in time, we
assume that it would be a good candidate for a point in time
when an interaction (i.e., a presence of an edge between the
two nodes/regions, expressed in the commonly used graph–
theoretical jargon) between the two regions occur. Thus, the
procedure of identifying time-points of interactions (a presence
of edges) between brain regions can be performed by searching
for connections between brain regions that have large magnitude
of correlation at each time-point. Obviously, this could be
done by simply applying a global cut-off threshold which
dictate that all correlation values above the chosen threshold
(which could be defined statistically) is to be considered to
constitute a significant edge and hence a time point when
an interaction between nodes is assumed to occur. While
thresholding of edges that is based on the absolute magnitude
of correlation values seems to be a reasonable approach, an
alternative approach to the problem of identifying dynamical
changes in brain connectivity is available. Rather than relying
on an approach that relies on the absolute magnitude of
correlation coefficients per se, one can think of a shift of focus
frommagnitude-based thresholds toward examining fluctuations
in correlation values over time. This view may at first seem
less intuitive, but as will be shown in the examples given
below, we argue that just as a large magnitude of correlation
is indicative of brain connectivity, so might fluctuations in
correlation over time considered to be of interest. The difference
in connectivity between groups (e.g., between conditions or
patient groups) looks at difference in connectivity across groups
in much the same way that the fluctuation approach considers
differences in functional connectivity across the time-series.
We argue that the pursuit of locating the largest magnitudes
of correlation as well as finding the largest fluctuations in
correlation are both reasonable strategies and that they both
meet the underlying assumptions regarding dynamic functional
connectivity.

However, the two approaches to investigating dynamical brain
connectivity may not necessarily lead to different results and

thus be analogous strategies. For example, it is conceivable
that fluctuations, or equivalently variance, in the time-series
of correlation may be large while the magnitudes throughout
the time-series remain relatively high. It is worthwhile to think
of this situation in the context of Taylor’s Law (Taylor, 1961),
first observed in ecological studies, which is a phenomena that
postulates that the variance of data often scales positively with
its mean. If the observation of Taylor (1961) is applicable to
brain connectivity time-series, then the two analysis strategies
would tend to produce similar information. To find out if
the two approaches outlined here will lead to different results
one needs to consider the relationship between the mean and
the variance of a connectivity time-series. In this brief article
we consider these two possible analysis methods by testing
for the mean–variance relationship of connectivity time-series
in fMRI using the sliding window method. We find that the
two analysis strategies yield different information and that the
amplitude-based approach is best suited to analyze within-
network connectivity (i.e., the segregation of information in
the brain) while the variance-based approach is best suited to
analyze between-network connectivity (i.e., the integration of
information in the brain).

Materials and Methods

Resting-state fMRI data from 48 healthy subjects contained
in the Beijing eyes open/eyes closed dataset available at
http://fcon_1000.projects.nitrc.org/indi/IndiPro.html (Liu et al.,
2013) were analyzed. Subject age ranged from 19 to 31 years
(24 female). fMRI resting-state data were collected at 3 Tesla,
TR = 2000 ms, TE = 30 ms. Each functional volume
comprised 33 axial slices (thickness/gap = 3.5/0.7 mm, in-
plane resolution = 64 × 64, FOV = 200 mm × 200 mm).
Further details regarding the scanning procedure are given
in Liu et al. (2013). Each imaging session consisted of three
functional runs that each comprised 240 image volumes. Only
fMRI data collected during the eyes open condition was used
in this study. Resting-state fMRI data from two subjects were
rejected due to incomplete data, leaving fMRI data acquired
in 46 participants to be included in the final analysis. fMRI
data was pre-processed using Matlab (Version 14b, Mathworks,
Inc.), the CONN (Whitfield-Gabrieli and Nieto-Castanon,
2012) and SPM8 (Friston et al., 1995) Matlab toolboxes.
Resting-state fMRI data was first realigned and subsequently
normalized to the EPI MNI template as implemented in the
SPM software platform. All functional images were spatially
smoothed using a Gaussian filter kernel (FWHM = 8 mm).
Image artifacts originating from head movement were handled
using the image scrubbing procedure using the ART toolbox
(www.nitrc.org/projects/artifact_detect/). Signal contributions
from white brain matter, cerebrospinal fluid, and micro head-
movement (six parameters) were regressed out from the data.
After the regression, fMRI data was bandpassed (0.008–0.1 Hz),
linear detrended, and despiked.

Resting-state fMRI signal intensity time-courses from 264
regions of interest (ROI) across the entire cortex and sub-cortical
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regions extracted and used in the subsequent analysis (further
details regarding the parcellation scheme are given in Power
et al., 2011). Each ROI was a defined as a sphere with
a radius of 10 mm. To compare within- versus between-
RSN connectivity, data from the 264 ROIs were divided into
10 RSNs (Auditory, Saliency, Sensorimotor, Fronto-parietal
attention, Dorsal attention, Ventral attention, Subcortical,
Cingulo-opercular, Visual, and Default mode Networks, see Cole
et al., 2013 for further details). The spatial localization of the
ROIs and their assignment to RSNs are shown in Supplementary
Figure S1, along with the static functional connectivity matrix
computed using the Spearman rank correlation coefficient.
A sliding time-window consisting of 45 time-points (90 s) was
used for the dynamical connectivity analysis which is comparable
with the recent suggestions of “rules of thumb” regarding
the window length for sliding window analysis (Leonardi
and Van De Ville, 2015; Zalesky and Breakspear, 2015). For
each time-window, the Spearman rank correlation coefficient
between all ROI combinations was calculated. Subsequently, the
sliding-window was slid 1 TR over the data, resulting in a
ROI × ROI × time connectivity matrix time-series, for each
subject, with the dimensions 264 × 264 × 240. For each subject
and pair of edges, we calculated the mean and variance of
the connectivity time-series. The mean and variance were then
averaged over all subjects. This left us with 34716 unique edges
for which we had computed both the mean and the variance over
the connectivity time-series (196 time-points, reduced from 240
due to the sliding window size. This is because that the sliding
window that would begin at the 197th time-point could not have
a window length of 45). Finally, the mean and variances for all

edges were then correlated with each other to test for Taylor’s Law
using a Spearman test.

Results

An Illustrative Example of the Magnitude- and
Variance-Based Approach to Study Dynamic
Functional Connectivity
To illustrate the two strategies outlined in the introduction,
we start by providing a simple schematic example. Figure 1A
shows two sinusoidal curves that represent two ideal time-series
for the degree of connectivity (correlation) over time. One of
the time-series (S1) has, on general, a larger mean whereas the
variance throughout the time-course is low. The other time-
series (S2) has on the other hand a much lower mean value of
correlation, but in this case the variance is substantially larger.
Thus, the connectivity times-series plotted in Figure 1A is meant
to be viewed as an illustrative example for putative outcomes
of the temporal evolution of changes in brain connectivity
between two different pairs of brain regions (nodes) during the
length of a typical fMRI session. The binary graphs shown in
Figures 1B–D depict the results by applying the magnitude-based
strategy, including three different choices of cut-off thresholds
(0.4, 0.3, and 0.2, respectively), to S1 and S2. Black patches
denotes periods in time that by the magnitude-based analysis
strategy were deemed to lack a significant degree of connectivity
(i.e., an absence of an edge) between the two regions, whereas
white patches denotes periods in time that has a presence of
an edge. The binary graph shown in Figure 1E shows result

FIGURE 1 | A simple example that serves to illustrate the two kinds of
dynamical functional connectivity analyses analysis described in this
study. (A) Two sinusoidal curves (S1 and S2, in anti-phase with respect to
each other) that represents simulated fluctuations in connectivity (correlation)
values between two brain regions in time. (B–E) Isolating time-points where
an edge is considered “relevant” or “present” (shown as white patches)

based on either magnitude or variance-based thresholding strategies. (B–D)
Shows the results from using an absolute magnitude threshold at 0.3 (B),
0.2 (C), and 0.15 (D). The panel in (E) shows a threshold strategy based on
the variance of fluctuations within each time-series (1 SD). The
variance-based threshold is able to isolate peaks in fluctuations for both
time-series S1 and S2.
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from using the variance-based method (threshold set to 1 STD).
Let us first consider the case of the magnitude-based approach.
A cut-off threshold set to 0.4 applied to S1 and S2 as shown in
Figure 1B results in a presence of connectivity (i.e., a presence of
an edge) during the peaks of connectivity for S1 and an absence of
connectivity during its troughs. No connectivity at all is detected
for S2 at this choice of cut-off threshold. If we then consider the
case of lowering the cut-off to 0.3 (Figure 1C), we get as a result
that a significant degree of connectivity is present throughout the
entire sampled time-window for S1 and, again, no connectivity
at all is detected for S2. By setting the cut-off to an even lower
value (0.15, Figure 1D), we arrive at the result that a significant
degree of connectivity for S1 is considered to be present at all
times, whereas we now also pick up a presence of connectivity
during the peaks in S2.

Let us now turn our attention to the variance-based approach
shown in Figure 1E, which by definition assesses the degree of
connectivity in S1 and S2 independently from each other. The
threshold was here set to 1 SD greater than its mean for each
time-series. Hence, the variance-based approach to analyzing
dynamic changes in connectivity takes into consideration that
the degree of connectivity in S2 varies from −0.2 to 0.2 – a
difference of 0.4, which according to our initial assumption
represent a large change in interaction between two brain regions
(albeit the interaction’s magnitude is still less than for S1,
but the change in connectivity is larger than any change in
S1). In other words, the variance-based approach finds time-
points when the connectivity value is larger than usual which
as a result detects time-points for which there is a peak in
connectivity in S1 but not in S2 and vice versa. So, from
this simple example it is evident that the two approaches to
detect dynamical changes in connectivity might yield different
results.

The Temporal Mean Scales Negatively with the
Variance for rs-fmri Correlation Time-Series
We now leave our simulated example and turn our attention
to the resting-state fMRI data. When considering the two
approaches described above it is a pertinent question to ask
whether the mean connectivity over time positively correlates
with the variance as previously suggested by Taylor’s law.
Figure 2 shows the variance and mean in correlation over the
time series for all connections (34716 edges) averaged over all
subjects. Contrary to the situation posed by Taylor’s law, we
found an opposite effect between the mean and variance for
correlation time-series, i.e., the mean scaled negatively with
variance (ρ = −0.5003; p < 0.001). This result clearly suggests
that the two analysis approaches outlined in Figure 1 will
yield different results when applied to fMRI data. That is,
a thresholding approach based on the connectivity variance
parameter will lead to stronger emphasis on edges that, in general,
have a lower mean. However, it is important to remember that we
are analyzing connectivity time-series for which the maximum
value is 1. This in turn leads to a restriction on the maximum
variance that is allowed for a connectivity time-series that has a
high mean correlation magnitude through the time-series. Given
this, it is not overly surprising that the mean scales negativelywith

FIGURE 2 | Plot showing the mean versus the variance for fMRI
connectivity time-series obtained during an eyes open condition
(using a sliding window technique on a total of 34716 edges, averaged
across subjects). The mean of each edge regions of interest (pairwise
ROI–ROI correlations over time) is plotted against its variance. Each point in
the plot represents the mean and variance for a single ROI–ROI correlation
(edge) across time. The plot shows that the mean (x-axis) is negatively
correlated with its variance (y-axis; ρ = −0.5003; p < 0.001). Error bars show
the SD.

variance. However, there is no built-in mechanism that stipulates
that the variance with a lower mean should have a larger degree
of variance. Hence, this is a non-trivial result.

Within-Network Connectivity Has a Higher a
Mean and Lower Variance in Connectivity
Values Compared to Between-Network
Connectivity
Given numerous previous studies that have employed static
measures of brain connectivity to show a consistent set of
RSNs in the human brain, one would expect that the degree
of connectivity within-RSNs, per definition, have on average
a high mean throughout the time-series. Our results shown
in Figure 2 suggest that in addition to having a high mean in
correlation values, within-RSN connectivity should also display
a lower variance. This indeed turns out to be the case, which
is shown in Figure 3A, that plots the variance for all edges
averaged across all subjects. The within-RSN connectivity,
located along the diagonal of the edge-by-edge matrix, shows
a reduced degree of variance compared to the variance of the
between-RSN connectivity that is found further away from the
diagonal. To demonstrate this observation further, we averaged
all within-RSN edge variance and all between-RSN variance
across all subjects and the results is shown in Figure 3B. We
found a significant difference in variance, with a decrease in
variance for within-RSN connections compared to between-RSN
connections (t-test, two-tailed, p < 0.05). We conclude that
between-RSN connectivity time-series display more variance
compared to within-RSN time-series connectivity.

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2015 | Volume 9 | Article 398

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Thompson and Fransson Mean–variance relationship in dynamic rs-fMRI

FIGURE 3 | Variance in the degree of edge (pairwise ROI–ROI
correlations) connectivity over time is higher for between-RSN
edges compared to within-RSN edge connectivity. (A) shows in a
connectivity matrix format the average variance of the connectivity
time-series for each node-node pairing (averaged across subjects). Nodes
are ordered according to the resting-state networks defined in Power

et al. (2011) and Cole et al. (2013). The squares along the diagonal
represent within-RSN edges, which tend to have a lower degree of
variance than between-RSN edges located further away from the diagonal.
(B) shows that the average variance for all within-RSN connectivity
time-series has a significantly higher variance than between-RSN
connectivity time-series (t-test, p < 0.001).

Replication of Results Using Multiple Windows
Lengths and the Pearson Correlation
Coefficient
In order to show that the effects described here are not
merely a byproduct of the specific window length chosen,
we have replicated the results shown in Figures 2 and 3 in
Supplementary Figure S2 using considerably shorter and longer
window lengths (50 s and 130 s, respectively). Additionally, we
show in Supplementary Figure S2 that the same results regarding
the relationship between mean and variance also holds in the
case of using the Pearson correlation coefficient rather than the
Spearman rank coefficient to compute the functional connectivity
matrix (sliding window length = 90 s).

Discussion

In this study, we have described a conceptual difference in
how dynamical changes in resting-state fMRI connectivity
may be viewed and how to distinguish them analytically. We
subsequently tested if the described conceptual difference is
related to the phenomena known as Taylor’s Law. We found a
negative scaling between the mean of the correlation time-series
and its variance. Finally, we demonstrated that the within-RSN
edges of connectivity have less variance in correlation values
over time than between-RSN edges. From the results provided
in this study, we conclude that there are, at least, two different
strategies on how to perform dynamic functional connectivity
analyzes, and that they are sensitive to very different properties

of the data. The magnitude-based approach, in which a threshold
is set at a certain global cut off point, will be relatively more
sensitive to within-RSN connectivity. In contrast, the variance-
based approach, for which the threshold is dependent on the
variance of an edge’s time-series, will be relatively more sensitive
to between-RSN fluctuations in correlation strength.

We consider this an important distinction that warrants
consideration when planning and designing dynamic functional
fMRI connectivity studies. For example, a popular strategy in
dynamic functional connectivity is to cluster the connectivity
matrices derived across the time-series using, for example, the
k-means algorithm to derive “states” of brain connectivity.
Importantly, the k-means algorithm will have a tendency to
identify clusters along the dimensions with greater variance
and, following the results shown here, will be less sensitive to
fluctuations along those time-series with a higher overall mean –
which in turn means less sensitivity to fluctuations within-
RSN connectivity. While this does not necessarily have to be
problematic, it is important to note that the k-means clustering
method will have a tendency, given the same distributions, to
partition the data along the between-RSN connectivity dimension
when creating “states.” If this is not desirable outcome for the
research question at hand, it would be possible to normalize
or scale each connectivity time-series to mitigate the effect that
clustering occur mainly along edges with higher variance (and
thus lower mean connectivity). An alternative strategy would be
to set a global threshold, statistically, or arbitrarily (e.g., keep the
top 10% of all connections (edges) at each time-point), prior to
using a clustering method or a distance metric and subsequently
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identify different states. This approach will be considerably more
sensitive to within-RSN fluctuations since the higher variance of
the other connections has been set to 0. So, the question is which
strategy should be chosen? We believe that the answer to this
question depends strongly on the research question at hand but
an explicit distinction between these twomethods has to bemade.

It is worth reflecting over why between-RSN edges have
a higher variance than the within-RSN counterparts along
their connectivity time-series. We have identified two possible
mechanisms, but we cannot rule out that others exist. First, the
greater connectivity for between-RSNs edges, despite having an
overall lower magnitude compared to the within-RSN edges,
reflect moments in time of increased interaction between RSNs.
Due to the nature of segregation between RSNs, the moments
in time of increased interactions will be relatively rare. Thus
they will be complimented by time-points when the degree of
connectivity is lower, which in turn, will increase the overall
variance. If so, the variance-based analysis strategy is best suited
to identify moments or periods of time when information
between networks is transferred. Second, it could be argued that
the differences in between-RSN edge connectivity may simply
reflect noise and that the higher variance for between-RSN
connectivity may simply be due to a signal-to-noise property
and thus suggest that the observed fluctuations in connectivity
are driven by noise. But, if the latter argument is true, it
would provide severe methodological difficulties to the usage
of dynamic fMRI connectivity as a means to detect temporal
trajectories of changes in neuronal connectivity, at least for the
case of the variance-based method described here. While this is
possibility which at the moment cannot be ruled out, it deserves
to be mentioned that considerable work has been carried out
to suggest that fluctuations in functional connectivity reflect
changes in neuronal activity is valid assumption (Magri et al.,
2012; Tagliazucchi et al., 2012; Chang et al., 2013; Thompson
et al., 2013, 2014; see also Keilholz, 2014). Further work is needed
to resolve this issue.

As a final remark, our connectivity time-series were derived
by computing non-parametric Spearman rank correlation
coefficients, which, especially considering rather short time-
windows used, is reasonable and less sensitive to outliers.
Moreover, we also replicated our results using the parametric
Pearson correlation. However, it may be worth exploring if the
observed negative relationship between the variance and mean
of connectivity time-series occurs also for other metrics that
are used to derive connectivity. It is possible to argue that the
mean–variance relationship found here is merely a byproduct
of the chosen method for dynamic functional connectivity, i.e.,
the sliding windows approach. Further investigations aimed to
examine if the relationship holds with other proposed methods
for dynamic functional connectivity is warranted. In sum,
in this work we have conceptually disentangled two possible
strategies for considering dynamic functional connectivity.
Further, we have shown how the two approaches, while both
valid with respect to the fundamental assumption of functional
connectivity, yielded different results. We advise researchers
of dynamic functional connectivity to consider these different
approaches and decide which approach that fits their research
question best.
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