
1Scientific RepoRts | 7:41633 | DOI: 10.1038/srep41633

www.nature.com/scientificreports

High-resolution traction force 
microscopy on small focal 
adhesions - improved accuracy 
through optimal marker 
distribution and optical flow 
tracking
Claude N. Holenstein1,2, Unai Silvan1,2 & Jess G. Snedeker1,2

The accurate determination of cellular forces using Traction Force Microscopy at increasingly small 
focal attachments to the extracellular environment presents an important yet substantial technical 
challenge. In these measurements, uncertainty regarding accuracy is prominent since experimental 
calibration frameworks at this size scale are fraught with errors – denying a gold standard against 
which accuracy of TFM methods can be judged. Therefore, we have developed a simulation platform 
for generating synthetic traction images that can be used as a benchmark to quantify the influence of 
critical experimental parameters and the associated errors. Using this approach, we show that TFM 
accuracy can be improved >35% compared to the standard approach by placing fluorescent beads as 
densely and closely as possible to the site of applied traction. Moreover, we use the platform to test 
tracking algorithms based on optical flow that measure deformation directly at the beads and show 
that these can dramatically outperform classical particle image velocimetry algorithms in terms of noise 
sensitivity and error. We then report how optimized experimental and numerical strategy can improve 
traction map accuracy, and further provide the best available benchmark to date for defining practical 
limits to TFM accuracy as a function of focal adhesion size.

Recent findings in the research field of cell biomechanics have shown that the physical forces exerted by cells to 
their surrounding provide a crucial feedback for cell adhesions, growth, differentiation, migration and other key 
cellular functions1–4. These forces are generated by the actin-myosin complex of the cytoskeleton and act on the 
surrounding matrix of the cell through intercellular protein complexes called focal adhesions (FA).

To estimate the magnitude and direction of these forces, indirect methods commonly referred to as Traction 
Force Microscopy (TFM) are used, which are based on the coupling between cell-generated traction forces and 
the corresponding deformation of the surrounding matrix. This approach usually involves three separate steps: 1. 
Imaging fluorescent beads embedded in a synthetic substrate before and after cellular tension has been released 
(e.g. cell detachment or drug treatment), 2. Calculating the deformation caused by the cells by tracking the beads 
and 3. Transformation of these displacements into traction forces using a mechanical model of the underlying 
substrate.

Although many variants of the original TFM method have been developed in recent years, their utility highly 
depends on the experimental setup, the imaging and the choice of methods and parameters for both displace-
ment measurement and force reconstruction. As the TFM workflow requires that results of one step are fed as 
input to the subsequent function, error propagation results in a very high sensitivity of the system to noise with 
a potentially large influence on the results. For quantitative analysis of the results, it is indispensable to trace the 
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contribution of each factor to the overall result (Fig. 1). Despite many experimental efforts, very little research 
has been done to adequately benchmark analytical approaches including all three sub-steps, as a representative 
simulation and calibration environment has yet to be fully established5.

On different occasions, it has been shown that even “best-practices” for TFM can be very unstable in terms of 
sensitivity to input parameters. The main consequence is that methods often drastically underestimate true trac-
tion forces and focal adhesion sizes. Among the primary sources of errors, this underestimation of traction mostly 
results from resolution loss during displacement field calculation which may reduce the peak stress up to 50%6,7, 
depending on the size of the focal adhesion. On the other hand, the inversion of the elastic equation that is needed 
to calculate the traction field is an ill-posed problem, meaning that small variations in the displacement data and 
experimental noise can provoke large differences in the outcome of the traction calculation8,9. This makes the 
classic TFM approach highly sensitive to experimental noise and tracking errors.

Many published studies have tried to mitigate such numerical instability by filtering the displacement data 
to remove high-frequency signal components10, suppressing the noise amplification in the process of traction 
reconstruction by using filters based on optimal signal processing theory11, or by constraining the solution of the 
equation by using a regularization scheme6,12. Despite all efforts to mitigate corruptive effects of noise in displace-
ment data during force reconstruction, careful review of the literature reveals that little attention has until now 
been paid to the image acquisition strategy and accuracy of the displacement field calculation itself.

To enable a quantitative optimization of the TFM outcome, we developed a novel cell traction force simula-
tion and evaluation platform based on finite element analysis (FEA) with which the complete TFM process from 
microscopy image capture to force reconstruction can be quantitatively evaluated (Fig. 2). If the finite-element 
mesh is small enough compared to pixel size, the simulation allows us to reproduce the substrate deformation 
caused by cellular traction force in order to generate synthetic images that closely mimic the movement of beads 
as would be obtained in TFM. Within this framework, we can parametrically explore the effects of any processing 
step separately and the resulting accuracy of the traction force reconstruction for a known input.

By using these synthetic images as a ground truth, we propose an alternative approach to track cell-induced 
deformations making use of the Lucas-Kanade optical flow algorithm13 with an extension known as 
Kanade-Lucas-Tomasi (KLT) method to detect locally varying and large deformations using a pyramidal 
approach14. This approach solves the optical flow equation on detected features based on the assumption that the 
optical-flow is constant within a defined neighborhood. The performance of this approach is compared to the 
tracking algorithms commonly used in TFM which are based on image correlation calculated either on a regular 
grid without a priori knowledge of particle locations7,15,16 or directly on the previously identified beads6,12.

Along with this alternative tracking method, we investigated and quantified the influence of critical experi-
mental parameters on the outcome of the TFM analysis. Specifically, we estimated the traction error produced by 
any choice of the experimental setup (marker bead location and density) with respect to any desired displacement 
field algorithm.

Using extensive simulations on a wide range of input parameters, we quantitatively assessed the effects of these 
parameters against a known calibration benchmark. Therefore, the here presented data is a quantitative estima-
tion of how optimal bead location and density offers a high potential to improve both the accuracy and the signal 
quality of the results and the associated errors that should be expected.

Results
Optical flow feature tracking is orders of magnitude faster than PIV and substantially improves 
traction reconstruction, especially for small adhesions. We modeled traction as uniform horizontal 
shear stress at a focal adhesion modeled as a circular area with a diameter ranging from 0.5–5 μ m, acting on a 
cubic substrate large enough to be considered as an elastic half-plane. The resulting displacement data were used 
to generate synthetic TFM images with known bead locations and displacements that were used to validate vari-
ous TFM methods and approaches.

We compared the Kanade-Lucas-Tomasi (KLT) optical flow tracker to three different correlation-based track-
ing algorithms that are most commonly used in TFM: The widely employed particle image velocimetry method 

Figure 1. Schematic block diagram of the 3-step TFM process. During each of the three steps (imaging, 
tracking and force calculation), several experimental and numerical parameters can influence the calculated 
traction force. Therefore, low-quality imaging and noisy data will inherently lead to an error propagation/-
accumulation and deteriorate the quality and accuracy of the resulting traction maps.



www.nature.com/scientificreports/

3Scientific RepoRts | 7:41633 | DOI: 10.1038/srep41633

(PIV17,18), a template-matching PIV as proposed by Tseng (TPIV15) and a correlation-based particle tracker that 
uses the previously detected particles for the interrogation location (PTV6) (Fig. 3a, other densities see supple-
mentary Fig. S1). For all PIV approaches and for the PTV algorithm we used a window size of 16 pixels (= 0.96 μ m)  
and for the KLT a window size of 8 pixels (= 0.48 μ m) and the grid size was always 8 pixels. We measured the rela-
tive TFM error as “deviation of traction magnitude” (DTM6), where a value of 0 defines perfectly accurate traction 
reconstruction and − 1 complete underestimation of the true traction input.

It was remarkably evident that improved traction reconstruction emerged from the optical flow (KLT) algo-
rithms compared to the correlation-based trackers (PIV/PTV) especially for small focal adhesions, for which the 
traction error was reduced approximately 40–50%. For large adhesions, the difference was less substantial but 
still pronounced. Moreover, the signal-to-noise ratio (SNR, defined as the ratio between traction at the adhesion 
and background) was markedly higher for optical flow compared to current standards for TFM that rely on 
correlation-based tracking approaches (Fig. 3b).

Graphical representation of the required computational time as a function of evaluation points (features 
or beads for feature-based methods (PTV & KLT), grid points for PIV) revealed that the methods based on 
cross-correlation are significantly slower, with the needed time linearly increasing with the number of evaluation 
features. In turn, the optical flow tracker required minimal time spans independently of the number of features in 
the images (Fig. 3c). This is in accordance with the fact that the KLT algorithm solves the least-squares problem 
globally, rather than sequentially for each evaluation feature.

2D TFM always underestimates true traction forces, particularly for small adhesions. Since 
most algorithms for calculating substrate displacements from bead images are based on small interrogation 
windows around the points of interest (uniform grid position or bead location), each calculated displacement 
only represents an average of the displacements within that interrogation window. This causes an unavoidable 
underestimation of traction forces, an effect that increases with increasing window size, as has been previously 

Figure 2. The simulation and evaluation environment operates using three main steps. In the first step 
(a–c), a finite element analysis calculates the displacement field of a given traction input (a,b) which is exported 
to MATLAB (c and d–k). This deformation is then used to virtually translate 3D beads (d,h; red: before 
deformation, green: after deformation), and with user-defined inputs such as bead density (low: d–g, high: h–k) 
and location, simulated traction images can be generated in 2D (e and i). Using these images, the output of any 
TFM algorithm can be analyzed (f,g,j and k). As a sample result depicted here, a high bead density yields a more 
accurate force reconstruction.
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described5,6. Therefore, for window sizes > 1 pixel, fully accurate reconstruction can only be achieved if the local 
variations within the interrogation window are negligible.

We demonstrated the relative TFM error (DTM) based on the “best-case” scenario, i.e., a noise-free “true” 
displacement field derived numerically from the FE solution (Fig. 4a). In order to simulate the displacement res-
olution and mesh caused by different window sizes, we first calculated the discretized (ideal) displacement field 
caused by traction on every pixel. Depending on the interrogation window size, the final displacement vector 
was averaged from displacements within the given interrogation window sampled from the full field. Because the 
accuracy of the traction magnitude depended on whether or not an interrogation window (and the corresponding 
interrogation point on the mesh) lies on an adhesion area, we averaged the traction force value of n2 interrogation 
positions that are shifted within the window area, e.g. for a 32 pixel window, the shown value is the mean DTM 
of 32 ×  32 =  1024 unique TFM calculations. A window size of 1 pixel corresponds to the full displacement field, 
which is practically not achievable using the tracking algorithms presented in this work.
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Figure 3. Superior performance of optical flow tracking over standard correlation-based approaches. 
(a) The deviation of traction magnitude (DTM defined as 0 when error free and − 1 in the case of complete 
underestimation (b) Signal to noise ratio (SNR) is shown for four different displacement algorithms tested 
as discussed in methods, shown for the surface (2D) bead configuration. Using KLT to reconstruct the 
displacements yields a better force reconstruction in both magnitude and quality of the traction images, 
especially for small adhesions. (c) Linear fit to the computation time needed for the displacement analysis 
as a function of evaluation points within one image. KLT is several orders of magnitude more efficient than 
correlation-based approaches, also at a large number of evaluation points (beads).
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These values represent the upper limit of force reconstruction accuracy (i.e. lower error limit) that can be 
achieved using 2D TFM on a 3D traction field6. Inherently, smaller window sizes and larger adhesion areas 
decrease the potential error limit. To put it into a different perspective, Fig. 4b shows the same error as a function 
of adhesion diameter, but is expressed in units of the applied window size (mesh size is 50% of window size, i.e. 
neighboring interrogation windows overlap by 50%). This fitted curve to the data shows a clear trend toward 
reduced error for larger FA and smaller window sizes, where we can consider a stable force reconstruction with 
a DTM (error) below 20% if the window size is approximately 3–5 times larger than the adhesion diameter. This 
result is similar to that described by Sabass and colleagues where the outcome of the force reconstruction was 
evaluated based on displacement field analytically derived from continuum material laws6. However, in our study 
we defined the ratio as the size of the FA relative to the applied window size, as opposed to the mesh size. The 
error difference between a smaller mesh size (window overlap 50%) and a larger mesh size (window overlap 0%) 
was only apparent for very small adhesions and for large window sizes (green line in Fig. 4b). For windows that 
were approximately as large as the adhesion size (ratio ~ 1), the error was up to 20% lower using a finer mesh. This 
is in line with the Nyquist sampling theorem since a finer mesh results in at least two sampling grid points within 
a focal adhesion. When the window is at least half the size of the focal adhesion or smaller (ratio >  2), using a 
finer mesh size (i.e. higher window overlap and > 4 sampling points) does not further influence the outcome. 
Therefore using an ideal (continuous, and noise free) displacement field, without tracking any beads, the window 
size should be at least ¼ of the focal adhesion size of interest to calculate a reasonably accurate force reconstruc-
tion (DTM <  20%). For smaller adhesions, the influence of the displacement mesh size becomes more evident 
and even though it is still possible to measure those forces, the limitations, and high error should be kept in mind 
during evaluation of the traction patterns.

Higher density bead distribution on the surface improves spatial resolution. It is generally 
accepted that the experimental setup used for TFM analysis has a high influence on the achievable result, both in 
accuracy and quality. In order to further validate the performance of the KLT optical flow tracker, we simulated a 
wide range of experimental parameters, which are commonly used in TFM.

One of this critical parameters is the choice of fluorescent beads, which need to be accurately tracked to meas-
ure the cell-induced deformations. Firstly, we investigated the influence on the traction error when the beads are 
confined to the surface of the substrate rather than embedded within it (Fig. 5). As expected, the surface bead 
configuration yielded lower traction errors than the volumetric distribution. However, the difference in the esti-
mated error values calculated for both conditions was surprisingly high, especially in the case of small focal adhe-
sions. In a similar manner, SNR also improved with surface bead distribution, an effect that was most prominent 
for small adhesions. For lower bead densities, differences between surface and volumetric distributions did follow 
similar trends but were less pronounced (supplementary Fig. S1). We thus conclude that a sufficiently high bead 
density – with markers as close as possible to the adhesion – is essential for an accurate traction reconstruction.

Along with their location, the density at which beads are placed within or on top of the substrates has an 
obvious influence on TFM. Therefore we simulated different bead densities for each approach using the optical 
flow tracker and surface-distributed beads (Fig. 6; also see supplementary Fig. S2). Increasing the bead density 
led to an improved force reconstruction. This performance gain was present in both DTM and SNR, however 
increasing the bead density higher than 5 beads/μmα (surface distribution: α  =  2, volumetric distribution: α  =  3) 
counterintuitively lowered the quality of the reconstructed traction field (as indicated by the SNR). This surpris-
ing result could be explained by ambiguous local derivatives within a small window when the bead density is 
above a certain level. This could lead to spurious displacements in regions with little or no traction, represented 
by the higher variance in the background and hence the lower SNR value. For volumetric bead distributions and 
different interrogation window sizes, this trend was not observed. However, since the DTM is still decreased for 

Figure 4.  (a) Deviation in traction magnitude (DTM) using a simulated displacement field from the FE 
solution (best-case scenario for force reconstruction) for different interrogationwindow sizes (n2). Note that the 
displacements are averaged within each window to mimic the pre-smoothing by the displacement algorithms. 
(b) The same result, but displayed as a function of adhesion diameter expressed in units of mesh size. A rational 
function is fitted to the data to show the trend. Adhesions smaller than 4 mesh sizes are difficult to properly 
reconstruct.
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high bead density and the SNR – though slightly lower – remains high, it is suggested that a bead density as high 
as possible is one of the design goals of the experimental setup.
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Figure 5. Error, quantified as the deviation of traction magnitude (DTM), and signal to noise ratio (SNR) 
comparing two different bead distributions: Volumetric beads (3D, α = 3) and surface beads (α = 2). For 
all focal adhesion (FA) diameters, but especially for smaller ones, using beads on the surface yields a better force 
reconstruction. All displacements were calculated using KLT with a window size of 8 pixels.

Figure 6. Deviation of traction magnitude (DTM), and signal to noise ratio (SNR) for different bead 
densities. Up to a bead density of 5 beads/μm2, the error decreases significantly. A bead density higher than 
5 beads/μm2 only marginally decreases DTM, but also the SNR. All displacements were calculated using KLT 
with a window size of 8 ×  8 pixels.
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To further explore these results, we focused on the bead themselves and their ability to reproduce the real 
cell-induced deformations. Within the spatial domain of the substrate, the tracked bead displacements provide a 
basis to generate an analytical approximation of the true substrate displacement field. We investigated approxima-
tion accuracy of bead displacement as a function of simulated bead distribution and density, for both beads con-
fined to the surface and for beads volumetrically-embedded within the substrate. This approximation accuracy is 
represented as the mean ratio of peak displacement in the simulation (at the center of the focal adhesion) to the 
“maximally displaced bead”, i.e. the displacement of the bead which is closest to the center of the focal adhesion, 
for 20 different uniquely and randomly generated bead distributions. Hence a higher density of beads is more 
likely to represent the real displacement field.

The number of beads beneath a focal adhesion footprint increases quadratically with larger FA diameters 
(Fig. 7a). These simulated results correspond well with the analytical expectation defined as:

π σ δ= ⋅ ⋅N D
4 (1)beads z

2

where Nbeads is the number of beads below a FA, σ  the bead density, δ z the thickness of the considered region (focus 
region, here 1 μ m) and D the diameter of the FA. When comparing the surface to the volumetric distributions, 
there were large differences in approximation accuracy especially for high bead densities (5 & 10 beads/μmα), 
where the accuracy increased from 0.3–0.4 to 0.9–1 (no units) for adhesions up to 3 μ m (Figs 7b and c). For 
lower bead densities (0.33 & 1 beads/μmα) the increase was less pronounced but remained almost two-fold. 
Interestingly for surface distributions, increasing the bead density from 1 to 5 beads/μmα or higher yields a sta-
ble and substantially improved performance (Fig. 7c). A similar but less pronounced effect can be observed for 
volumetric beads but in this case, an increment of the bead density from 5 to 10 beads/μmα can still significantly 
improve the displacement calculation accuracy (Fig. 7b).

The approximation accuracy is a combination of bead location relative to the center and the displacement field 
in and around the focal adhesion. The in-plane displacement on the substrate surface that results from a uniform 
in-plane traction takes the shape of a Bessel function that is invariant relative to the focal adhesion size and dis-
placement peak (Fig. 8a). On the other hand, the depth-variant decrease of the displacement amplitude highly 
depends on the focal adhesion size and magnitude respectively (Fig. 8b). Therefore in case of a small (< 1 μ m) 
focal adhesion, the difference in the relative displacement of a bead located on the surface and a bead occupying 
a position 0.5 μ m below it would be of approximately 50%. If the beads are randomly and uniformly distributed 
in the volume, the average nearest-neighbor distance of the beads can be approximated by the expected value of 
the probability function19:

∫∆ = = . ⋅
∞ −r r f r dr N( ) 0 554 (2)bead D v v,3

0

1/3

where Δ rbead is the expected distance from the center of a bead to its nearest-neighbor and fv(r) the probability 
to find a bead from the center of another bead between r and r +  dr. Nv is the number of beads per unit volume 
(bead density). This is also the same distance from any point in the volume (here the focal adhesion center) to 

Figure 7. Spatial metrics related to the simulated random distribution of beads in both volumetric and 
surface bound configurations. (a) In both cases, the average number of beads beneath an area of a focal 
adhesion was evaluated (solid line) shown for volumetric distribution, n =  20; dashed line: Analytical solution 
per equation (1). (b) The bead displacement approximation accuracy of the bead displacement simulation as a 
function of bead density, shown for the volumetric configuration. This measure is defined as the ratio between 
the maximum displacements in the FEA simulation to the maximal bead displacement. (c) Bead displacement 
approximation accuracy of the surface bound distribution. Dashed lines represent the analytical solution. For 
a similar number of beads covered by the focal adhesion, the displacement field is better represented on the 
surface than the volumetric configuration. In actual TFM measurements, bead marker displacements are used 
to estimate the true displacement caused by the cell. Therefore, this ratio indicates the ability for a given bead 
distribution to yield an accurate reconstruction of true displacement.
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the nearest bead location. For the beads confined on the surface, the average nearest-neighbor distance can be 
approximated as:

∆ = . ⋅ −r N0 5 (3)bead D A,2
1/2

where NA is the number of beads per unit surface (Fig. 8c). The combination of the analytical results of  
Δ rbead, which depends on the bead density and distribution (on the surface or within the substrate), and on the 

Figure 8. Analytical investigation of the displacements induced by an applied surface traction and the 
average distance from the adhesion center to the nearest bead. (a) Cross-section of an in-plane displacement 
footprint (ux(r/R); blue line) that results from a uniform traction Tx on a circular adhesion (red dashed line) as a 
function of relative distance to the center of the adhesion (r). The displacement can be described by a long-range 
Bessel function whose shape is invariant to the radius of the focal adhesion (R). (b) Normalized displacement 
magnitude as a function of depth from the surface (z =  0) for different focal adhesion sizes. For small focal 
adhesions, the displacement magnitude drops rapidly and therefore the bead displacement within the volume 
of the substrate (z <  0) is only a fraction of the displacement on the surface. (c) Analytical result of the average 
distance from the center of a focal adhesion to the nearest bead location (Δ r), normalized to the radius of the 
adhesion (R). The results are shown for four different bead densities and the two bead distributions (solid line: 
volumetric distribution; dashed line: Beads confined to the surface of the substrate).

Figure 9. Deviation of traction magnitude (DTM), and signal to noise ratio (SNR) for different traction 
magnitudes, expressed as a percentage of Young’s modulus of the substrate. Up to a certain magnitude, the 
influence on the result remains small. However, for large traction and large adhesions, displacements are too big 
and the tracker fails to correctly match the bead displacements. If these are too small, the signal is of the same 
magnitude as the background noise, therefore resulting in lower SNR values.
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displacement field footprint confirmed the simulated approximation accuracy results (Fig. 7c). In order to reach 
a displacement approximation accuracy of approximately 80%, bead density needs to be high enough to ensure 
that the bead closest to the center of the FA is located at a distance shorter than 50% of the radius of that same FA, 
with “surface beads” performing better in that context (Figs 7 and 8).

Traction magnitude has no influence on error, except for extreme traction levels. Different trac-
tion magnitudes from 1% to 50% normalized to the bulk elastic modulus of the substrate were compared for high 
bead densities (Fig. 9). Increasing the traction from 1% to 10% did not significantly alter the reconstruction error, 
although the noise ratio was higher for smaller tractions (and thus smaller displacements), particularly when 
tractions were close to the level of traction background (reconstructed traction noise in areas with no applied 
traction). Increasing the traction magnitude beyond 10% of the substrate elastic modulus caused substantial 
problems in displacement tracking as the displacements exceeded the tracking capacity for the algorithm. For 
lower bead densities, this trend is also visible but less pronounced (see supplementary Fig. S2). This should be 
considered when designing experiments, as one should tune the experimental substrate to achieve large enough 
bead movement to clearly distinguish small traction without losing the information at sites of large traction stress.

Experimental TFM confirms in silico results. In order to confirm whether the above-mentioned opti-
mizations also hold for real TFM image sets, we cultured HuO9 osteosarcoma cells on soft polyacrylamide sub-
strates with two different bead distributions and estimated the tractions exerted by the cells using PIV and KLT 
algorithms (Fig. 10). All trends reported above on the basis of in silico TFM data were as well critical in in vitro 
TFM experiments. Independently of the distribution of the fluorescent beads, the estimated displacement field 
and traction forces (Fig. 10e–l) display higher peak values when calculated with the KLT approach. Comparing 
the results obtained using surface and volumetric bead distribution reveals higher resolution and less background 
noise in the surface configuration and a peak traction which is almost three times higher (Fig. 10k and l). In a 
similar fashion, the peak traction forces analyzed by KLT are approximately twice as high as the PIV derived trac-
tion, with a visibly improved background level, especially for the surface beads (Fig. 10j and l).

Figure 10. Experimental TFM of a HuO9 cell cultured on top of a polyacrylamide gel with two different 
bead distributions, and analyzed using two different displacement field algorithms. (a) Volumetric bead 
distribution in the green channel, (b) Beads bound on the surface in red channel, (c) HuO9 labeled with the 
lipophilic dye DiD and (d) Image composite of the two bead layers in orthogonal view (x-z axis). (e–h) Absolute 
displacements in μ m, analyzed using PIV (e,g) and KLT (f,h) for the volume beads (e,f) and surface beads (g,h). 
(i–l) Absolute Traction fields in Pa as obtained using PIV displacements (i,k) and KLT (j,l) for volume beads 
(i,j) and surface beads (k,l). Scale bar represents 30 μ m.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:41633 | DOI: 10.1038/srep41633

Discussion
Measuring cellular traction on flat elastic substrates using TFM is a widely used approach for mechano-profiling 
of cells and to study the underlying biophysical processes that drive cellular processes such as migration. 
Nevertheless, the methods used for the estimation of these forces suffer from various limitations. The present 
work quantifies for the first time how imaging features close to the resolution limit of conventional microscopes, 
as well as the ill-posed nature of the constitutive laws used to calculate traction forces given displacements, can 
lead to a very large underestimation of true cellular forces.

Our results clearly demonstrate how potentially catastrophic errors emanate and propagate during sequential 
steps of a TFM analysis in a manner that may preclude meaningful reconstruction of adhesion traction stresses. 
We accordingly provide quantitative guidance on “best practices” to minimize such errors. Among our most 
important recommendations, we suggest that optical flow algorithms (such as the Kanade-Lucas-Tomasi algo-
rithm) be harnessed to minimize tracking errors. We show that these errors are particularly problematic for 
small focal adhesions and/or in regions of relatively low marker density. These tracking errors are potentially 
devastating as they occur in the earliest steps of TFM image analysis, with consequences for all downstream 
analysis. Despite the fact that accurate feature tracking is essential to accurately reconstructing the substrate dis-
placement field, little or no progress has been made in overcoming the performance limits of the particle imaging 
velocimetry approaches that currently dominate the field. In the present study, we demonstrate that optical flow 
algorithms offer a high potential to identify small focal adhesions that PIV approaches miss. Also importantly, 
optical flow algorithms are computationally several orders of magnitude faster (less computationally expensive) 
than correlation-based PIV approaches. In other words, they are both very fast and more accurate than PIV.

These insights were gained by developing and exploiting a simulation based calibration platform that allows 
a thorough benchmarking and assessment of all steps involved in TFM. As mentioned above, we focused mainly 
on the displacement measurement step, a critical link in the chain that has often been neglected. We generated 
TFM images of fluorescent beads that display high similarity to those obtained experimentally and simulated 
bead displacements in them by using a finite element solution for applied reference tractions of known shape and 
magnitude.

This calibration platform improves upon existing simulation environments that have directly focused on force 
reconstructions downstream of a designated displacement field, an approach that neglects consideration of poten-
tially catastrophic errors that can result from algorithmic bead tracking from experimental data sets6,20. Firstly, we 
included the 3D displacement of the beads and discussed the error that accompanies the use of a 2D analysis on 
images of these 3D substrates, neglecting vertical displacements that are caused even for purely in-plane traction 
of cells on the substrate surface. Second, including the bead image generation allowed us to test and compare 
different displacement approaches independently from the force reconstruction. In a similar way, the presented 
platform can be tuned to simulate any experimental setup by using an exact model for the microscope′ s point 
spread function and the size, density and distribution of the beads.

Starting with several models of experimental traction on a single focal adhesion scale, we quantified the influ-
ence of critical experimental parameters such as fiducial bead seeding strategy and focal adhesion size as well as 
computational parameters during the bead tracking using the standard PIV approach. Using the simulated data-
sets with known input allowed us to determine the theoretical limits of TFM and to identify potentially avoidable 
sources of errors. As a result of this analysis, we were able to quantify the potentially critical advantages of using 
the Kanade-Lucas-Tomasi bead tracker (Fig. 3), as discussed above.

Moreover, the extent to which one can meaningfully analyze lateral traction in a 3D system using only 
in-plane displacements remains an open point. As mentioned, if the substrate material is incompressible (v ≈  0.5), 
the lateral traction/displacement can be decoupled from the vertical displacement. Further, even when v is sub-
stantially lower than 0.5 the error in lateral traction magnitude remains small when neglecting out-of-plane 
displacements21. Similarly, our data show that a very small window size results in an error of almost zero (Fig. 4a), 
indicating that the vertical displacements indeed have a minor influence. Extending the platform to include verti-
cal displacements (using z-stacks instead of single images) and vertical tractions would allow one to study out of 
plane traction as well as rotational moments at focal adhesions20. While this work may be important for address-
ing certain specific biological questions22–25, it falls outside the scope of present study.

In order to keep the investigated parameter space and resulting computational datasets manageable, we delib-
erately implemented certain simplifications to the model. With current imaging systems and the use of beads 
emitting strong fluorescence, most image noise sources are very small26 and hence we neglected its impact. We 
simulated the influence of photon noise on the bead images and showed that only for a very low photon count the 
force reconstruction may suffer (see supplementary Note and Fig. S4). Additionally, the traction applied was sim-
ulated as being constant over a circular area, whereas it has been observed that the traction peak within a single 
FA is often strongly fluctuating3 while acting on an elliptical footprint, especially for larger sizes. Even though this 
local variation of traction forces may further complicate accurate reconstruction, the influence of the experimen-
tal setup or post-processing is expected to follow a similar behavior, as investigated in this study.

Sub resolution-sized features mimicking the fluorescent beads classically used in TFM experiments were 
incorporated in the modeled substrates and served as markers of the displacement caused by the tractions. Beads 
close to the surface, as well with high density, increase the chances to accurately track the displacement field, 
which was theorized - though not quantified - earlier6,27. These design parameters become extremely important 
when looking at small focal adhesions with low traction amplitudes since an undesirable bead distribution (low 
density, below the surface) does not allow an adequate analysis in the needed resolution level (Fig. 6).

As discussed, using an optical flow tracker can improve traction reconstruction in terms of both error and 
noise, especially for smaller focal adhesions. In addition, the very low computation time of this approach allows 
the use of smaller interrogation windows and hence is able to detect features at higher resolutions (Fig. 3)7. As 
suggested by the data presented in this work, using KLT to track beads is likely to outperform correlation based 
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approaches in almost all variants of TFM experiments, including micro-patterned approaches with distinct fea-
ture definition28. However, it remains to be investigated how KLT performs on images acquired with a widefield 
microscope and on a substrate with a substantially different refractive index because the larger PSF and increased 
background signal could disturb the feature detection and hence the tracking accuracy.

Cell-generated tractions are proportional to strain, with limits on accuracy toward both ends of the metric 
spectrum. In the case of large displacements, assumptions of linear substrate elasticity may no longer hold, while 
on the other hand, if the cell-induced displacements are too small, tracking accuracy will decrease. Therefore, 
choosing a substrate material that is optimal for traction measurements that is yet still physiologically relevant is 
an important task that must be adapted to the target traction and peak displacement of a particular cell type. We 
simulated different traction force magnitudes as a function of the material stiffness and demonstrated that for 
stress up until 25% of the material modulus, there was no adverse influence on the result. However, for stresses 
above this threshold and for large focal adhesions, displacements exceed the ability of the algorithms to track 
them correctly and thus errors increase. When looking at the peak displacements of the simulated data and the 
errors caused by tracking the beads, we suggest using a substrate stiffness in order for the peak displacements not 
to exceed 1–2 μ m (supplementary Fig. S4).

Accurately measuring cell-generated traction forces is a challenging task, specifically for microscopy-based, 
high spatial resolution analysis of the focal adhesions points through which cells act on their surroundings. The 
presented simulation and calibration framework helps to understand these limits under a given setup and pro-
poses a simple new approach that significantly improves accurate traction force reconstruction, especially for 
small focal adhesions. We believe that in the future, it will be possible to effectively resolve the complete traction 
field of a cell in 2D, with our calibration data helping to properly quantify the accuracy of the obtained data and 
avoid numerical and experimental biases. Hence more reliable conclusions about the interactions between the cell 
and its immediate surroundings can be drawn.

Materials and Methods
Synthetic image generation. Two main steps are used to obtain engineered microscopy-analog images 
with simulated tractions. In the first step, we created a finite element model of the substrate to calculate the sub-
strate displacements, which were subsequently used in the image generator for simulating bead displacement 
in order to generate a set of microscope mimicking images (Fig. 2). We modeled the substrate as a linear elastic 
cuboid in Ansys (ANSYS Inc., Canonsburg, PA) with dimensions (300 ×  300 ×  100) μ m (x, y, z) where the bottom 
nodes were held as fixed boundary conditions. We defined the traction as a shear stress, perpendicular to the 
substrate surface, with a constant magnitude normalized to the elastic modulus of the substrate (5%, 10%, 25% 
and 50%), acting on a circular area representing the focal adhesion site with diameter ranging from 0.5 to 5 μ m6,20 
(Fig. 2a). Since the Poisson ratio is < 0.5, there is always a small amount of vertical displacement, resulting in a 
3D displacement field. In order to avoid insufficient sampling frequencies, we meshed the body in and around the 
circular FA area with 50 nm quadratic tetrahedron elements (SOLID187; Fig. 2b). These elements are suitable to 
account for the local curvature of the focal adhesion and to avoid hourglassing inside the body. After the solution 
was calculated, we exported the resulting nodal displacements into MATLAB for further simulation and analysis 
(Fig. 2c).

We generated artificial TFM images with two different bead distributions. In the volumetric configura-
tion, beads were randomly distributed with a given density within the simulated gel. This is usually the case 
when adding the bead suspension to the stock solution to acquire hydrogels such as Polyacrylamide (PAA) or 
Poly(ethylene)-Glycol (PEG)12,20. In the surface configuration, all beads were on the surface of the substrate, as 
it can be achieved experimentally by either binding the beads covalently using specific cross linkers29, or forcing 
them towards the surface using gravitational pull or centrifugation during polymerization30. Surface and volu-
metric bead densities ranging from 0.33 to 10 beads/μmα (surface distribution: α  =  2, volumetric distribution: 
α  =  3) were determined using a sampling volume defined as 60 ×  60 ×  5 μ m3 for volumetrically distributed beads 
and 60 ×  60 μ m2 for surface bead distributions respectively. The lateral dimension roughly corresponds to the 
field-of-view of a common confocal microscope. The calculated displacement field was interpolated onto the 
generated bead positions which resulted in sets of reference and deformed bead locations (Fig. 2e and i).

In order to simulate the spherical aberrations that appear due to refractive index mismatch of the immersion 
liquid and the substrate material used, the thickness of the substrate as well as deviations of the microscope 
parameters from the design parameters, we used a depth variant scalar point spread function31 (see supplemental 
Note S1). Simulating a spinning-disk confocal microscope, the PSF was approximated as the product between the 
detection PSF and the convolution between the illumination PSF and the pinhole aperture A32:

= ⋅ ⊗PSF PSF PSF A( ) (4)SD illdet

Here we made a valid assumption that the illumination and emission wavelength are similar and therefore 
PSFill ≈  PSFdet

33. The resulting image I(x, y, z) was defined as a convolution of the object Iobj(x, y, z) with the 
microscope’s PSF as:

= ⊗I x y z I x y z PSF x y z( , , ) ( , , ) ( , , ) (5)obj

In order to generate mostly general results for using a specific type of microscope, we neglected the influence of 
noise sources (e.g. Poisson, thermal etc.) that usually appear in imaging processes. To obtain the final bead images 
for TFM analysis, the top voxel layer of the discrete volume (corresponds to the top focal plane) was saved as a 
conventional image in Tiff format. All relevant system parameters are summarized in Table 1.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:41633 | DOI: 10.1038/srep41633

Displacement Analysis. We propose the use of the Kanade-Lucas-Tomasi (KLT) tracking algorithm, which 
is a differential approach to estimate the optical flow by the least squares criterion13. This approach is based 
upon the assumption of locally constant flow within the neighborhood of a suitable feature considered34,35. As 
for PIV, the problem with large movement is solved using a pyramidal approach14. We tested windows in a range 
of 8–64 pixels, which was possible due to the computational efficiency of the KLT algorithm. Smaller than eight 
pixels effectively is not applicable, since each bead itself has a (diffraction limited) diameter of approximately 
4–6 pixels. In this study, we used the pointTracker implementation of the iterative KLT tracker within MATLAB’s 
Computer Vision toolbox.

Force Reconstruction. When the cell-induced deformations are sufficiently small, synthetic substrates such 
as polyacrylamide (PAA) or polydimethylsiloxane (PDMS), which are commonly used cell culture substrates in 
TFM, can often be assumed linear elastic, homogenous and isotropic29,36. In such a case, the relationship between 
the traction forces applied on the boundaries of the substrate T and the displacements U can be described by an 
integral solution using a Green’s function:

∑= − ′ ⋅ ′ ′U G x x T x dx( ) ( ) (6)j ij i

where Uj is the displacement (j ∈  (x, y, z)), Ti is the traction force (i ∈  (x, y, z)) and Gij is the Green’s function. 
In this study we only considered in-plane, thus 2D traction forces. Since we modeled the substrate to be thick 
enough compared to the dimensions of the generated traction, it can be approximated as an elastic infinite 
half-space and therefore the 2D Boussinesq Greens function can be used37. Note that the “true” three-dimensional 
Greens function is actually a 3 ×  3 matrix that also includes vertical contributions to traction and displacements, 
though in many cases it is safe to assume that the cells are rather flat on the substrate and the generated motion 
are purely lateral. Most TFM substrates can be characterized incompressible (v ≈  0.5) and thus the lateral and 
vertical directions can be decoupled. The Green’s function can be solved efficiently in the Fourier domain in an 
approached called Fourier Transform Traction Cytometry (FTTC38) and the solution is found as:

λ= + −


T G G I G u( ) (7)T T2 1

where lambda is the free regularization parameter that has to be determined by data-internal criterion such as the 
L-curve39. In this study, in order to better compare the results caused by different displacement approaches, we 
kept the regularization parameter lambda at zero. Instead, the noise is minimized for each approach separately 
using a Gaussian filter for the PIV approaches and a wiener Filter for both PIV and PTV approaches. In order 
to calculate the Fourier transform efficiently using FFT, the displacement field has to be on a regular rectangu-
lar grid. Therefore, all displacements obtained using PTV and KLT were interpolated on a regular grid using 
the MATLAB scatteredinterpolant class with natural neighbor interpolation (an overview of the algorithms and 
parameters used can be found in supplementary Table S5).

Traction force microscopy on polyacrylamide gels. Substrates used in our TFM experiments were pre-
pared following a modified version of a previously published protocol40. Briefly, a solution containing 4% acryla-
mide (Sigma A4058), 0.15% bis-acrylamide (Sigma M1533) and carboxylate-modified 200 nm red fluorescent 
microspheres (5/100; Invitrogen F8810) was prepared and degassed for 15 minutes. Polymerization was initiated 
by the addition of 2 μ l Tetramethylethylenediamine (TEMED, BioRad 7570016) and 10 μ l of a 10% ammonium 
persulfate (APS) solution. Immediately a 6 μ l drop was placed on a clean glass surface, covered with a glutaralde-
hyde functionalized 25 mm diameter coverslip (Menzel Gläser) and allowed to polymerize for 10 minutes result-
ing in a soft gel with an estimated stiffness of 2.55 kPa + /− 0.1741.

Next, substrates were immersed in a solution of 10% (3-Aminopropyl)triethoxysilane (APTES; Sigma- 
Aldrich 440140) in ethanol for 1 hour, followed by 2.5% glutaraldehyde in PBS for 1 hour, and finally 
carboxylate-modified 200 nm green fluorescent microspheres (1/100 in PBS, Invitrogen F8811) for 1 hour. 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, Thermo Scientific 22980) crosslinking was used for the 
covalent attachment of rat tail collagen type I (Corning 354236) to the carboxy groups of the beads.

Parameter Value range

Substrate Thickness 100 μ m

Substrate mechanical properties E =  20 kPa, v =  0.49

Simulated Traction 5–50% E

FA diameter size [0.5, 0.75, 1, 2, 3, 4, 5] μ m

Bead density [0.33, 1, 5, 10] Beads/(μ m3)

Bead type 0.2 μ m red-fluorescent beads (emission: 605 nm)

Bead location 3D (volumetric), 2D (surface)

Microscope simulation settings Spinning-Disk Confocal with 60 ×  1.4 Oil immersion lens. Pixel size 
(x, y, z) =  [0.06 0.06 0.25] μ m, ni =  1.51, ns =  1.4, NA =  1.4

Sample size N =  20

Table 1. Overview of the simulation parameters used in this work.
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Substrates were then sterilized by immersion in ethanol, followed by extensive washing steps in PBS and cell 
culture medium and placed in a 6-well plate. Finally, 6 ×  103 HuO9 cells were seeded in each well and let attach 
to the surface overnight. Before imaging, the coverslips were placed in a metal holder (SKE research equipment) 
with 0.5 ml complete culture medium and stained with Vybrant DiD (Thermo Fisher V22889) following the 
recommendations of the manufacturer. For cell detachment 250 μ l of a 2.5% solution of SDS in PBS was added 
to the culture. Image acquisition was performed using a spinning disc confocal microscope (iMic, FEI Munich 
GmbH) using a 40×  N.A. 0.95 objective (Olympus UPLSAPO). Image stacks were analyzed in MATLAB in the 
same way as the in vitro images. First, for both image distribution (Fig. 10a and b), the uppermost stack in focus 
(corresponding to the attached cell in Fig. 10c) were exported into a single.tif file and subsequently analyzed using 
the same parameter values as mentioned above for the bead tracking and FTTC, except for the final grid size of 
the KLT, which was optimized to be at the size 16 pixels.

Evaluation Metrics. Since the goal was to measure the ability of a routine to calculate traction data from a 
single focal adhesion of a given size, error metrics were defined that calculate the amplitude of a calculated trac-
tion field as well as estimate the noise in the data. Unless otherwise mentioned, the sample size in all simulation 
was kept constant at 20 samples per condition.

DTM was introduced by Sabass6 as a simple relative difference between reconstructed and real traction:

=
∑ −DTM

N
mean T mean T

mean T
1 ( ) ( )

( ) (8)
i rec real

rec

where the sum runs over the averages of all N adhesions and the average of each adhesion is taken on all tractions 
points within a mask of equal diameter which is located at the adhesion site. A negative value indicates that the 
calculated traction underestimates the real traction. The Deviation of Displacement Magnitude (DDM) can be 
calculated the same way.

The ability to detect traction within noisy data is represented by the Signal-to-noise ratio defined as the ratio 
between traction within the adhesion site and outside as:

=SNR mean T
std T

( )
( ) (9)

rec

bg

where Tbg is the background traction far outside the domain of traction (FA area). The mask for SNR calculation 
was chosen to be twice the size of the adhesion since the traction footprint mostly appears much wider than the 
actual footprint.
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