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Accurate tumor, node, and metastasis (TNM) staging, especially N staging in gastric cancer or the metastasis on lymph node
diagnosis, is a popular issue in clinical medical image analysis in which gemstone spectral imaging (GSI) can provide more
information to doctors than conventional computed tomography (CT) does. In this paper, we apply machine learning methods
on the GSI analysis of lymph node metastasis in gastric cancer. First, we use some feature selection or metric learning methods to
reduce data dimension and feature space. We then employ the K-nearest neighbor classifier to distinguish lymph node metastasis
from nonlymph node metastasis. The experiment involved 38 lymph node samples in gastric cancer, showing an overall accuracy
of 96.33%. Compared with that of traditional diagnostic methods, such as helical CT (sensitivity 75.2% and specificity 41.8%) and
multidetector computed tomography (82.09%), the diagnostic accuracy of lymph node metastasis is high. GSI-CT can then be the
optimal choice for the preoperative diagnosis of patients with gastric cancer in the N staging.

1. Introduction

According to the global cancer statistics in 2011, an estimated
989,600 new stomach cancer cases and 738,000 deaths
occurred in 2008, which account for 8% of the total cases
and 10% of the total deaths. Over 70% of the new cases
and deaths were recorded in developing countries [1, 2].
The most commonly used staging system is the American
Joint Committee on Cancer Tumor, Node, and Metastasis
(TNM) [3–5]. The two most important factors that influence
survival among patients with resectable gastric cancer are
the depth of cancer invasion from the gastric wall and the
number of lymph nodes present. In areas not screened for
gastric cancer, late diagnosis reveals a high frequency of nodal
involvement. Even in early gastric cancer, the incidence of
lymph node metastasis exceeds 10%. The overall incidence
was reported to be 14.1% and 4.8% to 23.6% depending
on cancer depth [6]. The lymph node status must be pre-
operatively evaluated for proper treatment. However, the

various modalities could not obtain sufficient results. The
lymph node status is one of the most important prognostic
indicators of poor survival [7, 8].

Preoperative examinations, endoscopy, and barium meal
examinations are routinely used to evaluate cancerous lesions
in the stomach. Abdominal ultrasound, computed tomog-
raphy (CT) examination, and magnetic resonance imaging
(MRI) are commonly used to examine the presence of inva-
sion to other organs and metastatic lesions. However, their
diagnostic accuracy is limited. Endoscopic ultrasound has
been the most reliable nonsurgical method in the evaluation
of the primary tumor with 65% to 77% accuracy of N staging
due to the limited penetration ability of the ultrasound for
lymph node distant metastasis. In spite of the higher image
quality and dynamic contrast-enhanced imaging, MRI only
has an N staging accuracy of 65% to 70%. The multidetector
row computed tomography (MDCT) [9] scanner enables
for thinner collimation and faster scanning, which markedly
improves imaging resolution and enable rapid handling of
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image reconstruction. Moreover, intravenous bolus admin-
istration of contrast material permits precise evaluation
of carcinoma enhancement, and the water-filling method
enables negative contrast to enhance the gastric wall. Thus,
MDCT has a higher N staging accuracy of up to 82% and has
become a main examination method for preoperative staging
of gastric cancer [10]. Fukuya et al. [11] showed in their study
for lymph nodes of at least 5 mm that sensitivity for detecting
metastasis positive nodes was 75.2% and specificity for
detecting metastasis negative nodes was 41.8%. A large-scale
Chinese study [10] conducted by Ruijin Hospital showed that
the overall diagnostic sensitivity, specificity, and accuracy of
MDCT for determining lymph node metastasis was 86.26%,
76.17%, and 82.09%, respectively. However, with clinically
valuable scanning protocols of the spectral CT imaging
technology, we can obtain more information with gemstone
spectral imaging (GSI) than with any conventional CT (e.g.,
MDCT).

In conventional CT imaging, we measure the attenuation
of the X-ray beam through an object. We commonly define
the X-ray beam quality in terms of its kilo voltage peak
(kVp) that denotes the maximum photon energy, as the
X-ray beam comprises a mixture of X-ray photon energies.
GSI [12] with spectral CT, and conventional attenuation
data may be transformed into effective material densities,
that enhance the tissue characterization capabilities of CT.
Furthermore, through the monochromatic representation
of the spectral CT, the beam-hardening artifacts can be
substantially reduced, which is a step toward quantitative
imaging with more consistent image measurements for
examinations, patients, and scanners.

In this paper, we intend to use the machine learning
method to handle the large amount information provided
by GSI and to improve the accuracy for the determination
of lymph node metastasis in gastric cancer.

The paper is arranged as follows, Section 2 describes the
details of the methods used in this paper, Section 3 presents
the experimental framework and the results, and Section 4
concludes the present study and discusses potential future
research.

2. Methodology

Figure 1 shows a flow chart illustrating the whole framework
of the classification on lymph node metastasis in gastric
cancer.

2.1. Pre-Processing. GSI-CT examination was performed
among patients using the GE Discovery CT750 HD (GE-
Healthcare) scanner [13]. Each patient received an intramus-
cular administration of 20 mg of anisodamine to decrease
peristaltic bowel movement and drank 1,000 to 1,200 mL tap
water for gastric filling 5 to 10 min before the scan. Patients
were in a supine position. After obtaining the localizer
CT radiographs (e.g., anterior-posterior and/or lateral), we
captured the unenhanced scan of the upper abdomen and
then employed the enhanced GSI scan in two phases. An
80 mL to 100 mL bolus of nonionic iodine contrast agent

was administered to the ante-cubital vein at a flow rate
of 2 mL/sec to 3 mL/sec through a 20-gauge needle using
an automatic injector. CT acquisitions were performed in
the arterial phase (start delay of 40 s) and in the portal
venous phase (start delay of 70 sec). The arterial phase scans
the whole stomach and the portal venous phase examines
from the top of the stomach diaphragm to the abdominal
aortic bifurcation plane. The GSI-CT scanning parameters
are as follows: scan mode of spectral imaging with fast tube-
voltage switching between 80 kVp and 140 kVp, the currents
of 220 mA to 640 mA, slice thickness of 5 mm, rotation speed
of 1.6 s to 0.8 s, and pitch ratio of 0.984 : 1.

2.2. Feature Extraction. Lymph node regions of interest
(ROIs) were delineated by experienced doctors. Not all the
lymph nodes could be captured in the images because of
the node size or location. Figure 2 shows lymph node and
aortic in the arterial phase and venous phase under 70 keV
monochromatic energy. The lymph node on Figure 2(b) is
difficult to find for its small size. The monochromatic values
(Hu) and the mean of material basis pairs (µg/cm3) were
calculated. The features used in this paper are monochro-
matic CT values (40 keV to 140 keV) and material basis pairs
(Calcium-Iodine, Calcium-Water, Iodine-Calcium, Iodine-
Water, Water-Calcium, Water-Iodine, Effective-Z).

During the image acquisition process, variations on
the injection speed, dose of the contrast agents and their
circulation inside the body of patients can cause differences
in the CT numerical values. To eliminate discrepancies, the
arterial CT value of the same slice was recorded at mean time,
and then normalization work was conducted by using the
following formula:

Norm = ROI mean CT value
Aortic mean CT value

. (1)

2.3. Feature Selection

2.3.1. mRMR Algorithm. Minimal redundancy maximal rel-
evance (mRMR) is a feature-selection scheme proposed by
[14] mRMR that uses the information theory as a standard
with better generalization and efficiency and accuracy for
feature selection. Each feature can be ranked based on its
relevance to the target variable, and the ranking process con-
siders the redundancy of these features. An effective feature is
defined as one that has the best trade-off between minimum
redundancy within the features and maximum relevance to
the target variable [15]. Mutual information (MI), which
measures the mutual dependence of two variables, is used to
quantify both relevance and redundancy in this method [16].
The two most used mRMR criteria are mutual information
difference (MID) and mutual information quotient (MIQ),

MID : max
i∈Ωs

⎡
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|S|
∑
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H
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i, j
)
⎤
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)]
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Figure 1: Flow chart classification on lymph node metastasis in gastric cancer.
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Figure 2: Gastric lymph node at 70 keV energy.

where H(i, c) is the MI between feature i and classification c,
H(i, j) is MI between features i and j, S is the current feature
set, and |S| is the length of the feature set.

2.3.2. SFS Algorithm. Sequential forward selection (SFS) is
a traditional heuristic feature selection algorithm [17, 18].
SFS starts with an empty feature subset Si. In each iteration
only one feature is added to the feature subset. To determine
which feature to add, the algorithm tentatively adds an
unselected feature to the candidate feature subset and tests
the accuracy of the classifier built on the tentative feature
subset. The feature that exhibits the highest accuracy is
finally added to the feature subset. The process stops after
an iteration in which no features can be added, resulting in
an improvement in accuracy.

2.4. Metric Learning Algorithm. Learning good distance met-
rics in feature space is crucial to many machine learning

works (e.g., classification). A lot of existing works has shown
that properly designed distance metrics can greatly improve
the KNN classification accuracy compared to the standard
Euclidean distance. Depending on the feasibility of the
training samples, distance metric learning algorithms can
be divided into two categories: supervised distance metric
learning and unsupervised distance metric learning. Table 1
shows the several distance metric learning algorithms.
Among them, principal component analysis (PCA) is the
most commonly used algorithm for the problem of dimen-
sionality reduction of large datasets like in the application of
face recognition [19], image retrieval [20].

2.5. Classification. The K-nearest neighbor (KNN) [21, 26]
algorithm is among the simplest of all machine algorithms.
In this algorithm, an object is classified by a majority vote of
its neighbors. The object is consequently assigned to the class
that is most common among its KNN, where K is a positive
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Table 1: Distance metric learning methods used in this work.

Unsupervised distance metric learning method Principal component analysis (PCA) [19, 21]

Supervised distance metric learning method

Global
Fisher discriminative analysis (FDA) [21]

Relevant component analysis (RCA) [22]

Local
Neighborhood component analysis (NCA) [23]

Local fisher discriminative analysis (LFDA) [24]

Large margin nearest neighborhood (LMNN) [25]

integer that is typically small. If K = 1, then the object is
simply assigned to the class of its nearest neighbor.

The KNN algorithm is first implemented by introducing
some notations S = (xi, yi), i = 1, 2, . . . N is considered the
training set, where xi is the d-dimensional feature vector, and
yi ∈ {+1,−1} is associated with the observed class labels. For
simplicity, we consider a binary classification. We generally
suppose that all training data are iid samples of random
variables (X ,Y) with unknown distribution.

With previously labeled samples as the training set S, the
KNN algorithm constructs a local subregion R(x) ⊆ �d of
the input space, which is situated at the estimation point
x. The predicting region R(x) contains the closest training
points to x, which is written as follows:

R(x) = {x̂ | D(x, x̂) ≤ d(k)
}

, (3)

where d(k) is the kth order statistic of {D(x, x̂)}N1 , and
D(x, x̂) is the distance metric. k[y] denotes the number
of samples in region R(x), which is labeled y. The KNN
algorithm is statistically designed for the estimation of
posterior probability p(y | x) of the observation point x:

p
(
y | x) = p

(
x | y)p(y)
p(x)

∼= k
[
y
]

k
. (4)

For a given observation x, the decision g(x) is formulated by
evaluating the values of k[y] and selecting the class that has
the highest k[y] value

g(x) =
{

1, k
[
y = 1

] ≥ k
[
y = −1

]
,

−1, k
[
y = −1

] ≥ k
[
y = 1

]
.

(5)

Thus, the decision that maximizes the associated posterior
probability is employed in the KNN algorithm. For a binary
classification problem in which yi ∈ {+1,−1}, the KNN
algorithm produces the following decision rule:

g(x) = sgn
(
avexi∈R(x)yi

)
. (6)

3. Experimental Results and Discussion

3.1. Experiments. The image data used in our work were
acquired from GE Healthcare equipment in Ruijin Hospital
on April 2010. We collected got 38 gastric lymph node
datasets. Among the datasets were 27 lymph node metastasis
(positive) and 11 nonlymph node metastasis (negative). All
the lymph node data were pathology results obtained after
lymph node dissection (lymphadenectomy) in patients.

3.1.1. Univariate Analysis. In this study, we conduct univari-
ate analysis by exploring variables (features) one by one. We
analyze each feature by calculating its relevance to lymph
node metastasis. Here, we use the following measurements:

(i) Two-Tailed t-test: The two-tailed test is a statistical
test used in inference, in which a given statistical
hypothesis, H0 (the null hypothesis), is rejected when
the value of the test statistic is either sufficiently small
or sufficiently large.

(ii) Point Biserial Correlation Coefficient (rpb):

rpb =
Avgp − Avgq

Stdy

√
pq. (7)

In regard to the p, q notation formula Avgp is the
mean for nondichotomous values in connection with
the variable coded 1, and Avgq is the mean for
the non-dichotomous values for the same variable-
coded 0. Stdy is the standard deviation for all non-
dichotomous entries, and p and q are the proportions
of the dichotomous variable-coded 1 and 0, respec-
tively.

(iii) Information Gain (IG): IG is calculated by the
entropy of the feature X , H(X) minus the conditional
entropy of Y given X , H(X | Y)

IG(X | Y) = H(X)−H(X | Y). (8)

(iv) Area Under Curve (AUC).

(v) Symmetrical Uncertainty (SU): SU is the normaliza-
tion of IG within [0, 1], where the higher value of SU
shows a higher relevance for feature X and class Y (as
a measure of correlation between the features and the
concept target)

SU(X ,Y) = 2
[

IG(X | Y)
H(X) + H(Y)

]
. (9)

The experimental results of the univariate analysis are
shown in Tables 2 and 3. Based on the table, the Iodine-
Water, Iodine-Calcium, Calcium-Iodine, and Effective-Z fea-
tures show high relevance to lymph node metastasis. Among
these features, high relevance to lymph node metastasis
was clinically confirmed for Iodine-Water and Effective-Z
features. Both Iodine-Water and Iodine-Calcium features
reflect the concentration of the iodinated contrast media
uptake by the surrounding tissue, and thus they are related
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Table 2: Univariate analyses of the features of gastric lymph node metastasis arterial phase.

No. Feature
Mean ± Standard

P1 P2 rpb AUC SU IG
Negative Positive

1 40 keV 114.97± 29.84 177.79± 46.25 0.000 0.000 0.569 0.875 0.174 0.186

2 50 keV 85.55± 18.81 123.69± 30.44 0.000 0.000 0.540 0.869 0.174 0.186

3 60 keV 67.49± 13.36 90.63± 21.15 0.000 0.002 0.488 0.845 0.186 0.208

4 70 keV 56.74± 11.53 68.93± 15.63 0.000 0.025 0.362 0.774 0.106 0.104

5 80 keV 49.93± 11.53 54.84± 13.68 0.001 0.302 0.172 0.596 0.070 0.071

6 90 keV 45.30± 12.05 45.27± 13.55 0.025 0.994 −0.001 0.502 0.001 0.001

7 100 keV 42.01± 12.18 39.08± 13.46 0.114 0.537 −0.103 0.552 0.013 0.015

8 110 keV 39.71± 12.37 34.68± 13.54 0.272 0.295 −0.174 0.599 0.014 0.015

9 120 keV 38.13± 12.56 31.62± 13.68 0.434 0.182 −0.221 0.623 0.025 0.027

10 130 keV 36.83± 12.73 29.25± 13.86 0.570 0.127 −0.252 0.653 0.079 0.086

11 140 keV 35.89± 12.86 27.41± 14.00 0.673 0.092 −0.277 0.660 0.079 0.086

12 Effective-Z 8.18± 0.26 8.71± 0.35 0.000 0.000 0.601 0.896 0.317 0.336

13 Calcium-Iodine 819.69± 10.39 810.02± 10.70 0.284 0.015 −0.391 0.754 0.126 0.127

14 Calcium-Water 14.05± 5.77 27.26± 9.12 0.000 0.000 0.594 0.899 0.315 0.343

15 Iodine-Calcium −579.62± 8.65 −568.30± 9.31 0.000 0.001 0.500 0.822 0.174 0.165

16 Iodine-Water 10.10± 4.11 19.20± 6.22 0.000 0.000 0.596 0.896 0.315 0.343

17 Water-Calcium 1021.57± 15.74 1000.17± 18.21 0.000 0.002 −0.494 0.818 0.174 0.165

18 Water-Iodine 1030.55± 13.74 1017.24± 15.20 0.291 0.017 −0.386 0.734 0.174 0.165

Table 3: Univariate analyses of the features of gastric lymph node metastasis venous phase.

No. Feature
Mean ± Standard

P1 P2 rpb AUC SU IG
Negative Positive

19 40 keV 168.56± 45.67 199.95± 51.33 0.000 0.087 0.282 0.684 0.070 0.072

20 50 keV 117.94± 29.61 137.13± 32.85 0.000 0.102 0.269 0.673 0.070 0.072

21 60 keV 86.91± 20.03 98.71± 22.14 0.000 0.135 0.247 0.653 0.086 0.092

22 70 keV 67.54± 13.52 73.94± 14.14 0.000 0.209 0.209 0.620 0.106 0.104

23 80 keV 55.09± 11.10 57.96± 11.31 0.000 0.481 0.118 0.559 0.110 0.122

24 90 keV 46.76± 10.95 47.02± 11.50 0.000 0.949 0.011 0.535 0.018 0.018

25 100 keV 41.08± 11.04 39.90± 12.06 0.000 0.781 −0.047 0.562 0.018 0.020

26 110 keV 37.08± 11.29 34.81± 12.73 0.003 0.611 −0.085 0.599 0.011 0.011

27 120 keV 34.25± 11.56 31.27± 13.30 0.012 0.521 −0.107 0.613 0.011 0.011

28 130 keV 32.10± 11.86 28.56± 13.79 0.028 0.461 −0.123 0.613 0.011 0.011

29 140 keV 30.37± 12.09 26.42± 14.19 0.052 0.423 −0.134 0.626 0.018 0.019

30 Effective-Z 8.61± 0.38 8.87± 0.42 0.000 0.081 0.286 0.680 0.087 0.088

31 Calcium-Iodine 812.48± 9.36 807.83± 11.88 0.651 0.254 −0.190 0.643 0.025 0.026

32 Calcium-Water 24.65± 9.57 31.44± 11.52 0.000 0.093 0.276 0.673 0.086 0.087

33 Iodine-Calcium −570.78± 8.89 −565.23± 11.43 0.005 0.159 0.233 0.650 0.037 0.042

34 Iodine-Water 17.56± 6.43 22.25± 7.71 0.000 0.084 0.284 0.667 0.074 0.073

35 Water-Calcium 1005.60± 17.73 994.85± 22.22 0.011 0.162 −0.231 0.657 0.037 0.042

36 Water-Iodine 1021.14± 13.95 1014.62± 17.03 0.631 0.270 −0.184 0.636 0.011 0.011

to lymph node metastasis. The Calcium-Iodine feature
indicates tissue calcification, which rarely exists in lymph
nodes. However, experimental results show that the Calcium-
Iodine feature is highly related to lymph node metastasis,
which must be further verified by clinical results.

Based on the statistical results of rpb, AUC, SU, and IG,
compared with high monochromatic energy, low-energy

features have higher relevance to lymph node metastasis
according to clinical results. As shown in Figure 3, low-
energy images display a large difference between lymph node
metastasis (positive) and non-lymph node metastasis (neg-
ative), as monochromatic energy is associated with higher
energies that yield less contrast between materials and more
contrast with low energies. However, low-energy images
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Figure 3: Monochromatic energy CT value in the arterial and venous phases of gastric lymph node metastasis.

Table 4: Classification performance of the SFS-KNN algorithm with different neighborhood sizes.

Neighborhood size K = 1 K = 3 K = 5 K = 7 K = 9

Prenorm
Selected features 14, 16

14, 31, 5, 15, 26, 4, 27,
21, 24, 9, 32, 2, 25, 8,

28, 3, 16

14, 31, 10, 36, 3,
25, 2

12, 31, 8, 29, 3, 15, 33, 1
12, 31, 23, 26, 3, 24,

30, 16

Accuracy 88.29% 93.68% 93.29% 91.71% 92.24%

Norm
Selected features 12, 30 20, 15, 11, 30, 5 12, 30, 31, 33, 14

12, 19, 20, 30, 5, 18, 25,
17, 34, 3, 32, 15, 24

12, 19, 29, 30, 8, 34,
33, 25, 15, 6, 24, 7,

10, 20, 17

Accuracy 93.95% 96.45% 96.58% 96.18% 97.89%
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Figure 4: SFS-KNN feature selection procedures on raw and normalized data.

Table 5: Classification performance of mRMR-KNN (MIQ) with different neighborhood sizes.

Neighorhood size K = 1 K = 3 K = 5 K = 7 K = 9

Sequence
14, 19, 5, 17, 23, 12, 3, 16, 18, 22, 1, 15, 4, 2, 30, 13, 21, 32, 10, 33, 11, 34, 20, 35, 31, 25, 9, 29, 24,
8, 7, 26, 36, 27, 28, 6

Prenorm Length 1 28 28 35 1

Accuracy 87.50% 89.74% 89.08% 87.24% 81.71%

Sequence
15, 21, 3, 30, 17, 24, 12, 14, 23, 5, 16, 22, 2, 18, 27, 1, 20, 4, 33, 25, 13, 19, 6, 28, 35, 26, 32, 7, 29,
34, 8, 31, 9, 11, 10, 36

Norm Length 4 2 2 2 10

Accuracy 90.00% 94.87% 94.87% 94.74% 95.66%

bring more noise with higher contrast. Therefore, doctors
usually select 70 keV as a tradeoff for clinical diagnosis.

3.1.2. SFS-KNN Results. Figure 4 and Table 4 present the
classification accuracy (ACC) of the KNN algorithm with
different neighborhood sizes and the SFS algorithm with
increasing lengths of the feature set. ACC first increases
with the increasing length of the feature set, and then
decreases. After application of the SFS algorithm, the feature
set becomes shorter, whereas accuracy becomes higher
compared with the original feature set that explains the
effectiveness of SFS. From Table 4, we can examine ACC with
different neighborhood sizes and selected features. When
K = 5, the performance remains stable before and after data
normalization, and ACC reaches 96.58% after normalization
and finally selects 12 (effective-Z in the arterial phase), 30
(effective-Z in the venous phase), 31 (Calcium-Iodine in the
venous phase), 33 (Iodine-Calcium in the venous phase), and
14 (Calcium-Water in the arterial phase) feature sets. These

selected features are highly related to the classification results
(lymph node metastasis). Among which the 12 (effective-Z
in the arterial phase), 30 (effective-Z in the venous phase),
33 (Iodine-Calcium in the venous phase) feature sets are
consistent with the pathology theory and clinical experience
of doctors. As for the other feature sets, their effectiveness
need to be further verified by studies. However, the SFS-
KNN algorithm is not a global optimized solution, and it may
lead to overfitting problems, which explain the decrease in
ACC. In our experiments, the amount of the samples is not
sufficient, so the large neighborhood size fails to reflect the
local characteristics of the KNN classifier. Therefore, K = 9
is not selected as the optimal size.

3.1.3. mRMR-KNN Results. Figure 5 shows two feature
selection procedures with different mRMR criteria. Tables
5 and 6 reveal the classification performance of mRMR-
KNN (MIQ and MID) with different neighborhood sizes
[27]. We can see form the two tables that the two criteria
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Table 6: Classification performance of mRMR-KNN (MID) with different neighborhood sizes.

Neighborhood size K = 1 K = 3 K = 5 K = 7 K = 9

Sequence
12, 26, 22, 18, 3, 30, 14, 6, 19, 16, 36, 2, 17, 5, 1, 24, 35, 15, 23, 4, 34, 13, 29, 21, 7, 31, 11, 32, 25,
20, 9, 28, 33, 10, 8, 27

Prenorm Length 1 26 26 26 20

Accuracy 87.50% 90.39% 89.34% 87.11% 82.50%

Sequence
15, 21, 2, 30, 24, 17, 5, 14, 23, 12, 18, 22, 27, 4, 16, 33, 7, 1, 20, 25, 13, 3, 29, 19, 6, 35, 28, 31, 8, 32,
26, 11, 34, 36, 9, 10

Norm Length 4 2 2 16 8

Accuracy 89.74% 94.87% 94.87% 95.66% 95.26%
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Figure 5: Feature selection procedures with different mRMR criteria.

of MIQ and MID acquire almost the same performances.
After normalization, the accuracy with all different K are
highly increased, thus demonstrate the positive effect of data
normalization. Among the feature sets, we can conclude
from the table that 15 (Iodine-Calcium in the arterial phase),
21 (60 keV in the venous phase), 30 (Effective-Z in the
venous phase), and 3 (60 keV in arterial phase) are closely
related to the lymph node metastasis, which highly agree with
the pathology theory and clinical experience of doctors. With
K = 5, the classification performance remains stable before
and after normalization, which further verifies the optimal K
(neighborhood size) value.

3.1.4. Metric Learning Results. Figure 6 shows 2D visualized
results of 6 different distance metric learning methods in
one validation. In the two-dimensional projection space, the
classes are better separated by the LDA transformation than
by other distance metrics. However, the result of KNN with
single distance metric is not very satisfying, that’s why we
consider combination.

Table 7 shows the classification accuracy of KNN algo-
rithm with different-distance metric learning methods.
Apparently, these results show that the data normalization

Table 7: Classification performance of the KNN algorithm with
metric learning methods.

Data (length of feature set) Prenorm (4) Norm 01 (5)

KNN 80.79% 83.68%

without PCA 80.79% 83.68%

PCA 82.11% 81.84%

PCA + LDA 77.89% 96.33%

PCA + RCA 77.63% 96.33%

PCA + LFDA 76.97% 96.33%

PCA + NCA 76.58% 86.32%

PCA + LMNN 76.84% 96.33%

helps a lot on classification. Moreover, PCA is a popular
algorithm for data dimensionality reduction and operates
in an unsupervised setting without using the class labels of
the training data to derive informative linear projections.
However, PCA can still have useful properties as linear
preprocessing for KNN classification. By combining PCA
with other supervised distance metric learning methods (e.g.,
LDA, RCA), we can obtain greatly improved performance.
The accuracy of KNN classification depends significantly
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Figure 6: Dimension reduction results of different metric learning methods in one validation.
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on the metric used to compute distances between different
samples.

3.2. Discussion. Based on the experimental results, the use
of machine learning methods can improve the accuracy of
clinical lymph node metastasis in gastric cancer. In our
study, we mainly used the KNN algorithm for classification,
which shows high efficiency. To improve effectiveness and
classification accuracy, we first employed several feature-
selection algorithms, such as mRMR and SFS methods,
which both show an increase in accuracy. We obtained
the highly related features of lymph node metastasis in
accordance with the validated results of clinical pathology.
Another way to improve accuracy is the use of distance
metric learning for the input space of the data from a
given collection of similar/dissimilar points that preserve
the distance relation among the training data, and the
application of the KNN algorithm in the new data patterns.
Some schemes used in our experiments attained the overall
accuracy of 96.33%.

4. Conclusions

The main contribution of our study is to prove the feasibility
and the effectiveness of machine learning methods for
computer-aided diagnosis (CAD) of lymph node metastasis
in gastric cancer using clinical GSI data. In this paper, we
employed a simple and classic algorithm called KNN that
combines several feature selection algorithms and metric
learning methods. The experimental results show that our
scheme outperforms traditional diagnostic means (e.g., EUS
and MDCT).

One limitation of our research is the insufficient number
of clinical cases. Thus, in our future work, we will conduct
more experiments on clinical data to improve further the
efficiency of the proposed scheme and to explore more useful
and powerful machine learning methods for CAD in clinical.

Acknowledgments

This work was supported by the National Basic Research
Program of China (973 Program, no. 2010CB732506) and
NSFC (no. 81272746).

References

[1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and
D. Forman, “Global cancer statistics,” CA Cancer Journal for
Clinicians, vol. 61, no. 2, pp. 69–90, 2011.

[2] “Cancer Facts and Figures,” The American Cancer Society,
2012.

[3] M. H. Lee, D. Choi, M. J. Park, and M. W. Lee, “Gastric cancer:
imaging and staging with MDCT based on the 7th AJCC
guidelines,” Abdominal Imaging, vol. 37, no. 4, pp. 531–540,
2011.

[4] M. M. Ozmen, F. Ozmen, and B. Zulfikaroglu, “Lymph nodes
in gastric cancer,” Journal of Surgical Oncology, vol. 98, no. 6,
pp. 476–481, 2008.

[5] P. Aurello, F. D’Angelo, S. Rossi et al., “Classification of lymph
node metastases from gastric cancer: comparison between N-
site and N-number systems. Our experience and review of the
literature,” American Surgeon, vol. 73, no. 4, pp. 359–366, 2007.

[6] T. Akagi, N. Shiraishi, and S. Kitano, “Lymph node metastasis
of gastric cancer,” Cancers, vol. 3, no. 2, pp. 2141–2159, 2011.

[7] H. Saito, Y. Fukumoto, T. Osaki et al., “Prognostic significance
of the ratio between metastatic and dissected lymph nodes
(n ratio) in patients with advanced gastric cancer,” Journal of
Surgical Oncology, vol. 97, no. 2, pp. 132–135, 2008.

[8] F. Espin, A. Bianchi, S. Llorca et al., “Metastatic lymph node
ratio versus number of metastatic lymph nodes as a prognostic
factor in gastric cancer,” European Journal of Surgical Oncology,
vol. 38, pp. 497–502, 2012.

[9] M. Karcaaltincaba and A. Aktas, “Dual-energy CT revisited
with multidetector CT: review of principles and clinical
applications,” Diagnostic and Interventional Radiology, vol. 17,
pp. 181–194, 2011.

[10] C. Yan, Z. G. Zhu, M. Yan et al., “Value of multidetector-row
computed tomography in the preoperative T and N staging
of gastric carcinoma: a large-scale Chinese study,” Journal of
Surgical Oncology, vol. 100, no. 3, pp. 205–214, 2009.

[11] T. Fukuya, H. Honda, T. Hayashi et al., “Lymph-node
metastases: efficacy of detection with helical CT in patients
with gastric cancer,” Radiology, vol. 197, no. 3, pp. 705–711,
1995.

[12] N. Chandra and D. A. Langan, “Gemstone detector: dual
energy imaging via fast kvp switching,” in Dual Energy CT in
Clinical Practice, T. F. Johnson, T. F. C, S. O. Schönberg, and
M. F. Reiser, Eds., Springer, Berlin, Germany, 2011.

[13] D. Zhang, X. Li, and B. Liu, “Objective characterization of
GE discovery CT750 HD scanner: gemstone spectral imaging
mode,” Medical Physics, vol. 38, no. 3, pp. 1178–1188, 2011.

[14] H. Peng, F. Long, and C. Ding, “Feature selection based
on mutual information: criteria of max-dependency, max-
relevance, and min-redundancy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–
1238, 2005.

[15] Y. Cai, T. Huang, L. Hu, X. Shi, L. Xie, and Y. Li, “Prediction
of lysine ubiquitination with mRMR feature selection and
analysis,” Amino Acids, vol. 42, pp. 1387–1395, 2012.

[16] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani,
“Mutual information-based feature selection for intrusion
detection systems,” Journal of Network and Computer Appli-
cations, vol. 34, no. 4, pp. 1184–1199, 2011.

[17] D. Ververidis and C. Kotropoulos, “Sequential forward feature
selection with low computational cost,” in Proceedings of the
8th European Signal Processing Conference, Antalya, Turkey,
2005.

[18] L. Wang, A. Ngom, and L. Rueda, “Sequential forward selec-
tion approach to the non-unique oligonucleotide probe selec-
tion problem,” in Proceedings of the 3rd IAPR International
Conference on Pattern Recognition in Bioinformatics, pp. 262–
275, 2008.

[19] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Robust sparse
coding for face recognition,” in Proceedings of the 24th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
’11), pp. 625–632, 2011.

[20] Z. Huang, H. T. Shen, J. Shao, S. Rüger, and X. Zhou, “Locality
condensation: a new dimensionality reduction method for
image retrieval,” in Proceedings of the 16th ACM International
Conference on Multimedia, (MM ’08), pp. 219–228, can,
October 2008.



Computational and Mathematical Methods in Medicine 11

[21] Liu Yang and Rong Jin, “Distance metric learning: a compre-
hensive survey,” Tech. Rep., Department of Computer Science
and Engineering, Michigan State University, 2006.

[22] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learn-
ing distance functions using equivalence relations,” in Proceed-
ings of the 20th International Conference on Machine Learning,
pp. 11–18, August 2003.

[23] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov,
“Neighbourhood components analysis,” in Proceedings of the
Conference on Neural Information Processing Systems (NIPS
’04), 2004.

[24] M. Sugiyama, “Dimensionality reduction of multimodal label-
ed data by local fisher discriminant analysis,” Journal of
Machine Learning Research, vol. 8, pp. 1027–1061, 2007.

[25] K. Q. Weinberger and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” Journal of
Machine Learning Research, vol. 10, pp. 207–244, 2009.

[26] C. M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics), Springer, New York, NY,
USA, 2007.

[27] C. Ding and H. Peng, “Minimum redundancy feature selection
from microarray gene expression data,” Journal of Bioinfor-
matics and Computational Biology, vol. 3, no. 2, pp. 185–205,
2005.


	Introduction
	Methodology
	Pre-Processing
	Feature Extraction
	Feature Selection
	mRMR Algorithm
	SFS Algorithm

	Metric Learning Algorithm
	Classification

	Experimental Results and Discussion 
	Experiments
	Univariate Analysis
	SFS-KNN Results
	mRMR-KNN Results
	Metric Learning Results

	Discussion

	Conclusions
	Acknowledgments
	References

