Contents lists available at ScienceDirect

IDCases

journal homepage: www.elsevier.com/locate/idcr

[18F]FDG-PET/CT in different COVID-19 phases

Odile Ajuria-Illarramendi^{a,*}, Alberto Martinez-Lorca^b, Maria del Prado Orduña-Diez^b

^a Nuclear Medicine Department, Hospital Universitario Ramón y Cajal, Carretera Colmenar Viejo Km 9100, 28034, Madrid, Spain
^b Nuclear Medicine Department, Hospital Universitario Ramón y Cajal, Spain

ARTICLE INFO

Keywords:

Article history: Received 4 June 2020 Received in revised form 11 June 2020 Accepted 12 June 2020 DET/CT is a

ABSTRACT

PET/CT is an hybrid technique which allows both morfological and metabolical evalutaion. Three different morphometeabolical patterns are presented which reflect the evolutive phases of the COVID-19. This findings may help the clinician determine the correct treatment and security measure that need to be taken aaccording to the phase of the disease.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

license (http://creativecor

avidity (SUVmax:5,3) suggesting severe infectious process. C. Axial CT(1), PET(2) and fused PET/CT(3) identified bibasal opacities with decreased density and fibrotic stripes [3] which associate an heterogeneous high metabolic uptake (SUVmax:5) [2,4], consistent with COVID-19 in resolution.

The finding of three different metabolic uptake patterns, highlights the utility of [18F]FDG-PET-CT not only to diagnose incidental cases of COVID-19 disease, so security measures can be adopted, but also to distinguish the evolutive situation of it.

Author contribution

All authors contributed equally.

Funding

Not applicable

Consent

Not applicable

CRediT authorship contribution statement

Odile Ajuria-Illarramendi: Conceptualization, Methodology, Writing - original draft. Alberto Martinez-Lorca: Resources, Writing - review & editing, Visualization. Maria del Prado Orduña-Diez: Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest.

* Corresponding author. E-mail address: odile.ajuria@salud.madrid.org (O. Ajuria-Illarramendi).

https://doi.org/10.1016/j.idcr.2020.e00869

2214-2509/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[¹⁸F]FDG-PET/CT performed in three patients with lung cancer demonstrate: A.Axial CT(1), PET(2) and fused PET/CT(3) showed an

incidental 46-mm ground-glass opacity (with non-uniform density and air bronchogram), in the superior segment of the

right lower lobe with mild diffuse metabolic uptake (SUVmax: 3,9) [1],consistent with probable early phase lung infection of the

COVID-19 disease [2]. B. Axial CT(1), PET(2) and fused PET/CT(3)

demonstrated a paramedial consolidation and thickened interlob-

ular septa in the lower right lobe [1,3] with high focal [18F]FDG

Case illustrated

References

- Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020;295:210–7.
 Qin C, Liu F, Yen T, et al. 18F-FDG PET/CT findings of COVID-19: a series of four highly suspected cases. Eur J Nucl Med Mol Imaging 2020;47(5)1281–6 05.
- [3] Xua YH, Donga JH, An WM, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect 2020;80(April (4)):394-400.
- [4] Setti L, Kirienko M, Dalto SC, Bonacina M, Bombardieri E. FDG-PET/CT findings highly suspicious for COVID-19 in an Italian case series of asymptomatic patients. Eur J Nucl Med Mol Imaging 2020(April 27) [Epub ahead of print].