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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus which caused the 
coronavirus disease 2019 pandemic and infected more than 12 million victims and resulted in over 560,000 
deaths in 213 countries around the world. Having no symptoms in the first week of infection increases the rate of 
spreading the virus. The increasing rate of the number of infected individuals and its high mortality necessitates 
an immediate development of proper diagnostic methods and effective treatments. SARS-CoV-2, similar to other 
viruses, needs to interact with the host proteins to reach the host cells and replicate its genome. Consequently, 
virus-host protein-protein interaction (PPI) identification could be useful in predicting the behavior of the virus 
and the design of antiviral drugs. Identification of virus-host PPIs using experimental approaches are very time 
consuming and expensive. Computational approaches could be acceptable alternatives for many preliminary 
investigations. In this study, we developed a new method to predict SARS-CoV-2-human PPIs. Our model is a 
three-layer network in which the first layer contains the most similar Alphainfluenzavirus proteins to SARS-CoV- 
2 proteins. The second layer contains protein-protein interactions between Alphainfluenzavirus proteins and 
human proteins. The last layer reveals protein-protein interactions between SARS-CoV-2 proteins and human 
proteins by using the clustering coefficient network property on the first two layers. To further analyze the results 
of our prediction network, we investigated human proteins targeted by SARS-CoV-2 proteins and reported the 
most central human proteins in human PPI network. Moreover, differentially expressed genes of previous re-
searches were investigated and PPIs of SARS-CoV-2-human network, the human proteins of which were related 
to upregulated genes, were reported.   

1. Introduction 

Coronaviruses (CoVs) are a big family of viruses that can cause dis-
eases ranging from common cold to severe respiratory tract infections 
[1]. Moreover, some types of CoVs are zoonotic and they are trans-
mittable from animals to human. Sever Acute Respiratory Syndrome 
(SARS-CoV) is one of the strains of coronavirus which came from civet 
cats [2] and horseshoe bat [3] and emerged in 2002/2003 in southern 
china and spread to 26 countries with 8096 infected cases leading to 774 
deaths [4]. Middle East Respiratory Syndrome (MERS-CoV) is another 
one, which came from dromedary camel which was detected in Arabian 
Peninsula with 2494 infected cases leading to 858 deaths [5]. The latest 
version of CoV called Novel Coronavirus (SARS-CoV-2) emerged in 
Wuhan [6], a Chinese city with a population of 11 million, which causes 
coronavirus disease 2019 (COVID-19) [7]. SARS-CoV-2 probably came 
from bat [8] or minks [9]. COVID-19 was initially detected in December 
2019 and contaminated 835 cases leading to 25 deaths up to Jan 22, 

2020 [10]. The number of infections increased to 17400 cases leading to 
362 deaths till Feb 2, 2020 [11] and more than 40000 cases leading to 
800 deaths till Feb 10, 2020 [12]. The number of infections has 
increased at an exponential rate, with a doubling period of 1.8 days 
[13]. By gathering 180 reports from the world health organization 
(WHO) we built a database to show how COVID-19 spread to more than 
12 million cases all over the world and killed more than 560,000 of its 
victims till July 10, 2020. Figs. 1–3 show how SARS-CoV-2 became a 
pandemic all over the world within four month and how it kills thou-
sands of people in different countries every day. 

CoVs are single stranded positive sense RNA (ssRNA+) viruses which 
belong to the order Nidovirales, the family Coronaviridae, and the 
subfamily Orthocoronavirinae. Alphacoronoavirus, Betacoronavirus, 
Deltacoronavirus, and Gammacoronavirus are its four different genera 
among which Betacoronavirus is the most pathogenic genus [14]. 
Betacoronavirus has five subgenera including Embecovirus, Sarbecovi-
rus, Merbecovirus, Nobecovirus, and Hibecovirus [15]. 
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Embecovirus, including types OC43 and HKU1, generally cause mild 
to moderate upper-respiratory tract illnesses, like the common cold. 
SARS-CoV and SARS-CoV-2 belong to Sarbecovirus (SV) subgenus, while 
MERS-CoV belongs to Merbecovirus subgenus. 

Viruses are parasites which lack the capacity to live and reproduce 
outside of a host body. Protein-protein interaction (PPI) between viral 
proteins and host proteins is indispensable for viral proteins to reach the 
host cells. Consequently, identification of virus-host PPI network is the 
key to predict the behavior of viruses which in turn can be useful in 
designing antiviral drugs. 

Biomolecular fluorescence complementation [16], 
co-immunoprecipitation [17], and yeast two-hybrid are some of the 
experimental methods for detecting virus-host PPI. These methods are 
both expensive and very time-consuming while computational methods 
are fast and inexpensive in prediction of virus-host PPIs. 

Many studies confirm the practicality of computational methods in 
PPI prediction while further researches can improve the performance of 
these methods especially with respect to accuracy. Model training is one 
line of research in which computational models are trained using 
extracted features of experimentally developed PPIs. Different classifiers 
were used in different studies in the learning phase of the models. Sun 
used deep learning [18] while Dyer [19], Chatterjee [20], Mei [21], and 
Eid [22] applied support vector machine to predict virus-host PPIs. 
Nourani used Naïve Bayes [23]. Decision tree related classifier was the 
approach taken by Basit [24]. Random forest was the approach followed 
by both Yang [25] and Barman [26]. The approach followed by Leite 
[27], Zahiri [28], and Mei [29], were k-nearest neighbors, multilayer 
perceptron, and AdaBoost, respectively. 

On the other hand, researchers work on different viruses to predict 
their PPI networks. Zhao predicted HIV1-human PPI network [28], 
Khorsand uncovered Alphainfluenzavirus-human PPI network [29], Ray 
predicted HCV-human PPI network [30], Chan revealed west nile 

virus-human PPI network [31], and Duran worked on 
herpesvirus-human PPI network [32]. 

Features to learn a model is another view to look at predicting virus- 
host PPI network. Alguwaizani used repeating patterns and amino acids 
composition [33], Kösesoy used location based encoding of amino acids 
[34], Mir used structure similarity [35], Guven-Maiorov used interface 
similarity [36], and Khorsand used network topology and gene ontology 
[29] in their researches towards learning PPI networks. 

In the present study as it is shown in Fig. 4, we constructed SARS- 
CoV-2-human PPI network by building a novel three-layer network in 
which the first layer represents Alphainfluenzavirus-Human PPI 
network, the second layer shows the Alphainfluenzavirus-SARS-CoV-2 
similarity network, and the third layer reveals SARS-CoV-2-human PPI 
network from clustering coefficient rule of the first two layers. 

In the rest of this paper, in Section 2, by performing protein basic 
local alignment search tool (Balstp) on SARS-CoV-2 proteins, its ortho-
logs were detected. As all of its orthologs belongs to SV, we decided to 
work on the whole SV family. A novel method is proposed to detect SV 
proteins’ orthologs among Alphainfluenzavirus (AIV) proteins. And 
finally, by building a multi-layer network, we constructed SV-human PPI 
network from which SARS-CoV-2-human PPI network is extractable. In 
Section 3, some of SARS-CoV-2 features were reported which could be 
used in machine learning approach for predicting PPI network. There-
after, by analyzing the constructed SARS-CoV-2-Human PPI network, 
the most central human proteins targeted by SARS-CoV-2 is reported. 
Eventually, differentially expressed genes of two available gene 
expression omnibus series (GSE) were investigated and PPIs of SARS- 
CoV-2-human PPI network which have human proteins among upre-
gulated genes are marked. A short conclusion is placed in Section 4. 

Fig. 1. Fig. 1-a shows the spreading speed of COVID-19 confirmed cases of different countries in reaching 300000 cases, while 1-c shows the time that each country 
needs to sacrifice 30000 cases by COVID-19. Fig. 1-b shows the total COVID-19 confirmed cases of different countries, and 1-d shows the total number of deaths 
caused by COVID-19. 
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2. Material and methods 

SARS-CoV-2 has a genome with 29903 nucleotides [37] and 14 
proteins. Blastp [38] was performed on all of these proteins to identify 
the virus proteins (VPs) with the highest sequence identity. For each of 
the SARS-CoV-2 proteins, the first three proteins with the highest scores 
are reported in Table 1. 

SARS-CoV-2 and all of its homologs belong to SV, so we decided to 
work on the whole SV proteins. SV has 1772 VPs belonging to 158 
different strains. Strains which contain at least three VPs were chosen. 
The 113 chosen strains (containing 1726 VPs) were clustered to 14 
groups according to their sequence length (from VPs with sequence 
length of less than 50 residues up to VPs with sequence length of more 
than 6800 residues). Each of 14 groups, clustered into groups with at 
least 98% sequence identity. Thereafter, within each group, among VPs 
which have sequence identity of more than 98%, a representative VP 
(VP which has the highest sequence identity with the others) was cho-
sen. After these two clustering steps, from 1726 VPs the total of 294 VPs 
were chosen. 

As pathogenicity and transmissibility of SV are similar to those of one 
of the other families of respiratory viruses, AIV [39], and there are many 
experimental PPIs between AIV proteins and human proteins (HPs) in 
PPI databases such as Intact [40] and VirusMINT [41], we probed AIV 
proteins to detect SV orthologs among them in order to detect possible 
HP victims. 

For constructing AIV-human PPI network, 11040 AIV-human PPIs 
were extracted from STRING [42], Intact [40], DIP [43], VirusMINT 
[41], and BioGRID [44]. Among these PPIs, 10878 PPIs belonging to 
H1N1, H3N2, and H5N1 subtypes were chosen. The selected PPIs were 
among 2966 HPs and 119 VPs of 45 different strains. The 119 chosen 
VPs were clustered into groups such that in each cluster each pair’s 
mutual sequence identity was higher than 98%. In each group a repre-
sentative with the highest average sequence identity scores in all other 
VPs of the respective group were chosen. This process led to the selection 
of 74 VPs from a collection of 119 AIV proteins. 

For detecting orthologs of SV proteins in AIV proteins, four different 
scores were calculated between each of the 294 SV proteins and each of 
the 74 AIV proteins.  

I. Primary structure similarity score: Smith-Waterman sequence 
alignment [45] was performed on all 21756 sequence pairs without 

any opening gap penalty but with − 2 penalty score for the extension 
gap. Blocks substitution matrix 62 (BLOSUM62) was considered as 
scoring matrix. For each of the pairs, local alignment score was 
considered as its primary structure similarity, PS, score.  

II. Secondary structure similarity score: 

For simplicity, secondary structure (SS) of each protein was 
expressed by 3 types of SS namely helix, strand and coil. Three different 
scores, extracted from SS of each pair.  

a. Ordinary form: Local alignment on SS of each of 21756 pairs 
without any opening gap penalty but with − 2 penalty score for 
extension gaps. In similarity matrix for each match 3 credit points 
were considered as its alignment score. For mismatch of coil 
against helix or strand − 1 and for mismatch of helix against 
strand − 3 was considered as its alignment score. For each of the 
pairs, the sum of alignment scores was considered as SS similarity 
score called SSO.  

b. Compact form: Local alignment of the compact form of SSs with 
the parameters of the previous step. The SS compact form was 
obtained simply by eliminating the consequent repeats of each SS 
types. As an example, with considering 
“HHHHHHCCCCHHHHHCCCCEEEEEEECCHHHHH” as the SS of 
a protein, its SS compact form will be “HCHCECH”. For each of 
the pairs, sum of alignment scores was considered as SS similarity 
score called SSC.  

c. Longest common substring: Maximum number of consecutive 
matches between each pair considered as its SS similarity score 
called SSLCS.  

III. Accessibility similarity score: 

Accessible surface area (ASA) of a residue is the surface area of that 
residue over which it contacts with solvent. Accessibility of a residue is 
the ASA of that residue in the folded protein over maximum possible 
ASA for that residue which is calculated by Tien [46]. For any residues of 
each protein, accessibility was calculated and each residue with acces-
sibility score less than 0.25 was considered as buried. Accessibility score 
between 0.25 and 0.35 was considered as intermediate and more than 
0.35 was considered as exposed. So, each protein was expressed by a 
sequence of 3 types of ASA including buried, intermediate, and exposed. 
Three different scores were extracted from ASA of each pair. 

Fig. 2. Fig. 2-a shows the number of deaths from each 1000 COVID-19 cases (death rate). Fig. 2-b shows the number of COVID-19 cases per each 100000 individuals 
of the respective countries. 
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a. Ordinary form: Local alignment on ASA of each of 21756 pairs 
without any opening gap penalty but with − 2 penalty score for 
extension gap. In similarity matrix for each match 3 credits were 
considered as its alignment score. For mismatch of intermediate 
against exposed 1 credit point and for intermediate against buried 
− 1 was considered as its alignment score. For mismatch of 
exposed against buried − 3 was considered as its alignment score. 
For each of the pairs, the sum of alignment scores was considered 
as ASA similarity score called ASAO.  

b. Compact form: Local alignment on compact form of ASA with the 
parameters of previous step. ASA compact form was gained 
simply by eliminating the consequent repeats of each ASA types. 
As an example, with considering “EEEEEXXXXBBBBXXEEEEEE” 

as ASA of a protein, its ASA compact form will be “EXBXE”. For 
each of the pairs, the sum of the alignment score was considered 
as ASA similarity score called ASAC.  

IV. Gene ontology semantic similarity score: 

Semantic similarity of Gene ontology (GO) terms of two proteins can 
reveal functional similarity which increases the probability of the 
possible interaction between them. GO [47] comprises three domains: 

Molecular function (MF) which shows the biochemical activities of the 
gene products, cellular component (CC) which shows the active place of 
the gene in the cell, and biological process (BP) which shows the bio-
logical objectives in which the gene products participate. For each 
domain, there is a hierarchal directed acyclic graph in which each node 
represents a GO term. To find semantic similarity of GO terms of two 
proteins, Relevance method [48] was used which depends on the fre-
quencies of each protein’s GO terms and GO terms’ frequencies of their 
common ancestor. For each of 21756 AIV-SV pairs, 3 semantic similarity 
scores were calculated called BPS, MFS, CCS and the mean of them were 
considered as GO semantic similarity score called GOS. 

The final score is the harmonic mean of all the mentioned scores 
calculated by:   

As for some of the VPs, GO terms were not available, k was defined to 
show the number of domains having GO terms. To avoid division by zero 
problem, if there was not any valid GO term in all GO domains of a VP, 
GOS would be set to one and k would be set to zero. 

Finally, a matrix of scores with 294 rows and 74 columns was 
created. The scoring matrix has the minimum score of 13, median score 

Fig. 3. Fig. 3-a shows the whole spreading distribution of COVID-19. Fig. 3-b and 3-c shows the daily spreading and death distributions, respectively.  

Sc,i =
7 + k

(2/PS) + (1/SSO) + (1/SSC) + (1/SSLCS) + (1/ASAO) + (1/ASAC) + (k/GOS)
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Fig. 4. Schematic view of predicting SARS-CoV-2-human protein-protein interaction network.  

Table 1 
SARS-CoV-2 orthologs.  

ID Protein Length Identity Ortholog id Protein Taxid Taxonomy 

P0DTD1 Replicase polyprotein 1 ab 7096 95.7% A0A2R3SV02 Non-structural polyprotein 1 ab 1508227 Bat SARS-like coronavirus 
95.3% A0A2R3SUX5 
86.2% P0C6X7 Replicase polyprotein 1 ab 694009 Human SARS coronavirus 

P0DTC1 Replicase polyprotein 1a 4405 95.6% A0A2R3SV02 Non-structural polyprotein 1 ab 1508227 Bat SARS-like coronavirus 
95.1% A0A2R3SUX5 
80.7% A0A0U1WJY1 Orf1ab polyprotein 1503302 BtRs-BetaCoV HuB2013 

P0DTC2 Spike glycoprotein 1273 80.5% A0A2R3SUW7 Spike protein 1508227 Bat SARS-like coronavirus 
79.8% A0A2R3SUW9 
77.1% A0A0U2IWM2 Spike glycoprotein 1739625 SARS-like coronavirus 

P0DTC3 Protein 3a 275 92.1% A0A2R3SUX1  1508227 Bat SARS-like coronavirus 
90.9% A0A2R3SUV9  
76.1% A0A023PTR5 Protein 3 1487703 Rhinolophus affinis coronavirus 

P0DTC4 Envelope small membrane protein 75 100% A0A2R3SUY7 Envelope small membrane protein 1508227 Bat SARS-like coronavirus 
94.7% Q3I5J3 Envelope small membrane protein 349344 Bat coronavirus Rp3/2004 
94.7% Q3LZW9 Envelope small membrane protein 442736 Bat coronavirus HKU3 

P0DTC5 Membrane protein 222 98.6% A0A2R3SUX3 Membrane protein 1508227 Bat SARS-like coronavirus 
91.7% Q0Q472 Membrane protein 389167 Bat coronavirus 279/2005 
91.4% Q3LZX9 Membrane protein 442736 Bat coronavirus HKU3 

P0DTC6 Non- structural protein 6 61 93.4% A0A2R3SUW5  1508227 Bat SARS-like coronavirus 
73.8% U5WIP8  1415852 Bat SARS-like coronavirus WIV1 
73.8% A0A0U2PPC8  1739625 SARS-like corona virus WIV16 

P0DTC7 Protein 7a 121 88.4% A0A2R3SUY1  1508227 Bat SARS-like coronavirus 
88.5% Q3I5J0 Protein 7a 349344 Bat coronavirus Rp3/2004 
88.5% Q3LZX7 Protein 7a 442736 Bat coronavirus HKU3 

P0DTD8 Protein 7b 44 88.1% A0A0U1WHL8  1503303 BtRs-BetaCoV YN2013 
85.7% Q3I5I9 Protein 7b 349344 Bat coronavirus Rp3/2004 
85.7% P0C5A9 Protein 7b 389167 Bat coronavirus 279/2005 

P0DTC8 Non- structural protein 8 121 94.2% A0A2R3SUZ9  1508227 Bat SARS-like coronavirus 
58.7% D2DJX2  722424 SARS coronavirus Rs_672/2006 
58.7% U5WI34  1415851 Bat SARS-like corona virus RsSHC014 

P0DTC9 Nucleoprotein 419 94.3% A0A2R3SUZ1 Nucleoprotein 1508227 Bat SARS-like coronavirus 
94.3% A0A2R3SUX6 
91.1% A0A023PSY2 Nucleoprotein 1487703 Rhinolophus affinis coronavirus 

P0DTD2 Protein 9b 97 76.5% A0A023PUR2 Protein 13 1487703 Rhinolophus affinis coronavirus 
74.2% Q3LZX3 Protein 9b 442736 Bat coronavirus HKU3 
74.2% Q3LZU1 Protein N 338606 Bat coronavirus HKU3-3 

P0DTD3 Protein 14 73 92.9% A0A2R3SV09  1508227 Bat SARS-like coronavirus 
80.1% Q3I5K1 ORF14 349342 Bat SARS coronavirus Rp1 
80.1% Q3I5J8 ORF14 349343 Bat SARS coronavirus Rp2  
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of 49.5, third quantile score of 53.5 and maximum score of 72. We 
considered 53.5 (its third quantile score) as ortholog threshold. This 
threshold could be used for adjusting the size of predicted PPI network 
which has inverse relation with the size of PPI network. Increasing the 
threshold decreases the size of PPI network, while decreasing the 
threshold increases the number of PPIs. For each SV protein, AIV pro-
teins with scores higher than 53.5 were considered as its orthologs. 

For each SV protein, HPs’ interactors of all its AIV orthologs were 
considered as its possible interactors. For each of the SV proteins and 
their HPs’ interactors which were reached from the previous step, a 
bipartite graph was constructed. 

In social networks, if A is friend of B and B is friend of G, there is a 
probable friendship relation between A and G. Now if A is friend of B, C, 
D, and E and B, C, D, and E are friends of G, the probability of friendship 
relation between A and G would be much higher. We use this rule for 
filtering the possible interactions constructed by the previous step. 

Each SV protein may have several AIV orthologs, so each SV protein 
may be connected to an HP with multiple edges (each edge from one 
ortholog). To confine the number of predicted interactions, two filtra-
tion process were performed.  

• Among all edges of the SV-human PPI network, single edges were 
eliminated.  

• Multiple edges were converted to a simple edge and that edge was 
weighted by the sum of ortholog scores of its interactors minus whole 
of the median score (49.5). Edges with weight less than 10 were then 
eliminated. 

As an example, shown in Fig. 5, consider I1, I2, and I3 as AIV pro-
teins, C1, C2, and C3 as SV proteins and H1, H2, H3, H4, and H5 as 
Human proteins. Now consider I1, I2, and I3 are C1’s orthologs with 
scores 58, 54, and 59 respectively. Moreover, consider I2 and I3 are C2’s 
orthologs with scores 61 and 55. Finally, consider I3 is C3’s ortholog 
with score 56. Suppose H1 and H2 were interactors of I1, and H1, H2, H3 
were interactors of I2, and H1, H4, H5 were interactors of I3. The weight 
of edges is calculated in Table 2. 

So, in the final SV-Human PPI network of our example, from 13 
possible interactions (edges), just three interactions (C1–H1, C1–H2, 
and C2–H1) would be created. 

3. Results and discussion 

Investigating SARS-CoV-2 genome and proteins leads to the 
following observations. 

3.1. SARS-CoV-2 genome’s GC-content is 38% 

Probing SARS-CoV-2 genome, reveals that 29.9% of SARS-CoV-2 
genome consists of adenine, 32% consists of thymine, 18.4% consists 
of cytosine, and 19.6% consists of guanine. 

3.2. A, T, GT, TC, AC, GA, CAA, and GAA are microsatellites of SARS- 
CoV-2 with the most repeats 

Tandem repeats, continuously repeated motifs, with the core sub-
sequence less than 7 are called microsatellite which can help in struc-
tural analysis. All of SARS-CoV-2 microsatellites are extracted with 
FMSD [49] (fast microsatellite discovery method) and reported in 
Table 3. 

3.3. Leucine, valine, alanine, threonine and serine are the most frequent 
amino acids of SARS-CoV-2 proteins 

Fig. 6-a shows the frequency of each amino acid in SARS-CoV-2 
proteins which is called amino acid composition. Fig. 6-b shows the 
frequency of each amino acid for all SARS-CoV-2 proteins. 

Fig. 5. A multipartite network in which the first 
layer shows the similarity between AIV proteins (I1, 
I2, and I3) and SV proteins (C1, C2, and C3) with 
green edges. The second layer shows the interactions 
between AIV proteins and human proteins (H1, H2, 
H3, H4, and H5) with blue edges. The third layer 
shows the possible interactions between SV proteins 
and human proteins with red edges. The thicknesses 
of the three red edge types shows that the ticker ones 
could be better candidates for SV-human PPI 
network. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the Web version of this article.)   

Table 2 
Calculation of edges’ weight of the sample network.  

Edge Weight 

C1–H1 (58–49.5) + (54–49.5) + (59–49.5) = 22.5 
C1–H2 (58–49.5) + (54–49.5) = 13 
C1–H3 (54–49.5) = 4.5 
C1–H4 (59–49.5) = 9.5 
C1–H5 (59–49.5) = 9.5 
C2–H1 (54–49.5) + (59–49.5) = 14 
C2–H2 (54–49.5) = 4.5 
C2–H3 (54–49.5) = 4.5 
C2–H4 (59–49.5) = 9.5 
C2–H5 (59–49.5) = 9.5 
C3–H1 (59–49.5) = 9.5 
C3–H4 (59–49.5) = 9.5 
C3–H5 (59–49.5) = 9.5  
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3.4. Most of SARS-CoV-2 amino acids prefer to be exposed and have 
helix or coil structure 

Secondary structures of SARA-CoV-2 proteins which could be used as 
feature vector in machine learning approach were extracted. Fig. 7-a 
shows the position of coils, helix, and extended in each of SARS-CoV-2 

proteins. Moreover, accessible surface area was calculated for each of 
SARS-CoV-2 proteins. Values less than 0.2 were considered as buried, 
while values more than 0.2 were considered as exposed. As it is shown in 
Fig. 7-b, accessible surface area was depicted for all the amino acids of 
each SARS-CoV-2 proteins. 

Table 3 
Microsatellites of SARS-CoV-2.  

Core Starts from Repeats Core Starts from Repeats Core Starts from Repeats 

A 29870 34 CTT 14756 3 TGT 25642 3 
T 11074 8 TTC 22320 3 AAT 25757 3 
TC 7813 5 AGT 23088 3 CGA 26191 3 
GT 20486 5 AAG 3188 3 GTG 28556 3 
AC 13162 4 GAT 3205 3 TGC 28934 3 
GA 22954 4 CTT 4736 3 CAA 28987 3 
GAA 3055 3 ATG 11366 3 CTG 29021 3 
GAA 3073 3 ATC 11910 3 AAG 29389 3 
TTC 626 3 TGA 13895 3     

Fig. 6. Fig. 6-a shows the amino acid composition of SARS-CoV-2 proteins. Fig. 6-b shows the whole amino acid distribution of SARS-CoV-2 proteins.  

Fig. 7. Fig. 7-a shows the secondary structure of SARS-CoV-2 proteins. Light, medium, and dark pink declare coil, helix, and extended structures, respectively. Fig. 7- 
b shows the accessible surface area of SARS-CoV-2 proteins. Two lowest colors of gradient represent buried residues and the other colors of gradient show exposed 
residues. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.5. SARS-CoV-2-human predicted PPI network has 7201 interactions 
between 11 VPs and 1898 HPs 

P0DTC7 is one of the SARS-CoV-2 proteins. From 74 IAV proteins, 18 
IAV proteins with similarity scores above 53 with P0DTC7 were chosen 
as its orthologs which is shown with green color in Fig. 8a. These 18 AIV 
proteins have 389 interactions with 218 HPs which is shown with blue 
edges. Among these 218 HPs, 49 HPs were connected to at least two IAV 
proteins and have weights more than 10. So, they were chosen as the 
final HPs’ interactors of P0DTC7 and their PPI with P0DTC7 is shown 
with red edges (see Fig. 8a). 

Following the same strategy for all SV proteins leads to SV-human 
PPI network with 87894 interactions between 201 SV proteins and 
2679 HPs. From the whole SV-human PPI network, 7201 interactions 
belong to SARS-CoV-2-human PPI network between 11 VPs and 1898 
HPs. 

3.6. Q86VP6, Q92905, Q13573, and P01106 are the most central nodes 
in human interactors of SARS-CoV-2 

Human PPI network (HPPIN) has 261624 interactions between 
19985 HPs. The induced subgraph of HPPIN of the 1898 HPs which 

Fig. 8. Fig. 8-a shows P0DTC7-human protein-protein interaction network. P0DTC7 proteins are shown with red nodes. Its IAV orthologs are shown with green nodes 
which have 389 interactions with 218 HPs (blue nodes). 49 HPs which have weights more than 10 and are connected to at least 2 IAV proteins were selected as final 
interactors of P0DTC7 proteins and so the final P0DTC7-human PPI network is a bipartite network among the red nodes and 49 blue nodes which are connected by red 
edges. Fig. 8-b shows induced subgraph of human protein-protein interaction network of human proteins interacting with SARS-CoV-2 proteins. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. 122 enriched molecular functions of human proteins targeted by SARS-CoV-2 proteins.  
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interact with SARS-CoV-2 is called HPPINS depicted in Fig. 8b. 
HPPINS has 18342 interactions between 1756 HPs. By calculating 

different centrality measures, the following HPs were the most impor-
tant nodes of the HPPINS which can be good candidates for experimental 
PPI test. 

Q86VP6 (cullin-associated NEDD8-dissociated protein 1) with the de-
gree of 392 (highest degree), closeness of 0.52, radiality of 0.84, and 
betweenness of 0.06 interacts with P0DTC1, P0DTC4, and P0DTC6. 

Q92905 (COP9 signalosome complex subunit 5) with the degree of 365, 
closeness of 0.52, radiality of 0.84 (highest radiality) and betweenness 
of 0.06 interacts with P0DTC4, P0DTC6, P0DTD2, P0DTD8, and 
A0A663DJA2. 

P01106 (myc proto-oncogene protein) with the degree of 311, close-
ness of 0.5, radiality of 0.83 and betweenness of 0.07 (highest 
betweenness) interacts with A0A663DJA2. 

Q13573 (SNW domain-containing protein 1) with the degree of 307, 
closeness of 0.52 (highest closeness), radiality of 0.83 and betweenness 
of 0.045 interacts with P0DTC4, P0DTD8, and P0DTD1. 

3.7. GO enrichment analysis 

SARS-CoV-2-human PPI network has 1898 HPs out of which 1130 
HPs interacts with at least two SARS-CoV-2 proteins. GO enrichment 
analysis were performed with PANTHER classification system [50] on 
these 1130 HPs in three separate classes for detecting enriched biolog-
ical process, molecular function, and cellular component. 122 enriched 
molecular function, 199 enriched cellular components, and 748 
enriched biological process with p-value less than 0.01 were extracted. 
Fig. 9 shows enriched molecular functions which is depicted with 
REVIGO [51]. 

3.8. 727 interactions of SARS-CoV-2-human PPI network belongs to 215 
differentially expressed HPs 

GSE150316 is an expression profiling by high throughput sequencing 
experiment on five COVID-19 positive patients and five negative control 
ones in five different organs. We compare the gene expression data of 
each organ between positive patients and negative controls and report 
genes with their log2 fold changes higher than one (over expressed at 
least two times), as differentially expressed genes (DEGs). Thereafter, we 
search these DEGs among HPs targeted by SARS-CoV-2 proteins in our 
predicted SV-human network and marked them. Twenty DEGs are 
detected in lung which make 255 interactions in SV-human PPI network. 
Ninety-five DEGs are detected in heart which make 2099 interactions in 
SV-human PPI network. Nine DEGs are detected in liver which make 104 
interactions in SV-human PPI network. Six DEGs are detected in kidney 
which make 27 interactions in SV-human PPI network. And finally, 
thirty-five DEGs are detected in bowel which make 634 interactions in 
SV-human PPI network. 

GSE1739 [52] is an expression profiling by array experiment on ten 
SARS patients and four negative controls. We compared the gene 
expression data of positive patients and negative controls and report 
genes with their log2 fold changes higher than one as DEGs. Thereafter, 
we search these DEGs among HPs of our predicted SV-human network 
and marked them. One hundred sixty-eight DEGs make 6319 in-
teractions in SV-human PPI network. 

Out of these 9072 interactions of SV-human PPI network, 727 in-
teractions belong to SARS-CoV-2-human PPI network between 215 HPs 
and SARS-CoV-2 proteins. We marked all of these interactions in our 
database. 

4. Conclusion 

In the current study, by collecting 180 reports from the world health 
organization, we demonstrate how COVID-19 reached a pandemic state 
all over the world. Then, we investigated SARS-CoV-2 orthologs. As all 

of its orthologs belong to Sarbecovirus, we decided to work on the whole 
Sarbecovirus proteins. Initially, we clustered its proteins according to 
their length and eliminated proteins with high sequence identities 
within each group. Thereafter, we found similar Alphainfluenzavirus 
proteins by primary structure, secondary structure, accessibility, and 
gene ontology semantic similarities. And finally, we made a weighted 
Sarbecovirus-human protein-protein interaction network by connecting 
Sarbecovirus proteins to human proteins, which have interactions with 
at least two of their similar Alphainfluenzavirus proteins and weighted 
them according to their clustering coefficient. Our final dataset contains 
87894 protein-protein interactions between Sarbecovirus and human 
proteins. The first 7201 interactions belong to SARS-CoV-2-human 
protein-protein interactions. The constructed weighted protein-protein 
interaction network is publicly available at http://bioinf.modares.ac. 
ir/software/complexnet/Corona/CoronaPPIN.txt. 
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