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Antifreeze proteins are important antifreeze materials that have been widely used
in industry, including in cryopreservation, de-icing, and food storage applications.
However, the quantity of some commercially produced antifreeze proteins is
insufficient for large-scale industrial applications. Further, many antifreeze proteins have
properties such as cytotoxicity, severely hindering their applications. Understanding
the mechanisms underlying the protein–ice interactions and identifying novel antifreeze
proteins are, therefore, urgently needed. In this study, to uncover the mechanisms
underlying protein–ice interactions and provide an efficient and accurate tool for
identifying antifreeze proteins, we assessed various evolutionary features based
on position-specific scoring matrices (PSSMs) and evaluated their importance for
discriminating of antifreeze and non-antifreeze proteins. We then parsimoniously
selected seven key features with the highest importance. We found that the selected
features showed opposite tendencies (regarding the conservation of certain amino
acids) between antifreeze and non-antifreeze proteins. Five out of the seven features
had relatively high contributions to the discrimination of antifreeze and non-antifreeze
proteins, as revealed by a principal component analysis, i.e., the conservation of the
replacement of Cys, Trp, and Gly in antifreeze proteins by Ala, Met, and Ala, respectively,
in the related proteins, and the conservation of the replacement of Arg in non-antifreeze
proteins by Ser and Arg in the related proteins. Based on the seven parsimoniously
selected key features, we established a classifier using support vector machine, which
outperformed the state-of-the-art tools. These results suggest that understanding
evolutionary information is crucial to designing accurate automated methods for
discriminating antifreeze and non-antifreeze proteins. Our classifier, therefore, is an
efficient tool for annotating new proteins with antifreeze functions based on sequence
information and can facilitate their application in industry.

Keywords: antifreeze proteins, support vector machine, evolution, machine learning, position-specific
scoring matrix

INTRODUCTION

Antifreeze proteins can protect cells and body fluids from freezing by hindering the nucleation,
inhibiting the growth of ice crystals, and impeding the recrystallization of ice (Kandaswamy et al.,
2011) and are thus important natural antifreeze materials that are widely used in food preservation
(Zhan et al., 2018; Provesi et al., 2019; Song et al., 2019), medicine (Lee et al., 2012; Khan et al.,
2019), and biotechnological applications (Naing and Kim, 2019). They were first found in the
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blood of Antarctic fishes about 50 years ago (DeVries
and Wohlschlag, 1969; DeVries et al., 1970). Later studies
revealed their existence in other living organisms that have to
withstand sub-zero temperatures in their lifetimes, including
plants (Griffith et al., 1992; Duman and Olsen, 1993), insects
(Husby and Zachariassen, 1980), fungi (Duman and Olsen,
1993), and bacteria (Duman and Olsen, 1993). However,
despite their superior performance at the molecular level,
the quantity of many proteins that can be commercially
produced is insufficient for large-scale industrial applications
(Nishimiya et al., 2008). Further, some important antifreeze
proteins are cytotoxic, which severely limits their potential
applications (Naing and Kim, 2019). Therefore, developing
tools to identify novel proteins with antifreeze functions is
urgently needed.

However, in spite of similar functions among antifreeze
proteins, traditional tools that search for homologous proteins
based on sequence similarity, such as Basic Local Alignment
Search Tool (BLAST) and Position-Specific Iterative (PSI)-
BLAST, perform poorly when attempting to identify antifreeze
proteins (Kandaswamy et al., 2011; Eslami et al., 2018; Nath
and Subbiah, 2018), because antifreeze proteins exhibit a
great diversity among species in their structures and sequence
properties. For example, the ice-binding sites in fishes are
moderately hydrophobic (Jia and Davies, 2002), while in
plants they are mostly hydrophilic (Ramya, 2017). Distinct
physicochemical and structural properties are also evident
even among phylogenetically related species. Previous research
on teleost fishes identified four unrelated types of antifreeze
proteins, categorized by their differences in sequence and
structural characteristics (Ewart et al., 1999). Type I antifreeze
proteins are alanine-rich α-helical proteins; type II have
C-type lectin folds of mixed α-helices and β-strands and are
composed mainly of Cys, Ala, Asn, Gln, and Thr; type III
are globular proteins with no particular repeated structure;
type IV mainly consist of Glu and Gln and have folded
α-helical bundles (Cheung et al., 2017). In insects, there
are two types of antifreeze proteins that are fundamentally
different in their primary, secondary, and tertiary structures
despite both containing two rows of Thr residues that
form β-helices (Jia and Davies, 2002). Similarly, in plants,
15 antifreeze proteins have been purified and characterized
(Gupta and Deswal, 2014), and they have low homology
and highly diverse properties regarding amino acid sequences
(Atici and Nalbantoglu, 2003). Overall, these results suggest
that antifreeze proteins may have independently evolved
their ice-binding capacities (Cheung et al., 2017) and this
has impeded our understanding of the relationship between
sequence and function.

Despite these challenges, some researchers have attempted to
build classifiers to identify antifreeze proteins based mostly on
sequence-derived properties (Doxey et al., 2006; Kandaswamy
et al., 2011; Zhao et al., 2012; Appels et al., 2018). For
example, Doxey et al. (2006) established an algorithm to
predict antifreeze proteins based on physicochemical surface
features. Their method, unfortunately, is not suitable for the
majority of proteins, as 3D crystallographic structures are

unavailable for most proteins. Later studies on predicting
antifreeze proteins used modern machine learning algorithms,
which have demonstrated their ability in other protein-related
research, such as identifying membrane proteins and their
subcategories (Chou and Shen, 2007), predicting subcellular
localization of multi-label proteins (Javed and Hayat, 2019),
and classifying protein secondary structures (Ge et al., 2019).
Most of these studies focused on amino acid composition-
related features, and various physicochemical properties of
amino acid sequences have been extensively used to identify
antifreeze proteins (Kandaswamy et al., 2011; Yu and Lu,
2011; Mondal and Pai, 2014; Pratiwi et al., 2017). In contrast,
despite the presumed convergent evolution of antifreeze
proteins, Zhao et al. (2012) built a classifier with high
performance solely based on evolutionary features derived
from position-specific scoring matrices (PSSMs), suggesting
that evolutionary information is also important for identifying
antifreeze proteins. He et al. (2015) further compared the
performances of evolutionary features with two amino acid
composition metrics (i.e., amino acid composition and pseudo
amino acid composition), and showed that features derived
from PSSMs achieved higher performance. Similarly, Yang
et al. (2015) reported that among various features pertinent
to identifying antifreeze proteins, features derived from PSSMs
accounted for the largest proportion, though another study
showed that physicochemical properties were more important
(Eslami et al., 2018). Nevertheless, these results suggest
that identifying the evolutionary information underlying the
differentiation between antifreeze and non-antifreeze proteins
is important for increasing our understanding of protein–
ice interactions.

In this study, to uncover the mechanisms of protein–ice
interactions and provide an efficient and accurate automated tool
for identifying antifreeze proteins, we identified key evolutionary
information underlying the differentiation between antifreeze
and non-antifreeze proteins. We first derived evolutionary
features from PSSMs. A problem that was not resolved
in most previous studies on building classifiers based on
machine learning algorithms is that antifreeze proteins are
rare compared to non-antifreeze proteins. This can lead the
models to focusing on non-antifreeze proteins, thus impairing
the training process and the assessment of model accuracy
(ACC) (Yang et al., 2015). Therefore, we created a pre-
processed training data set by using the Majority Weighted
Minority Oversampling TEchnique (MWMOTE) to generate
synthetic antifreeze proteins based on the weighted informative
antifreeze proteins in the raw training data set to remedy
the imbalanced training problem (Barua et al., 2014). This
method uses a clustering approach to ensure that all generated
antifreeze proteins are within some raw antifreeze protein
clusters and has been shown to outperform several other methods
(Barua et al., 2014). Thereafter, we parsimoniously selected
key features to reduce redundant and noisy information based
on a feature selection procedure. A classifier based on the
selected key features was then trained using the support vector
machine (SVM) method to discriminate antifreeze and non-
antifreeze proteins.
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MATERIALS AND METHODS

Data Sets
The benchmark data sets of antifreeze and non-antifreeze
proteins were obtained from Kandaswamy et al. (2011).
Previously, 481 antifreeze and 9439 non-antifreeze proteins with
low similarity (≤40%) were selected in the study by Kandaswamy
et al. (2011), and 221 antifreeze and all the non-antifreeze protein
sequences were retrieved from seed proteins in the Pfam database
(Sonnhammer et al., 1997). In this study, we further removed
sequences containing ambiguous residues, i.e., “X”, “B”, “U”, and
“O”. In total, 479 antifreeze and 9139 non-antifreeze protein
sequences were retained to derive features from PSSMs.

PSI-BLAST was used to assess the PSSM for each sequence
based on sequences in the non-redundant Swiss-PROT database
that share significant similarity, with three iterations and an
e-value threshold of 0.0001 (Bhagwat and Aravind, 2007; Zhu
et al., 2019). The raw PSSMs are n× 20 matrices; n rows indicate
the query protein residues with n being the length of the protein
sequence and 20 columns represent the 20 standard amino acids
that may exist in the related protein sequences. The element in ith
row and jth column assesses the frequencies of a specific amino
acid (X) at position i in the query sequence mutating to the jth
alternative amino acid (Z) in the related protein sequences during
the evolution process. Some amino acids in the rows of each raw
PSSM may appear multiple times. The rows of the same amino
acids were then summed to form a 20 × 20 matrix. Thereafter,
the matrix was transformed into a vector with 400 dimensions
[features; for details see Zhao et al. (2012)]. Thus, each element
in the vector is the occurrence of the replacement of a specific
amino acid (X) in the query protein by an alternative amino acid
(Z) in the related proteins, which indicates the conservation of
amino acid X in each query protein. A negative (low) value of X–
Z, or a positive (high) value of X–X, suggests that the mutation
rate of amino acid X to Z or other amino acids is lower than
expected by chance and thus X is conserved. Some sequences
could not be assessed in the PSSM analysis and were, therefore,
excluded. Finally, vectors based on 398 antifreeze and 7423 non-
antifreeze proteins were combined into a single data set, and
80% of the antifreeze and non-antifreeze proteins were used
as the training data set while the remaining 20% were used as
the test data set.

The training data set was then pre-processed based on
MWMOTE using the “imbalance” R package (Cordn et al., 2018)
with a ratio of 0.78 being achieved between antifreeze and non-
antifreeze proteins.

Feature Selection
Features were first ranked based on the mutual information
using an ensemble minimum redundancy–maximum relevance
(mRMR) approach (De Jay et al., 2013; Wang et al., 2018; Yuan
et al., 2018). The top ranked features were thus both the most
relevant for the discrimination of antifreeze and non-antifreeze
proteins and complementary to each other (Ding and Peng,
2003). Features were then added to the models sequentially
starting with the one with the highest rank and the classifier

was trained and evaluated based on five-fold cross-validation
and the independent test data set using the SVM method
(see below). To parsimoniously select key features to build the
classifier to discriminate antifreeze and non-antifreeze proteins,
the model preceding the one with decreased performance in the
independent test data set was retained.

Model Training and Evaluation
Support vector machine is a popular classifier which has solved
several bioinformatics problems (Li et al., 2016; Chen et al., 2017;
Bu et al., 2018; Zhang et al., 2018; Chao et al., 2019a,b; Sun
et al., 2019; Wang et al., 2019). The “caret” R package was used
to train models and tune the model hyperparameters based on
SVM (Kuhn, 2008). Model performances were assessed based
on ACC, sensitivity (SN), specificity (SP), and the area under
the receiver operating characteristics curve (AUC) using five-fold
cross-validation and the independent test data set (Tan et al.,
2019). ACC is the ratio of the number of correctly discriminated
proteins relative to the total number of proteins, assessing the
model’s overall performance. SN is the ratio of the number of
correctly discriminated antifreeze proteins relative to the number
of all true antifreeze proteins. SP is the ratio of the number
of correctly discriminated non-antifreeze proteins relative to
the number of all true non-antifreeze proteins. In contrast,
AUC considers both SN and SP, evaluating the model’s capacity
to recognize antifreeze proteins among unlabeled antifreeze
proteins, and non-antifreeze proteins among unlabeled non-
antifreeze proteins. It is thus robust to imbalanced data. Higher
AUC values indicate that a model is better at discriminating
antifreeze and non-antifreeze proteins.

Additionally, to compare the performances of classifiers based
on the raw data set with classifiers based on the pre-processed
data set (created using MWMOTE) and the performances of
classifiers based on our parsimoniously selected key features with
classifiers based on all features, classifiers were also trained and
evaluated using the raw data set and the pre-processed data set
with all features. Additionally, principal component (PC) analysis
was used to further reduce the dimensionality in all data sets
and classifiers based on the first two PCs were then trained and
their performances were plotted to visually illustrate the model
performances. To assess the importance of each selected key
feature for the first two PCs, their contributions were assessed
based on the following equation:

Contribution = r2
ij/

∑
r2
ij

where r2
ij is the correlation coefficient between the ith key feature

and the jth PC.

RESULTS

Selection of Key Features for
Discriminating Antifreeze and
Non-antifreeze Proteins
Seven features derived from PSSMs were parsimoniously selected
as key features for discriminating antifreeze and non-antifreeze
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FIGURE 1 | (A) Selection of key features derived from position-specific scoring matrices (PSSMs) for discriminating antifreeze and non-antifreeze proteins. Features
were first ranked based on the mutual information using an ensemble minimum redundancy–maximum relevance (mRMR) approach. Starting with the highest ranked
feature, the top 200 features were then sequentially added to the models. Model performances were assessed using five-fold cross-validation and an independent
test data set based on the AUC, ACC, SN, and SP. The top seven features were parsimoniously selected to build the classifier to discriminate antifreeze and
non-antifreeze proteins, and AUC, ACC, and SN then decreased in the independent test data set. (B) Distribution of antifreeze and non-antifreeze proteins along the
first two principal components (PCs). Arrows indicate the correlations between each of the seven features and PC1 and PC2. (C) Contribution of each of the seven
features to PC1 and PC2. Features are sorted in a descending order based on their contributions. The expected average contribution was 1/7, as there were seven
features and the contribution of each feature was assumed to be uniform (Kassambara and Mundt, 2017).

proteins (Figure 1A). Adding more features resulted in initial
reductions in performances in the independent test data set
regarding AUC, ACC, and SN, although with even more features
being included, the performances increased (Figure 1A). Based
on the seven features, most of the proteins were correctly
discriminated in the training data set, that is 96% and 97%
antifreeze proteins and non-antifreeze proteins were correctly
identified, respectively (Table 1). The overall ACC and AUC were
0.91 and 0.96, respectively (Table 1). In the independent test
data set, a slightly lower proportion (63%) of antifreeze proteins
were successfully identified, and 97% of non-antifreeze proteins
were correctly predicted, which led to an increase in ACC but a
decrease in AUC compared to the training data set (Table 1).

The first two PCs derived from the seven selected key features
accounted for 70% of the variation among features (Figure 1B).
Along PC1, the replacements of Cys and Trp in non-antifreeze
proteins by Ala and Met, respectively, in the related proteins
increased in line with increasing occurrences of non-antifreeze
proteins (Figures 1B,C). Similarly, along PC2, Gly and Arg in
non-antifreeze proteins were more frequently replaced by Ala
and Arg, respectively, in the related proteins. In contrast, there
were fewer replacements of Cys, Trp, and Gly in antifreeze
proteins, but more Arg was replaced by Ser (Figures 1B,C).
With only the first two PCs, relatively high performances
regarding discriminating antifreeze and non-antifreeze proteins
were achieved (Table 1 and Figure 2C). The classifier correctly
identified 94% of antifreeze proteins and 78% of non-antifreeze
proteins in the training data set and 61% of antifreeze proteins
and 95% of non-antifreeze proteins in the independent test
data set (Table 1). The ACC and AUC were 0.87 and 0.90 in
the training data set, respectively, and 0.93 and 0.82 in the
independent test data set, respectively (Table 1).

Performance of MWMOTE Method
Using the MWMOTE method to create the pre-processed data set
greatly enhanced model performances. When using all features,

almost every protein was correctly identified in the training data
set, with SN and SP values of 1.00 and, in the independent test
data set, 70% of the antifreeze proteins and 100% of the non-
antifreeze proteins were correctly discriminated (Table 1 and
Figure 2B). In contrast, although the classifier trained with all
features and the raw data set showed overall high performances
in terms of AUC, ACC, and SP, this was at the expense of correctly
identifying the antifreeze proteins, i.e., a low SN (Table 1). Most
of the proteins were predicted to be non-antifreeze proteins
and only 65% and 67% of the antifreeze proteins were correctly
recognized in the training and independent test data sets,
respectively (Table 1 and Figure 2A).

DISCUSSION

We found that pre-processing based on the MWMOTE method
improved our capacity to discriminate antifreeze and non-
antifreeze proteins. Seven out of 400 features derived from PSSMs
were parsimoniously selected as the key features that led to
relatively high performances. There was still redundant and noisy
information among these features that were minimized using a
PC analysis, with a minor loss of discrimination ability. These
results suggest that antifreeze and non-antifreeze proteins could
be differentiated based on a few features derived from PSSMs and
thus a little evolutionary information.

Differentiation of Antifreeze and
Non-antifreeze Proteins
Antifreeze proteins have been shown to have convergently
evolved from different protein families (Ewart et al., 1999; Nath
et al., 2013; Nath and Subbiah, 2018). Here, we found that
common evolutionary relationships among antifreeze proteins
may exist, i.e., Cys, Trp, and Gly are conservative and their
replacements by Ala, Met, and Ala, respectively, are rare in
antifreeze proteins. This result is surprising because Cys, Trp,
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TABLE 1 | Performances regarding discriminating antifreeze and non-antifreeze proteins based on the support vector machine (SVM) method in different data sets.

Features Five-fold cross-validation Independent test data set

AUC ACC SN SP AUC ACC SN SP

Raw data set 400 features 0.97 0.98 0.65 1.00 0.98 0.98 0.67 1.00

First two PCs 0.97 0.83 0.54 1.00 0.78 0.97 0.47 1.00

Pre-processed data seta 400 features 1.00 0.99 1.00 1.00 0.96 0.98 0.70 1.00

First two PCs 0.88 0.86 0.95 0.75 0.81 0.94 0.61 0.96

Pre-processed data seta Seven key features 0.96 0.91 0.97 0.84 0.89 0.96 0.63 0.97

First two PCs 0.90 0.87 0.94 0.78 0.82 0.93 0.61 0.95

“400 features” refers to all features derived from position-specific scoring matrices (PSSMs), “first two PCs” refers to the corresponding first two principal components
(PCs), and “seven key features” refers to the seven parsimoniously selected key features. aData set based on the Majority Weighted Minority Oversampling
TEchnique (MWMOTE). AUC, area under the receiver operating characteristic curve; ACC, accuracy; SN, sensitivity, SP, specificity.

FIGURE 2 | Performances of models for discriminating antifreeze and non-antifreeze proteins based on the first two principal components (PCs) derived from (A) all
features derived from position-specific scoring matrices (PSSMs) using the raw data set, (B) all features derived from PSSMs using the pre-processed data set
based on the Majority Weighted Minority Oversampling TEchnique (MWMOTE), and (C) the seven selected key features using the pre-processed data set. The upper
figures are based on five-fold cross-validation and the lower figures are based on the independent test data set. See Table 1 for exact performance values.
Additionally, the decision values that were used to predict the antifreeze and non-antifreeze proteins are shown.

Gly, Met, and Ala are the most hydrophobic amino acid residues
(Rose et al., 1985), have been shown to have high similarities
among each other in terms of hydrophobicity (Riek et al., 1995),
and thus the mutation rates or replacements of Cys, Trp, and
Gly by Ala, Met, and Ala, respectively, should be high (Riek
et al., 1995). The conservation of Cys, Trp, and Gly in antifreeze
proteins, therefore, suggests that evolutionary pressure may have
existed to keep these amino acids in antifreeze proteins, and
the conservation of Cys, Trp, and Gly may confer the antifreeze
function on proteins, although the underlying mechanisms are
still unclear. Similarly, Graham and Davies (2005) showed that,
despite the surprising divergency in primary sequences, both
isoforms of a highly effective antifreeze protein found in snow
fleas start with Gly. Gly is thought to be very unique and highly

conformationally flexible and it can occupy positions, such as
tight turns, that are impossible for all other amino acids (Betts
and Russell, 2003). The existence of Gly may be essential for
forming various ice-binding surfaces in antifreeze proteins (Jia
and Davies, 2002; Doxey et al., 2006). Moreover, the disulfide
bonds formed by paired Cys residues are ubiquitous among
antifreeze proteins in various taxa, including insects (Li et al.,
1998; Graether et al., 2000), bacteria (Bar et al., 2006), plants
(Hon et al., 1994; Bar et al., 2006), and fishes (Davies and Hew,
1990), which may enable proteins to resist destruction due to ice
adsorption or denaturation stress during freezing (Li et al., 1998).
Trp is an aromatic amino acid with a hydrophobic side chain, and
it tends to be buried in protein hydrophobic cores, potentially
forming ice-binding sites (Betts and Russell, 2003). Another
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possible explanation for the conservation of Cys, Trp, and Gly
in antifreeze proteins is that these amino acids have higher
propensities to form α-helixes (Koehl and Levitt, 1999), which
is important for inhibiting the growth of ice crystals (Knight
et al., 1991). In contrast to the conservation of Cys, Trp, and
Gly in antifreeze proteins, Arg in antifreeze proteins was more
frequently replaced by Ser and less frequently replaced by itself
in the related proteins, which suggests a lack of conservation of
Arg in antifreeze proteins. Similarly, Nath et al. (2013) compared
the evolutionary differences between three types of antifreeze
proteins in fishes and their corresponding homologous non-
antifreeze proteins, and they found that Arg is commonly avoided
in all types of antifreeze proteins. However, it is important to
note that the PSSMs of our antifreeze proteins were based on
comparing sequence similarities with related proteins but not
necessarily proteins with antifreeze function. Antifreeze proteins
are rare and dissimilar in their sequences, and PSI-BLAST and
BLAST have difficulty using an antifreeze protein as the query
sequence to search for new antifreeze proteins based on similarity
(Kandaswamy et al., 2011; Eslami et al., 2018; Nath and Subbiah,
2018). Thus, some of the sequences that were used to calculate the
PSSMs of our antifreeze proteins may have been non-antifreeze
protein sequences. If this is the case, the high frequency of
the replacement of Arg in antifreeze proteins with Ser in non-
antifreeze proteins (or, in other words, the high frequency of
the replacement of Ser in non-antifreeze proteins with Arg
in antifreeze proteins) may indicate an important mutation
contributing to antifreeze function. More stringent selection of
proteins during the assessment of PSSMs could help to clarify
this. Nevertheless, our results as well as the results from previous
studies indicate that identifying key evolutionary information
is important for understanding protein–ice interactions and for
understanding the development of antifreeze proteins from pre-
existing non-antifreeze proteins.

Comparison of Our Seven Key Features
With State-of-the-Art Tools for
Discriminating Antifreeze and
Non-antifreeze Proteins
With the advancements of genome sequencing, a large number
of sequenced proteins have been accumulated and need to be
functionally annotated. Many auto-annotation tools exist to
identify antifreeze proteins, such as TargetFreeze (He et al., 2015),
AFP_PSSM (Zhao et al., 2012), CryoProtect (Pratiwi et al., 2017),
and afpCOOL (Eslami et al., 2018). However, these tools use
too many features (Table 2), which may often be redundant
and lead to overfitting. We found that high performances
were achieved using only seven key features derived from
PSSMs. Compared with other methods, our method used the
smallest number of features while achieving the highest Matthews
correlation coefficient (MCC), which is the correlation between
predicted and true classifications and is robust to imbalanced data
(Boughorbel et al., 2017), and ACC values, as well as high SN and
SP (Table 2). These results indicate that our model outperforms
the state-of-the-art tools and so could be more appropriate for
discriminating antifreeze and non-antifreeze proteins.

TABLE 2 | Comparison of our seven key features derived from position-specific
scoring matrices (PSSMs) with existing machine learning methods for
discriminating antifreeze and non-antifreeze proteins using independent
test data set(s).

Method Number of features ACC SN SP MCC

Seven key features 7 0.96 0.63 0.97 0.57

iAFPa 13 0.95 0.13 0.97 0.09

AFP-Preda 25 0.77 0.91 0.77 0.23

AFP-PseAACa 30 0.85 0.85 0.85 0.27

TargetFreezea 300 0.91 0.92 0.91 0.04

CryoProtecta 420 0.88 0.87 0.88 0.31

AFP_PSSMb 400 0.93 0.76 0.93 N/A

afpCOOLc 641 0.96 0.72 0.98 N/A

aResults were obtained from a study by Pratiwi et al. (2017). bResults were
obtained from a study by Zhao et al. (2012). cResults were obtained from a
study by Eslami et al. (2018). AUC, area under the receiver operating characteristic
curve; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation
coefficient. N/A: not available.

CONCLUSION

Understanding the evolution of antifreeze proteins is important
for uncovering the interactions between proteins and ice,
and, more broadly, the adaptation of organisms to their
environments. We found that the conservation of several
key amino acids showed opposite tendencies in antifreeze
and non-antifreeze proteins, suggesting that there has
been strong selection pressure related to these amino acids
leading to the differentiation between antifreeze and non-
antifreeze proteins regarding their ice-binding capacities.
Moreover, we showed that evolutionary information is crucial
for designing accurate automated tools for discriminating
antifreeze and non-antifreeze proteins. Therefore, our model,
which is based on seven key features derived from PSSMs
and outperforms the state-of-the-art tools, is an efficient and
crucial tool to help to identify new antifreeze proteins and
facilitate their use.
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