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Abstract 

Background  Despite the growing number of studies investigating the connection between host genetics 
and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, 
and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact 
of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we col-
lected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain 
fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows.

Results  The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial 
composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, 
the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/
propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly herit-
able enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit 
the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide 
association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies 
(mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ 
transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, 
Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, 
GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) 
were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked 
to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). 
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Introduction
With an annual global per capita consumption of dairy 
milk which has been more than 140  kg/year, it has 
become an important and irreplaceable high-quality ani-
mal protein product [1]. However, in comparison with 
that in developed countries, the per capita consump-
tion of dairy products in China is limited, accounting for 
only 1/3 of the world average. However, considering that 
the consumption is increasing [2], sustainably increas-
ing high-quality milk yield has become one of the most 
important outcomes for dairy cows. Notably, increased 
high-quality milk yield can decrease the ratio of feed to 
dairy production, reduce the cost of producing milk, and 
ultimately determine the price at which people obtain 
milk [3]. Furthermore, sustainably increasing milk yield 
will reduce the methane output of cows when expressed 
as /kg milk is produced (methane intensity) [4]. Classic 
genetics studies have suggested a heritability of approxi-
mately 0.4 for cow milk yield [5]. Genome-wide associa-
tion studies (GWASs) focused on milk performance have 
identified several natural variations, including single 
nucleotide polymorphisms (SNP) of several key genes, 
such as the well-known DGAT1 gene located ~ 1.8 Mb on 
chr14, and promoted the genetic selection of high lacta-
tion performance dairy cows [5–10], which are beneficial 
for meeting the increased demand for milk. However, as 
a complex trait influenced by multiple factors, studies 
on lactation performance from only a genetic breeding 
perspective are limited. With the growth of the world’s 
population and the increase in per capita milk consump-
tion driven by increased individual economic growth 
and urbanization, coupled with the challenges of cli-
mate change, there is an urgent need to link the key fac-
tors affecting lactation, to deeply analyze the regulatory 
mechanisms of lactation, and to develop more refined 
breeding and nutritional intervention strategies.

It is increasingly recognized that the rumen harbors 
complex microbial communities that play vital roles 
in producing short-chain fatty acids (SCFAs), which 

provided 60–70% of the metabolizable energy for pro-
moting milk yield by affecting feed utilization and milk 
quality [4]. The host has recently been proven to affect 
the gut microbiota composition, function, and their 
metabolism processes and metabolites. For instance, the 
2.3  kb deletion in the ABO blood type gene leads to a 
reduction in the N-acetyl galactosamine (GalNAc) con-
centration in the intestine of domestic pigs, resulting in 
a decrease in the abundance of GalNAc-utilizing bacteria 
[11]. Recent studies have further revealed that GalNAc, 
influenced by ABO blood types, can selectively enrich 
the gut microbiota with specific metabolic function gene 
clusters [12]. Numerous studies have also focused on the 
significant impact of host SNP variants on the compo-
sition of the rumen microbiota in ruminants [13]. The 
identified heritable microbiota constituents could in part 
determine methane production and lactation perfor-
mance [14]. However, in comparison with the widely sug-
gested loci that regulate the gut microbiome composition 
in monogastric mammals, such as humans and pigs [11, 
12, 15–17], only a few studies have focused on the iden-
tification of specific variants related to milk yield-asso-
ciated ruminal microbial genera [18, 19]. Furthermore, 
considering that the ruminal microbiota is highly diverse 
but that microbiome function is more conserved than 
that of other microbiota [20], the lack of identification 
of heritable microbial functions that connect microbiota 
composition and phenotypic changes limits our under-
standing of the relationship between host gene variation 
and rumen microbiome colonization. Hence, the study of 
the mechanisms of ruminant-rumen microbiota interac-
tions is still in the initial phase, and understanding how 
host SNP variants affect the microbiome will be a criti-
cal step toward regulating the rumen microbiome to 
improve ruminant performance, including cows’ lacta-
tion performance [14].

To better understand how cows’ SNP variants influ-
ence the ruminal microbiome and subsequent lactation 
performance improvement, we investigated the ruminal 

Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater 
in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was posi-
tively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently 
positively correlated with ECM (CFI = 0.942).

Conclusion  Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, 
function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes 
with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings 
offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota 
through SNP variants to regulate their own lactation performance.

Keywords  Dairy cow, Host genetics, Ruminal metagenome, Ruminal metabolome, Heritability, GWAS, Lactation 
performance
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microbiome and metabolome and host genomic SNP 
information of 304 Holstein dairy cows by using shotgun 
metagenome sequencing, liquid chromatography‒mass 
spectrometry (LC–MS), and genome resequencing. Uti-
lizing these discoveries, we examined the heritability 
of both the composition and function of the ruminal 
microbiome, as well as the associated ruminal metabo-
lome. Furthermore, we uncovered the contributions 
of these factors in explaining the variations in lactation 
performance. Furthermore, lactation performance can 
be regulated by host metabolism, the ruminal micro-
biota, and their metabolites. Hence, by identifying the 
same SNP variants identified in genome-wide associa-
tion studies, microbiome-genome-wide association stud-
ies (m-GWASs), metabolome-genome-wide association 
studies (M-GWASs), and microbiome-wide association 
studies (mWASs), we investigated the interplay between 
host genetics, milk traits, and the rumen microbiome 
using comprehensive multiomic technologies, exploring 
the specific factors that collectively influence changes in 
lactation performance. To the best of our knowledge, this 
is the first study to delve into the interactions among host 
genetics, milk traits, and the composition, function, and 
metabolome of the ruminal microbiome.

Materials and methods
Animals, phenotypic data, and sample collection
The Holstein dairy cows that participated in the sample 
collection process were all fed on the same dairy farm. 
The sampling location was located in Leyuan Animal 
Husbandry, Hebei Province (N, 37.0766°; E, 115.4008°). 
We selected 304 lactating cows from 5906 lactating cows 
based on the principle of similar lactation periods and 
parity and were fed the same diet. The physiological sta-
tus, dietary formula, and nutritional composition of the 
cows are shown in Table  S1. Specifically, for the dairy 
cows included in the sampling, the parity was 2–3, the 
lactation time was 99.82 ± 52.93  days, and the diet con-
sisted of 45% forage and 55% concentrate (Table S1). For 
each individual cow, we collected rumen fluid and blood 
samples from 8:00 am to 10:00 am after the first milking 
every morning. The sample collection lasted for 15 days 
in October 2022 (the Institutional Animal Care and 
Use Committee at Northwest A&F University granted 
approval for the protocol). The daily milk production of 
each individual cow was recorded in the Fonton system 
(Fonton, Nanjing, China). The average milk yield (MY), 
milk fat (MF), milk protein (MP), and milk lactose (ML) 
during the 50–150 lactation period were used to calcu-
late the final lactating phenotype. Data related to milk 
composition were collected with MilkoScan FT1 (FOSS, 
Hillerød, Denmark) from the monthly DHI (Dairy Herd 
Improvement) of the sampled farm. Next, we calculated 

the energy-corrected milk (ECM) yield based on the 
MY, MF, MP, and ML to characterize the lactation per-
formance of the cows (Fig. S1A–E). We collected whole 
blood samples from the caudal vein using blood collec-
tion tubes containing ethylenediaminetetraacetic acid 
disodium salt (EDTA) for anticoagulant blood and then 
stored them at − 20 °C until further analysis. Rumen fluid 
samples were collected via esophageal tubing using oral 
stomach tubes. During sampling, the first 50 mL of rumi-
nal fluid was discarded to avoid saliva contamination, 
and the next 50  mL rumen fluid was strained through 
four layers of sterile cheesecloth under an environment 
with constant flux of CO2. After sampling from each cow, 
the rumen fluid was promptly packaged and temporarily 
stored in liquid nitrogen and finally stored at − 80 °C.

Ruminal SCFAs measurement
The concentrations of SCFAs including acetate, propi-
onate, butyrate, acetate/propionate (A:P), and total acid 
(TA) were determined using gas chromatography (Agi-
lent 7820A, Santa Clara, CA, USA) with a capillary col-
umn (AE-FFAP of 30  m × 0.25  mm × 0.33  µm, ATECH 
Technologies Co., Lanzhou, China) (Fig. S1F–J). Briefly, 
the thawed rumen fluid samples were centrifuged for 
10 min at 13,500 × g at 4 °C. The supernatant was mixed 
with 200 µL of metaphosphate (25 w/v), incubated for 
4 h, and then centrifuged for 15 min at 13,500 × g at 4 °C 
for protein and impurity precipitation. Then, crotonic 
acid was added to the supernatant as an internal stand-
ard. The final supernatant was transferred to a gas phase 
bottle through a filter. The supernatant of the gas phase 
bottle was analyzed using gas chromatography with a 
capillary column. The SCFA concentration detection pro-
gram was performed as previously described [21, 22].

Metagenome sequencing
For metabolomic analysis, rumen fluid samples were col-
lected from the same 304 cows. The repeat bead-beating 
plus column method was used to extract genomic DNA 
from rumen fluid samples [23] with the Mag-Bind® Stool 
DNA Kit M4015 (Omega Biotek, Norcross, GA, USA). 
The rumen microbial DNA extract was fragmented using 
a Covaris M220 (Gene Company Limited, China) to 
achieve an average size of approximately 400 bp. Paired-
end library construction was carried out using a Rapid 
DNA Sequencing Kit (NEXTFLEX) (Bioo Scientific, 
Austin, TX, USA). Adapters containing the complete 
sequence of the sequencing primer hybridization sites 
were ligated to the blunt ends of the fragments. Paired-
end sequencing was performed on an Illumina NovaSeq 
(Illumina, San Diego, CA, USA) with a NovaSeq 6000 S4 
Reagent Kit v1.5 at Majorbio Biopharm Technology Co., 
Ltd. (Shanghai, China).
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The fastp [24] (https://​github.​com/​OpenG​ene/​fastp, 
version 0.20.0) was used for quality control of the raw 
Illumina reads (reads with a length < 50  bp, a quality 
value < 20 or N bases were trimmed). The host (cow) 
genome reads were aligned and removed by using the 
Burrows-Wheeler-Alignment Tool (BWA) [25] (http://​
biobwa.​sourc​eforge.​net, version 0.7.9a). The metagen-
omic data were assembled using MEGAHIT [26] 
(https://​github.​com/​voutcn/​megah​it, version 1.1.2), 
which employs succinct de Bruijn graphs. Open reading 
frames (ORFs) were predicted from each assembled con-
tig using Prodigal [27] and MetaGene [28] (http://​metag​
ene.​cb.k.​u-​tokyo.​ac.​jp/). ORFs with a length of ≥ 100  bp 
were extracted and translated into amino acid sequences 
using the NCBI translation table. To construct a nonre-
dundant gene contigs, CD-HIT [29] (http://​www.​bioin​
forma​tics.​org/​cd-​hit/, version 4.6.1) was utilized with a 
90% sequence identity and a 90% coverage threshold. The 
SOAPaligner [30] (http://​soap.​genom​ics.​org.​cn/, version 
2.21) was employed to align high-quality reads to non-
redundant gene contigs, enabling the calculation of gene 
abundance with 95% identity, and the gene abundance in 
each sample was calculated as reads per kilobase per mil-
lion mapped reads (RPKM). The relative abundance of a 
species in single sample was calculated based on the ratio 
of its RPKM to the sum of RPKM of all detected species 
in this sample, which was used for ranking microbes.

The representative sequences from the nonredun-
dant gene contigs were aligned to the NR database by 
Diamond [31] (http://​www.​diamo​ndsea​rch.​org/​index.​
php, version 0.8.35). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotation was conducted using 
Diamond [31] against the KEGG database (http://​www.​
genome.​jp/​keeg/). Carbohydrate-active enzyme annota-
tion was conducted using hmmscan (http://​HMMER.​
janel​ia.​org/​search/​hmmsc​an) against the Carbohydrate-
Active enZYmes (CAZys) database (http://​www.​cazy.​
org/). All these databases had an E-value cut-off of 1e−5 
while annotating ORFs.

After the taxa of each KEGG function-related ORFs 
was determined, the statistical composition based on the 
relative contribution (%) of species assigned to the KEGG 
function groups was determined using nonparametric 
Kruskal–Wallis analysis of variance (P < 0.05) followed by 
multiple comparisons with Bonferroni correction [32].

Metabolomic analysis
For metabolomic analysis, rumen fluid samples were 
collected from the same 304 cows. The process of sam-
ple pre-processing and LC–MS/MS detection followed 
the previously described protocol [33]. Briefly, protein 
precipitation of rumen fluid samples was achieved 
by adding methanol/acetonitrile (1:1, v/v) buffer and 

subjecting them to ultrasonic bath treatment (Kunshan 
Ultrasonic Instrument Co. Ltd., China). The resulting 
concentrated product was then subjected to LC–MS 
analysis using an UHPLC system (Q-Exactive, Thermo 
Fisher Scientific, USA). Chromatographic separations 
were performed on an ACQUITY UPLC HSS T3 col-
umn (100  mm × 2.1  mm, 1.8  µm) (Waters Co., USA). 
LC–MS data were collected in both positive and nega-
tive ionization modes using an electrospray ionization 
source.

Supervised orthogonal partial least-squares discrimi-
nant analysis (OPLS-DA) was performed using metaX 
[34]. The metabolites with high heritability were mapped 
to the KEGG pathways using the KEGG database (http://​
www.​genome.​jp/​kegg/). Significantly enriched pathways 
were identified using Fisher’s exact test, with the scipy.
stats Python package (https://​docs.​scipy.​org/​doc/​scipy/) 
utilized for this analysis.

Whole‑genome resequencing
For whole-genome resequencing, blood samples were 
collected from the same 304 cows. Genomic DNA from 
the host was isolated from whole blood samples using 
a whole blood Genomic DNA Extraction Kit (BIOWE-
FIND Company, Wuhan, China). The 304 host-quality 
DNA samples were subjected to whole-genome rese-
quencing on the DNBSEQ-T7 platform (MGI-Shenzhen, 
China), and 150  bp paired-end reads were generated. 
The fastp [24] software was used for quality control of 
the raw FASTQ reads. The clean FASTQ reads were 
mapped to the cow reference genome by BWA [25] with 
the command “bwa mem –M” and converted to the BAM 
format using SAMtools (http://​github.​com/​samto​ols/​
samto​ols) with the command “samtools view -bS.” The 
duplicate reads were subsequently sorted and labelled 
for PCR duplication by the Genome Analysis Toolkit 
[35] (GATK, https://​softw​are.​broad​insti​tute.​org/​gatk/) 
with the commands “gatk SortSam” and “gatk Mark-
Duplicates.” Variant detection was performed based on 
chromosomal information using the command “gatk 
HaplotypeCaller -L.” The chromosomes of all the sam-
ples were merged, and the genotype files were gener-
ated with the commands “gatk CombineGVCFs” and 
“gatk GenotypeGVCFs.” All 30 chromosomes were sub-
sequently merged with the command “gatk MergeVcfs.” 
The low-quality variants were filtered out with the com-
mands “QUAL < 30.0 || QD < 2.0 || MQ < 40.0 || FS > 60.0 
|| SOR > 3.0 || MQRankSum < − 12.5 || ReadPosRank-
Sum < − 8.0.” The PLINK (https://​zzz.​bwh.​harva​rd.​edu/​
plink/) was used for quality control for 10,494,909 unfil-
tered SNP variants generated by the above steps with the 
following parameters: “–geno 0.1, –maf 0.05, –mind 0.1.” 

https://github.com/OpenGene/fastp
http://biobwa.sourceforge.net
http://biobwa.sourceforge.net
https://github.com/voutcn/megahit
http://metagene.cb.k.u-tokyo.ac.jp/
http://metagene.cb.k.u-tokyo.ac.jp/
http://www.bioinformatics.org/cd-hit/
http://www.bioinformatics.org/cd-hit/
http://soap.genomics.org.cn/
http://www.diamondsearch.org/index.php
http://www.diamondsearch.org/index.php
http://www.genome.jp/keeg/
http://www.genome.jp/keeg/
http://HMMER.janelia.org/search/hmmscan
http://HMMER.janelia.org/search/hmmscan
http://www.cazy.org/
http://www.cazy.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://docs.scipy.org/doc/scipy/
http://github.com/samtools/samtools
http://github.com/samtools/samtools
https://software.broadinstitute.org/gatk/
https://zzz.bwh.harvard.edu/plink/
https://zzz.bwh.harvard.edu/plink/
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A total of 2,337,054 SNPs distributed across 30 chromo-
somes and 304 dairy cows were ultimately obtained for 
analysis.

Estimation of phenotypic and rumen microbial heritability
We calculated the heritability (h2) for the phenotype (lac-
tation performance (MY, MF, MP, ML, and ECM), the 
rumen SCFAs (acetate, propionate, butyrate, A:P ratio, 
and TA), rumen microbes with relative abundances 
exceeding 0.01% at the species level, rumen microbial 
pathways at KEGG level 3, and rumen microbial CAZy 
module at the class and family levels, and all rumen 
microbial KEGG enzymes. Briefly, the heritability (h2) 
represents the contribution of host SNPs to the com-
position of rumen microbiota and metabolites or the 
similarity of rumen microbes and metabolites among 
significantly related individuals [36]. Moreover, the cen-
tered log-ratio transformation (CLR) was performed to 
standardize metagenomic and metabolomic data, using 
population structure (PC1-3) of host, lactation times, 
and parity as covariates to correct heritability. Genome-
based restricted maximum likelihood (GREML) analysis 
was used to estimate the heritability (h2)-based genetic 
relationship matrix (GRM) by GCTA [37] (https://​yangl​
ab.​westl​ake.​edu.​cn/​softw​are/​gcta) with the command “–
reml”. The model is as follows:

where y represents the phenotypic, metabolomic, and 
rumen metagenomic data; a represents the fixed effects, 
including population structure (PC1-3) of host, lacta-
tion times, and parity as covariates; b represents the 
additive genetic effects following a distribution of N (0, 
Gσ

2
a ), where G represents the GRM and σ2a represents the 

additive genetic variance; and e represents the residual 
effects following a distribution of N (0, Iσ2

E
 ), where I rep-

resents an identity matrix and σ2
E
 represents the residual 

variance. X and W represent the incidence matrices for a 
and b, respectively. The heritability of the given data was 
tested using h2, with a threshold value of 0.2.

Identification of significant SNPs based on GWASs using 
mixed linear model (MLM)
To establish a mixed linear model (MLM) to identify sig-
nificant SNPs for highly heritable phenotypes, metabo-
lites, and microbes, a kinship matrix was established 
using GEMMA [38] (https://​github.​com/​genet​ics-​stati​
stics/​GEMMA) with the command “-gk,” and the popu-
lation structure was established using PLINK with the 
command “—pca.” The significant SNPs were detected 
using a mixed linear model with the GEMMA command 
“-lmm 1.” The population structure (PC1-3), lactation 

y = Xa+Wb+ e

times, and parity were used as covariates to correct the 
results. The equation was as follows:

where Y represents the phenotype, highly heritable 
metabolites, and microbes; Xα represents the population 
structure, lactation times, and parity of the fixed effect; 
Zβ represents the SNP of the marker effect; Wμ repre-
sents the kinship matrix of the random effect; and e rep-
resents the residual.

Subsequently, we set the genome-wide significance 
threshold based on a significance level of 1/nSNPs 
(1/2337054 = 4.28E-07, -log10(P) = 6.37) for significant 
associations and 0.05/nSNPs (0.05/2337054 = 2.14E-08, 
-log10(P) = 7.67) for extremely significant associations. 
We used the Variant Effect Predictor (https://​www.​ensem​
bl.​org/​vep) for gene annotation.

Construction of the co‑occurrence network
Co-occurrence network analysis was performed based 
on the Spearman correlation among the rumen microbes 
with relative abundances exceeding 0.01% at the species 
level using the R package ggClusterNet [39]. The degree 
centrality, closeness centrality, and betweenness cen-
trality of microbes in the network were calculated and 
ranked using the R package ggClusterNet [39]. Briefly, 
the degree centrality refers to the number of connections 
or edges that a node has in a network. It measures the 
number of direct neighbors or connections that a node 
has. In a directed network, there can be inward and out-
ward degrees, indicating the number of incoming and 
outgoing connections for a node. The betweenness cen-
trality is a measure of a node’s centrality in a network 
based on its position in connecting other nodes. It quan-
tifies the number of times a node acts as a bridge or inter-
mediary along the shortest path between other nodes in 
the network. Nodes with high betweenness centrality 
have a significant influence on the flow of information 
or interactions between other nodes in a network. And 
the closeness centrality measures how close or easily 
reachable a node is to the other nodes in a network. It is 
calculated as the inverse of the sum of the shortest path 
distances between a node and all other nodes in the net-
work. A node with a higher closeness centrality is consid-
ered to be more central as it can reach other nodes more 
efficiently.

The association between the rumen microbiotamatrix 
and phenotypematrix by using the Mantel test
We first constructed a rumen microbial α diversity 
matrix with ACE, Chao1, Shannon, and β diversity matri-
ces with PC1, PC2, and PC3. The Mantel test was used 
[40] to study the relationship between α-diversity or 

Y = Xα + Zβ +Wµ+ e

https://yanglab.westlake.edu.cn/software/gcta
https://yanglab.westlake.edu.cn/software/gcta
https://github.com/genetics-statistics/GEMMA
https://github.com/genetics-statistics/GEMMA
https://www.ensembl.org/vep
https://www.ensembl.org/vep
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β-diversity and phenotype using Spearman correlation 
(9999 permutations) with the R package ggcor. Moreo-
ver, we constructed a rumen SCFA matrix with rumen 
acetate, propionate, butyrate, A:P ratio, and total acid to 
explore the correlation between MY, rumen SCFAs, and 
the 50 most abundant rumen microbes at the species 
level using the Mantel test.

The causal relationships among highly heritable subsets 
of the rumen microbiota, rumen SCFAs, and MY according 
to structural equation model (SEM)
We used the 5 microbes with the highest and lowest 
heritability among the rumen microbes with the top 
50 highest relative abundances at the species level to 
generate a high-heritability latent variable and a low-
heritability latent variable, respectively, in a structural 
equation model (SEM) analysis. The goodness-of-fit of 
the SEM was checked using the root-mean-square error 
of approximation (RMSEA), the chi-squared test (chisq), 
and the comparative fit index (CFI). SEM was conducted 
using the R package lavaan [41].

Microbiota‑wide association studies (mWAS)
The mWAS between rumen microbes with a relative 
abundance exceeding 0.01% at the species level, and the 
ECM and A:P ratio were determined in R. The approach 
was performed as described previously [42, 43].

Random forest
The key microbe markers discovered through the mWAS 
were further validated using the random forest method. 
Specifically, based on the ECM and rumen A:P ratio, 
304 cows were divided into 5 groups from low to high 
scores. Microbe importance was ranked by the percent-
age decrease in the prediction accuracy of the model that 
occurred when the microbes were removed. To estimate 
the minimum number of top ranking discriminative taxa 
required for prediction, tenfold cross validation was 
implemented using the “rfcv” function in the “random-
Forest” package [44] and was applied over 100 iterations. 
The random forest algorithm was conducted with the R 
package “randomForest” with a default mtry parameter 
of p/3 where p was the number of input microbe species.

Results
Overview of the core rumen microbiota that affects 
the ECM
In this study, the ECM is the milk yield corrected by the 
milk composition and can more fully reflect the lactation 
performance of cows. The 304 cows were assigned to the 
low (n = 102), medium (n = 101), or high (n = 101) group 
based on their ECM, with average ECMs of 31.8, 42.6, 
and 52.4 kg/d, respectively. Moreover, we found that MY 
was positively related to propionate and negatively cor-
related with rumen A:P ratio. ECM was negatively related 
to only rumen A:P ratio (Fig. S1K).

For microbial diversity, at the α-diversity level, the Chao 
and Ace indices of the low-ECM group were significantly 
greater than those of the high-ECM group (P < 0.05) (Fig. 
S2A). At the β diversity level, the low, medium, and high 
groups were not significantly clustered separately in the 
PCoA and NMDS coordinate systems (Fig. S2B). Next, 
the correlations between the α diversity (Chao, Shannon, 
and Simpson), β diversity (PC1, PC2, and PC3) of the 
rumen microbiota and the rumen SCFAs, lactation per-
formance were evaluated using the Mantel test.

Overall, β diversity was significantly correlated with 
MY and ECM (Mantel’s P < 0.05) (Fig. 1A), while α diver-
sity was significantly correlated with MY, ECM, propion-
ate, and butyrate (Mantel’s P < 0.05) (Fig. 1A).

At the domain level, the high-ECM group exhibited 
significantly higher abundances of bacteria and viruses 
compared to the low-ECM group, while the high-ECM 
group showed significantly lower abundances of archaea 
and eukaryotes (P < 0.05) (Fig.  1B). At the species level, 
Prevotella_sp, Prevotella_lacticifex, Prevotella_mizra-
hii, Eubacterium_sp, and Succinivibrionaceae_bacterium 
were the markers of the high-ECM group based on lefse 
analysis (Fig. S2C).

In terms of rumen microbial CAZy at the class level, 
the high-ECM group exhibited a significantly higher 
abundance of GH and CBM models, whereas the GT 
model had significantly lower abundance in the high-
ECM group (P < 0.05) (Fig.  1B). At the KEGG level 1, 
the high-ECM group showed significantly higher abun-
dance of “metabolism” and “genetic information pro-
cessing,” while “environmental information processing,” 

Fig. 1  Relationships between the rumen microbiota and the phenotype of dairy cows. A The relationship between the microbial diversity matrix 
and phenotype matrix was determined based on Mantel’s test. The α diversity indices included ACE, Chao1, and Shannon indices. The β diversity 
indices included PC1, PC2, and PC3 from the PCoA. MY: milk yield, MF: milk fat, MP: milk protein, ML: milk lactose, ECM: energy-corrected milk, A:P: 
acetate/propionate, TA: total acid. B Differences in the rumen microbiome at the domain, KEGG level 1, and CAZy family levels among the low 
(31.8 kg/d), medium (42.6 kg/d), and high (52.4 kg/d) ECM groups. C The relationship between the phenotype matrix and the top 50 microbial 
matrices at the species level was determined based on Mantel’s test. Lactation included milk yield, milk fat, milk protein, and milk lactose. The 
ruSCFAs included acetate, propionate, butyrate, A:P, and total acid. D The co-occurrence networks of the microbes at the species level with relative 
abundances greater than 0.01%

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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“human diseases,” “cellular processes,” and “organismal 
systems” were significantly lower abundance in the 
high-ECM group (P < 0.05) (Fig. 1B).

Furthermore, through the Mantel test, we identified rumen 
microbes significantly related to the phenotype at the species 
level. Prevotella_lacticifex, Eubacterium_sp., Prevotella_miz-
rahii, Alphaproteobacteria​_​bacterium, Prevotella_multisac-
charivorax, Prevotella_bacterium, Elusimicrobia_bacterium, 
Prevotella_sp._AGR2160, Oribacterium_sp., and Pseu-
dobutyrivibrio_sp were significantly correlated with rumen 
SCFAs and lactation performance (Fig. 1D). Next, we estab-
lished a network of microbes with relative abundances 
exceeding 0.01% at the species level to identify the core 
microbes (Table S2). We found 276 microbes involved in the 
interaction, while 61 microbes existed independently in the 
rumen microbiota (Fig. 1E). Alphaproteobacteria_bacterium 
was the microbe with the highest degree and betweenness, 
butyrivibrio_fibrisolvens, Acidaminococcaceae_bacterium, 
Succiniclasticum_ruminis, Schwartzia_sp., Methanobrevi-
bacter_ruminantium, and Pseudobutyrivibrio_sp. were the 
microbes with the highest closeness (Table S2).

GWAS identified host genetics that affect rumen SCFAs 
and lactation performance
Among lactation performance, MY, ECM, MP, and ML 
had high heritability (h2 ≥ 0.2). Among rumen SCFAs, 
A:P ratio and TA had high heritability (h2 ≥ 0.2) (Fig. 2A). 
Among the associations between 2,337,054 SNPs (Fig. S3A) 
and phenotype (lactation performance and rumen SCFAs) 
using genetic relationship (Fig. S3B) as the random effect 
and population structure (Fig. S3C) as the covariate, a total 
of 57 significant associations were obtained, including 25% 
with an intro variant, 50% with an intergenic variant, 21% 
with a downstream gene variant, and 4% with an upstream 
gene variant. Forty-three SNP variants significantly affected 
lactation performance (-log10(P) > 6.39), which were anno-
tated to the genes RNF220, TSPAN9, RDH12, UGGT2, 
CDH4, EPG5, and 5s_rRNA (Fig.  2B and D). Therein, 
chr12:28,170,430, chr12:73,181,457, chr13:55,209,376, 
chr21:49,278,895, chr25:16,922, chr25:11,147, chr25:11,153, 
chr25:11,168, chr25:11,177, chrX:28,969,015, chrX:28,969,039, 
chrX:28,969,042, chrX:28,969,055, and chrX:28,969,077 
had extremely significant impacts on lactation performance 
(-log10(P) > 7.67) (Table  S3). Fourteen SNP variants sig-
nificantly affected rumen SCFAs (-log10(P) > 6.39), which 
were annotated to the CDH13 and CD99 genes (Fig. 2C and E). 
Therein, chrX:84,668,063 had an extremely significant impact 
on lactation performance (-log10(P) > 7.67) (Table S3).

Identification of highly heritable microbes and their 
regulatory SNPs via mGWAS
Among 337 microbes with relative abundance exceed-
ing 0.01% at species level, 170 heritable species belonged 

to the Bacteria domain (most), while 3 heritable spe-
cies belonged to the Archaea domain (least) (h2 ≥ 0.2) 
(Fig.  3A) (Table  S2). Among the microbes with the top 
100 most abundant species, 44 were highly heritable 
microbes, 14 of which were Prevotellaceae. Methanobre-
vibacter_millerae, Methanocorpusculum_sp., and Metha-
nobrevibacter_thaueri belong to the Archaea domain. 
Myoviridae_sp., CrAss-like_virus_sp., Podoviridae_sp., 
Bacteriophage_sp., and Siphoviridae_sp. belonged to 
the virus domain (Table S2). For rumen microbial func-
tion at KEGG level 1, 72 highly heritable pathways were 
associated with “metabolism” (most), while only 12 
highly heritable pathways were associated with “cellular 
processes” and “environmental information processing” 
(least) (h2 ≥ 0.2) (Table  S4). For rumen microbial func-
tion at the CAZy family level, 92 highly heritable CAZy 
modules were associated with GH (most), while 3 highly 
heritable CAZy modules were associated with AA (least) 
(h2 ≥ 0.2) (Table S5). Next, we used microbes with relative 
abundances exceeding 0.01% to observe the relationship 
between microbial heritability and the ecological niche in 
the network (Fig.  1D). We found that the heritability of 
rumen microbes was positively related to closeness and 
betweenness (P < 0.05) (Fig. 3B).

Among the associations between 2,337,054 chromo-
somal genetic variants and 44 highly heritable microbial 
features from rumen microbes with the top 100 most 
abundant genera at the species level, 104 significant asso-
ciations with 25 microbes were obtained, including 50% 
of the variants, 29% of the intergenic variants, 10% of the 
downstream gene variants, and 5% of the upstream gene 
variants (Fig. S4B), which were annotated to 26 genes, 
such as the SLC30A9 and 5s_rRNA (-log10(P) > 6.39) 
genes (Fig.  3C). Among these, chr1:776,938, 776,939, 
chr6:60,792,419, chr12:2,637,985, chr15:2,302,734, and 
chrX:28,987,601 had extremely significant impacts on 
highly heritable microbes (-log10(P) > 7.67) (Table S6).

The characteristics of highly heritable subsets in the rumen 
microbiota
To further study the differences in metabolic functions 
between highly heritable and less heritable microbes, 
we focused on the top 50 species according to relative 
abundance, of which 20 were highly heritable microbes 
(h2 ≥ 0.2), and 30 were lowly heritable microbes (h2 < 0.2) 
(Table S2). According to the relative contribution (%) of 
the rumen microbes for metabolic pathway enrichment 
at KEGG level 3 (Table S7), among the top 50 microbes 
with relative abundance, 43 microbes contributed more 
than 1% to 143 KEGG metabolic pathways, in which 
included 15 highly heritable microbes and 28 low herita-
ble microbes. Next, we focused on the microbes with the 
highest contribution to each pathway, the highly heritable 
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Fig. 2  The heritability and significant variants of the phenotype of dairy cows. A The heritability of lactation performance and rumen SCFAs. 
MY: milk yield, MF: milk fat, MP: milk protein, ML: milk lactose, ECM: energy-corrected milk, A:P: acetate/propionate, TA: total acid. B The Q‒Q plot 
of lactation performance. C Q‒Q plot of rumen SCFAs. D Manhattan plot of lactation performance. The significance threshold was 1/nSNP = 
4.28E-07. The extremely significant threshold was 0.05/nSNP = 2.14E-08. E Manhattan plot of rumen SCFAs. The significance threshold was 1/nSNP = 
4.28E-07. The extremely significant threshold was 0.05/nSNP = 2.14E-08
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microbes (h2 ≥ 0.2) Prevotella_sp., Bacteroidaceae_bacte-
rium, and Clostridia_bacterium had the highest relative 
contributions to 116 pathways, while the less heritable 
microbes (h2 < 0.2) Tetrahymena_thermophila, archaeon, 
Muribaculaceae_bacterium, Treponema_sp., Ruminococ-
cus_sp., Oscillospiraceae_bacterium, Methanobrevibacter​

_sp., Candidatus_Saccharibacteria_bacterium, and Lach-
nospiraceae_bacterium had the highest relative contri-
bution to only 27 pathways (Fig. 4A). It can be seen that 
there were fewer highly heritable microbes involved in 
metabolism pathways, but their contribution for them 
was greater.

To further observe the role of highly heritable subsets of 
the rumen microbiota in the host phenotype, 5 microbes 
with the highest heritability (Methanocorpusculum_sp., 
Prevotella_mizrahii, Prevotella_multisaccharivorax, Par-
afannyhessea_umbonata, Pseudobutyrivibrio_sp.) were 
considered a highly heritable latent variable (hh), and 5 
microbes (Clostridiales_bacterium, Firmicutes_bacte-
rium, Methanosphaera_stadtmanae., Blautia_sp., Sar-
cina_sp.) with the lowest heritability were considered a 
low heritable latent variable (lh) from rumen microbes 
at the species level with the top 100 relative abundances 
to explain rumen SCFA and ECM variations via SEM 

Fig. 3  The heritability and significant variants of the rumen microbiota of dairy cows. A The proportion of highly heritable microbes at the species 
level at the domain level, the proportion of highly heritable KEGG pathways at level 3 at level 1, and the proportion of highly heritable 
CAZy modules at the family level at the class level were calculated. B The linear relationship between node attributes (degree, closeness, 
and betweenness) and heritability. P < 0.05 was considered to indicate a linear relationship. C Manhattan plot of highly heritable rumen fat subsets 
from the top 100 microbes at the species level. The significance threshold was 1/nSNP = 4.28E-07. The extremely significant threshold was 0.05/
nSNP = 2.14E-08
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(Fig. 4B). We found that hh variables, rather than lh vari-
ables, can increase the ECM by reducing the rumen A:P 
ratio (CFI = 0.898, RMSEA = 0.196).

Carbohydrate metabolism characteristics of highly 
heritable microbes
Highly heritable microbial subsets could decrease the 
rumen A:P ratio. Hence, we further focused on the Car-
bohydrate-Active Enzyme Database. At the class level, 
the GH (h2 = 0.21) and GT (h2 = 0.21) families had high 
heritability (Fig.  5A). Hence, the highly heritable CAZy 
modules from the GH and GT were focused on. For the 
highly heritable CAZy modules, 110 significant asso-
ciations with the 31 modules were identified (Fig. S5B). 
These modules were annotated to the genes ZFP90, ERC1, 
TMEM33, SLC30A9, RFTN1, HHIP, ARHGAP44, KCNJ12, 
5S_rRNA, and MYOM2 (-log10(P) > 6.39) (Fig. S5A). 
Among these, chr6:60,748,009 and chr17:13,553,198 had 
extremely significant impacts on highly heritable CAZy 
modules (-log10(P) > 7.67) (Table  S8). The SNP variants 
(rs43470227 and rs43472732) related to the oligosaccha-
rides-degradation in the CAZy module (GH67, GH13_38, 
GH95, GH43_10, GH115, and GH10) overlapped with 
SNP variants related to multiple Prevotella species (Prevo-
tella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27) 
(Table  S6 and S8). Moreover, Prevotella species (e.g., 
Prevotella_sp.) were the main microbes contributing to 
these CAZy module genes (Fig. S5C).

To provide a clearer explanation of the impact of 
highly heritable CAZy modules on rumen microbial 
metabolism, the rumen metabolome was examined 
(Table  S9). A total of 2536 metabolites were detected 
in the rumen, 447 (18%) of which had high heritability 
(h2 ≥ 0.2) (Fig. 5B). The low, medium, and high groups 
of ECM were not significantly clustered separately in 
the OPLS-DA coordinate systems (Fig. S6A). Moreo-
ver, the Mantel test revealed that the highly heritable 
subset (h2 ≥ 0.2) rather than the less heritable subset 
(h2 < 0.2) of the top 50 rumen metabolites was associ-
ated with ECM (Fig. S6B). Hence, we further focused 
on the Human Metabolome Database (HMDB) com-
pound classification and enriched KEGG pathways of 

the top 50 highly heritable metabolites in the rumen. 
The most highly heritable metabolites were classified 
into “lipids and lipid-like molecules” (56.67%) (Fig-
ure S6C) and were significantly enriched in “linolenic 
acid metabolism,” “alpha-linolenic acid metabolism,” 
“cutin, suberine, and wax biosynthesis,” and “arachi-
donic acid metabolism” (Fig. S6D). Next, 141 significant 
associations with the 30 highly heritable metabolites 
were identified (Table  S10, Fig. S6F). These SNP vari-
ants related to metabolites were annotated to the genes 
ZNF831, UTP15, SHC3, MROH8, MFSD4B, MANBAL, 
EDN3, DTYMK, C4A, and 5s_rRNA (-log10(P) > 6.39) 
(Fig. S6E).

Furthermore, we used the highly heritable CAZy mod-
ules from the GH and GT classes with the top 100 (31 
modules) to associate with the rumen SCFAs, the highly 
heritable metabolites with the top 50 (16 metabolites). 
Except for GT92 and GT8, all the CAZy modules were 
negatively related to rumen A:P ratio and positively 
related to propionate (P < 0.05) but not related to acetate 
(P > 0.05) (Fig. 5C).

Finally, the enzymes involved in SCFA synthesis were 
focused on. Most of the highly heritable enzymes involved 
in “glycolysis/gluconeogenesis,” “pyruvate metabolism,” 
“butanoate metabolism,” and “propanoate metabolism” 
were negatively correlated with the rumen A:P ratio 
(Table  S11). The highly heritable enzymes involved in 
glycolysis/gluconeogenesis and the pyruvate pathway 
enhanced the synthesis of pyruvate. The highly heritable 
enzymes involved in “pyruvate metabolism,” “butanoate 
metabolism,” and “propanoate metabolism” enhanced the 
synthesis of pyruvic acid to propionate while weakening 
the synthesis of butyrate and acetate (Fig. 5D).

Heritable characteristics of the rumen microbiota related 
to rumen propionate and milk yield based on the mWAS
The highly heritable subsets of the rumen microbiota 
could increase the ECM by decreasing the rumen A:P 
ratio based on the characteristics of high-abundance 
microbes. To further verify these results, we conducted 
mWAS on 337 microbes with relative abundances 
exceeding 0.01% at the species level using the rumen A:P 

(See figure on next page.)
Fig. 4  The characteristics of highly heritable rumen microbes of dairy cows. A The relationship between rumen microbes (with high and low 
heritability) and KEGG pathway enrichment at level 3 in "metabolism". The 20 highly heritable microbes and 30 with lowly heritable microbes 
within the top 50 with relative abundance were selected at the species level. The microbes were connected to metabolism pathways based 
on relative contribution (%). The color of the lines was determined based on relative contribution and heritability. Gray: contribution < 1%, blue: low 
heritable microbes had the highest contribution for pathways, red: high heritable microbes had the highest contribution for pathways. B The effect 
of highly heritable and weakly heritable microbes on the ECM determined by A:P via SEM. The 5 microbes with the highest and lowest heritability 
were selected based on heritability at the species level. Highly heritable microbes are integrated into highly heritable latent variables. Lowly 
heritable microbes are integrated into a lowly heritable latent variable. Red arrows represent positive paths, and green arrows represent negative 
paths
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Fig. 4  (See legend on previous page.)
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Fig. 5  The characteristics of highly heritable rumen enzymes and metabolites in dairy cows. A The heritability of CAZy modules at the class level. B 
The proportion of highly heritable metabolites in the rumen. C The relationship between highly heritable CAZy modules from the top 100 modules 
at the family level and highly heritable metabolites from the top 50 metabolites, SCFAs. D The relationships between high-heritability enzymes 
involved in "butanoate metabolism", "glycolysis/gluconeogenesis", "pentose phosphate pathway", "propionate metabolism", "pyruvate metabolism" 
and the rumen A:P ratio
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ratio and ECM as the phenotypes (Fig.  6A, Table  S2). 
We found that 252 microbes were significantly related 
to the ECM, and 296 microbes were significantly related 
to the rumen A:P ratio. Therein, 247 microbes were sig-
nificantly related to the ECM and the rumen A:P ratio 
(marked species), accounting for 83% and 98%, respec-
tively, of the rumen A:P ratio and ECM-related microbes 
(Fig.  6B). Moreover, compared with those of microbes 
(nonmarker) that were not related to the rumen A:P ratio 
or the ECM (P > 0.05), the proportions of highly herit-
able microbes among the marker species were greater 
(Fig. 6C).

In order to further verify the relationship between the 
microbes filtered by mWAS and rumen fermentation and 
lactation performance, we used the random forest algorithm 
to rank the importance of 247 marker species, and identified 
the top 20 biomarkers based on the mean decrease accuracy 
(MDA) index. For the ECM, Rickettsiales_bacterium, Lach-
nospiraceae​_bacterium_NK3A20, Olsenella_sp., [Clostrid-
ium]_aminophilum, Paramecium_primaurelia, Sharpea_​

azabuensis, Prevotella_​sp._AGR2160, Prevotella_sp._Rep29, 
Paramecium_​tetraurelia, [Eubacterium]_cellulosolvens, 
Parabacteroides​_​merdae, Prevotella_sp._P5-126, Bacte-
roides_​thetaiotaomicron, Selenomonas_bovis, Naegleria​_​

fowleri, Pseudobutyrivibrio_​sp., Oscillibacter_sp., Chryseo-
bacterium​_​sp., Verrucomicrobia_bacterium, and Erysipel-
otrichaceae​_bacterium were key biomarkers that affect the 
lactation performance of dairy cows (Fig. S7A and Table S2). 
For rumen A:P ratio, Sodaliphilus_​pleomorphus, Candi-
datus_​Methanomethylophilaceae_​archaeon, Prevotella_​

bryantii, Deltaproteobacteria_bacterium, Veillonellaceae_​

bacterium, Prevotellaceae_bacterium, Acidaminococcus_​fer-
mentans, Clostridium_​sp._​28_​17, Dialister_sp., Kiritimatiel-
lae_​bacterium, Clostridium_​sp._​CAG:793, Cyanobacteria_​

bacterium_​UBA11991, Prevotella_​mizrahii, Lachnoclostrid-
ium_​sp., Prevotella_​albensis, Succinivibrio_​sp., Prevotella_​

histicola, Loktanella_​sp., [Eubacterium]_​cellulosolvens, 
Prevotella_​sp._​CAG:1092 were the key biomarkers affecting 
the rumen of dairy cows (Fig. S7B and Table S2). Moreover, 
biomarkers affecting the ECM and rumen A:P ratio were 
filtered by random forest, with high heritability microbes 
accounting for the majority (Fig. S7C).

Finally, the results of GWAS with lactation perfor-
mance, rumen microbial compositions at the species 

level, rumen microbial CAZy module at the family level, 
and the rumen metabolome were integrated and found 
that chr25:11,177, located at 5s_RNA genes, appeared in 
metagenome-GWAS signal sets of Pseudobutyrivibrio sp. 
(the marker species most strongly associated with rumen 
A:P and ECM based on mWAS) and GH24, metabo-
lome-GWAS signal sets of the 9,10,13-TRIHOME, and 
lactation performance GWAS signal sets. Moreover, 
ECM, and the relative abundances of Pseudobutyrivi-
brio sp., GH24, 9,10,13-TRIHOME were significantly 
greater in the GG genotype than in the AG genotype at 
chr25:11,177 (P < 0.05) (Fig. S8A–D).

To further clarify this relationship, we first focused on 
the impact of GH24. We found that GH24 was related 
to 8 of the top 10 microbes with heritability, while it was 
related to only 1 of the bottom 10 microbes with herit-
ability (P < 0.05, cor ≥ 0.6) (Fig. S8E). GH24 may be an 
important mediator of host regulating highly heritable 
microbes. By SEM analysis, GH24 was positively corre-
lated with Pseudobutyrivibrio sp., which was positively 
correlated with 9,10,13-triHOME and subsequently posi-
tively correlated with ECM (CFI = 0.942, RMSEA = 0.162) 
(Fig. S8F).

Discussion
Lactation performance, as an important economic trait, 
has always received widespread attention. Previous stud-
ies have focused on the relationship between rumen 
microbial fermentation and lactation performance [33], 
especially under the same feeding management condi-
tions. This indicates that the host’s regulation for produc-
tion performance may be mediated by rumen microbiota. 
Therefore, increasing research links host genes to the 
rumen microbes [14, 45, 46], but the role of highly her-
itable microbes in lactation performance has not been 
determined. Meanwhile, there is relatively little research 
on whether the host’s influence on microbial composi-
tion will further reflect its impact on microbial function. 
Hence, we combined the rumen metagenome, rumen 
metabolome, and host genome data from 304 dairy cows 
with similar physiology and fed the same diet. This com-
prehensive approach allowed us to investigate the highly 
heritable aspects of rumen microbial composition, func-
tion, and metabolism (including SCFAs), and further 

(See figure on next page.)
Fig. 6  Relationships among lactation performance, rumen microbial composition and function, and metabolites based on the mWAS. A 
Manhattan plot showing the microbes related to the ECM and the rumen A:P ratio based on microbiota-wide association studies (mWASs). B Venn 
diagram showing the proportion and quantity of microbes associated with the ECM and the rumen A:P ratio. C A density plot was generated 
to show the heritability of microbes associated with the ECM and the rumen A:P ratio. D A circular Manhattan plot showed that the same variant 
(chr25:11177 on 5 s_rRNA) of Pseudobutyrivibrio sp. (species-GWAS), GH24 (CAZy-GWAS), metab_11663 (9,10,13-TRIHOME) (metabolite-GWAS), 
and lactation performance (phenotype-GWAS)
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Fig. 6  (See legend on previous page.)
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explore their impact on lactation performance. We found 
that (1) rumen fermentation is driven by microbes with 
high heritability rather than low heritability, which in 
turn affects the milk production performance of cows. 
Specifically, the high-heritability subset of the rumen 
microbiota can increase ECM production by reduc-
ing the rumen A:P ratio. Furthermore, highly heritable 
enzymes involved in the SCFA synthesis pathway can 
promote propionic fermentation. (2) Through GWAS 
analysis, we identified potential SNP variants that may 
affect cow milk production performance through the 
rumen microbiota. Specifically, significant rs43470227 
and rs43472732 variants in SLC30A9 regulated Prevo-
tella species with oligosaccharides-degradation enzyme 
genes (Tables S6 and S8). The significant SNP variant 
chr25:11,177 on 5s_rRNA was involved in the process by 
which Pseudobutyrivibrio enhances linoleic acid metabo-
lism, thereby improving lactation performance.

With the development of metagenome and metabo-
lome, research on the gastrointestinal microbiota is no 
longer limited to taxa level, with an increasing number 
of studies showing the importance of microbial func-
tion and metabolites. Hence, highly heritable rumen 
microbial composition, function, and metabolites are 
the focus of our study. Interestingly, the proportions of 
highly heritable subsets of the rumen microbial compo-
sition, function, and metabolites decreased sequentially. 
Furthermore, our results revealed a positive correlation 
between node attributes (betweenness and closeness) 
and heritability, which suggested that highly heritable 
rumen microbial subsets were located at hub ecological 
niches in co-occurrence networks. This phenomenon 
has also been reported in previous studies on the rumen 
microbiota [14, 46]. Notably, in the study, highly heritable 
rumen microbial subsets may play an important role in 
the host phenotype. Here, our results indicated that the 
rumen of cows with high lactation performance (ECM) 
had higher abundances of bacteria and viruses domain, 
“Metabolism” KEGG level 1, and GH family, which were 
also highly heritable variables. The rumen of cows with 
high milk protein yields was more abundant in Prevotella 
species [33]. In our study, we also found that multiple 
Prevotella species, such as Prevotella_lacticifex, Prevo-
tella_mizrahii, and Prevotella_multisaccharivorax, were 
significantly correlated with rumen SCFAs and lactation 
performance according to the Mantel test, which were 
also highly heritable microbes. Prevotellaceae as one of 
the most abundant rumen core family can utilize dietary 
nutrients to produce SCFAs [47].

The function of microbes depends on their taxa [48]. 
Therefore, the host’s influence on microbial compo-
sition may be further reflected in microbial function 
and metabolites. In the study, the GWAS analysis and 

heritability estimation of microbial functions are used 
to characterize the functional characteristics of highly 
heritable microbes, in order to explore whether the host-
regulated microbes have functional similarities, thereby 
helping cows to efficiently utilize feed. The results 
revealed the significant contributions of highly heritable 
rumen microbes and their function in rumen fermenta-
tion. Notably, the conversion of glucose to acetate, pro-
pionate, and butyrate contributed 62%, 109%, and 78% of 
the original energy supply (2805 kJ/mol), respectively, to 
the overall energy provision for the body [49]. Therefore, 
rumen propionic fermentation is the most efficient way 
for ruminants to utilize energy. Here, we first focused 
on the role of host SNP variants in determining rumen 
fermentation type. The high heritability of rumen pro-
pionate and A:P ratio suggested that host genes may be 
involved in the process of rumen propionic fermentation. 
A study of broiler chickens revealed that the heritability 
of cecal propionate is less than 0.2, while that of butyrate 
is greater than 0.2 [50], which contradicted the findings 
of our study on the rumen. This difference suggested 
that the host and lumen may be key factors affecting 
lumen SCFA synthesis. Moreover, the partial SNP vari-
ants affecting rumen SCFAs and lactation performance 
were associated with the CDH (cadherin) gene in our 
study, which was significantly related to cell differentia-
tion and rumen development [51, 52]. Rumen SCFAs are 
generated mainly from the metabolism of carbohydrates 
by rumen microbes. Here, highly heritable microbes not 
only participated in carbohydrate metabolism but also 
increased the ECM by reducing the A:P ratio of rumen 
SCFAs. However, lowly heritable subsets did not have this 
effect. The majority of highly heritable CAZy modules in 
the rumen were positively correlated with propionate but 
not with acetate. For example, GH13, which is mainly 
composed of α-amylase, can increase the synthesis of 
propionate [53]. In the pyruvate metabolism and SCFA 
synthesis pathways, highly heritable microbial enzymes 
can enhance the synthesis of propionate and weaken the 
synthesis of acetate and butyrate. The above phenomena 
indicate that highly heritable microbes and their func-
tions can promote rumen propionic fermentation.

In this study, a locus overlap approach (with the same 
SNP variants) was used to determine whether host SNP 
variants could affect the rumen microbes with specific 
enzyme-encoding genes. Multiple Prevotella species 
(e.g., Prevotella_sp.) significantly related to the ECM 
had the same significant SNP variants (chr6:6:60,860,355 
(rs43470227) and chr6:60,948,378 (rs43472732), SLC30A9) 
with multiple GH families (GH67, GH13_38, GH95, 
GH43_10, GH115, and GH10). Oligosaccharide-degra-
dation enzymes from the GH10, GH13, GH43, GH95, 
and GH115 families have xylosidase, mannosidase, or 
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glucosidase activity and produced SCFAs [54, 55]. The 
SLC30A9 gene belongs to the solute carrier family and 
is involved in zinc ion homeostasis and zinc ion trans-
port. Zn2+, an essential micronutrient and key cofactor 
in microbial metabolism, could significantly enhance 
the growth and metabolic capacity of microbes in  vitro 
[56]. For lactating cows, a balance of Zn2+ intake could 
enhance the degradation of fibre and promote rumen 
SCFA production, bacterial growth, and microbial pro-
tein biosynthesis [57]. Moreover, Zn2+ was also the key 
cofactor for the synthesis of microbial enzymes [58]. 
Hence, SLC30A9 may play an important role in the host 
regulation of the rumen microbes with specific enzyme 
genes, but this possibility requires well-designed experi-
mental verification, such as gene knockout experiments.

Finally, information from GWASs, m-GWASs, M-GWASs, 
and mWASs were integrated to determine a host-microbe 
interaction for microbiota- CAZy- metabolism-lactation 
performance. First, consistent with the findings of previ-
ous GWASs for dairy cows, lactation performance was 
also a highly heritable trait in our research (h2 ≥ 0.2) [5]. 
Our study revealed the same genes that affected lactation 
performance as did previous GWASs for reproductive 
and production performance in cows, such as TSPAN9 
[59] on chr5 and 5s_rRNA on chr25 [59–64]. The same 
SNP variants were found in the microbiome and phe-
notype. Next, we found that chr25:11,177 on 5s_rRNA 
appeared in the association analysis for Pseudobutyrivi-
brio_sp., GH24, 9,10,13-TRIHOME, and lactation perfor-
mance. 5s_rRNA is a small RNA with a length of 120 nt 
that has highly conserved secondary and tertiary struc-
tures in both prokaryotes and eukaryotes. 5S_rRNA not 
only participates in protein translation regulation but 
is also associated with ribosome production. The liver 
undergoes metabolic reprogramming and activates the 
tumor suppressor p53, which subsequently results in 
decreased or aberrant ribosome production. This, in 
turn, leads to the reprogramming of cellular transcription 
[65]. Because the rumen microbiome and metabolome 
are located at chr25:11,177 (5s_rRNA), Pseudobutyrivi-
brio possesses the capability to produce a diverse array 
of hydrolytic enzymes, facilitating efficient digestion of 
forage.  Several strains of Pseudobutyrivibrio (i.e., Pseu-
dobutyrivibrio xylanivorans Mz5T) produce multiple 
xylanases that once accounted for the highest xylano-
lytic activity among the rumen bacteria tested thus far 
[66]. Moreover, Pseudobutyrivibrio species possess sev-
eral extraordinary characteristics (i.e., active hydrolases, 
bacteriocin, and conjugated linoleic acid production), 
which make them probiotic for animals [67]. Interest-
ingly, 9,10,13-TRIHOME is a “lipid and lipid-like mol-
ecule” metabolite involved in “linoleic acid metabolism.” 
Linoleic acid is essential for normal brain development 

by influencing neurogenesis and synapse formation [68]. 
For lactating cows, supplementation with linoleic acid in 
the diet had a positive effect on maintaining energy bal-
ance and alleviating liver metabolic stress during lacta-
tion [69]. Moreover, linoleic acid intake could be related 
to animal characteristics (i.e., weight), as indicated by 
the presence of linoleic acid in milk fat [70]. GH24 con-
tains lysozyme, which inhibits methane production and 
enhances fermentation in  vitro in rumen fermentation 
experiments [71]. Here, we speculated that lysozyme may 
enhance the competitiveness of Pseudobutyrivibrio in the 
rumen microbiota, but we have not found any evidence of 
a relationship between lysozyme and Pseudobutyrivibrio. 
In summary, we suggest that, under the action of lysozyme 
(GH24), Pseudobutyrivibrio species increase the abun-
dance of metabolites (9,10,13-TRIHOME) involved in lin-
oleic acid metabolism and improve lactation performance 
while gaining niche advantages of Pseudobutyrivibrio in 
the rumen microbiota. The SNP variant chr25:11,177 on 
5s_rRNA is involved in this process. The above results 
provide a potential biological process for explaining the 
impact of 5s_rRNA on cow production performance dis-
covered in previous GWAS analyses related to lactation 
performance of dairy cow in other region [59].

There are several limitations to the present study. First, 
though a host-microbe interaction that was influenced 
by host SNP variants was identified in the present study, 
this is a limited cohort of cows with a focused sampling 
of the same herd of cows at a relatively centralized time 
point, which must be taken into account when interpret-
ing the data. However, the consistency in the feeding and 
management conditions of the sampling cows can avoid 
the influences of environment and feeds on the ruminal 
microbiome, and better highlight the host genetic role 
in shaping rumen microbiota [46]. Second, our findings 
mainly focused on the metagenome and host genetic lev-
els. Considering gene expression was a crucial step for 
the functional execution of microbes and host, future 
studies should pay more attention to the host and micro-
bial transcriptome results, which can provide more infor-
mation about the host-microbes interaction between the 
transcriptome of host and the functional and expressed 
microbial genes. To sum up, the effects of the host SNP 
variants on rumen microbiome needed further validation 
in a larger cohort of cows, so that these selected SNPs 
can be well used for breeding and selection of dairy cows. 
Notably, the genes annotated by multiple SNP variants 
related to microbes in our study were significantly related 
to the lactation performance and efficiency of cows. 
These genes included 5s_rRNA, which is associated with 
lactation persistence [59], DIAPH3 and TSPAN11, which 
are associated with feed efficiency [72, 73], and UGGT2, 
which is associated with milk fat yield [74]. That is to 
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say, these genes identified in our research may affect the 
production performance of cows by influencing rumen 
microbiota. Further, due to the formation of rumen 
microbiome, which may be proved to be affected by the 
host genetics SNPs variants, and further considering the 
CRISPR-Cas9 mediated gene editing breeding technol-
ogy was well developed, our selected SNPs can be tested 
in the future study to verify the impact of host SNPs vari-
ants on ruminal microbiome formation.

Conclusion
In this study, we used lactation performance and the 
rumen SCFAs of 304 lactating cows as a phenotype and 
evaluated the correlation between rumen metagenomes 
and metabolomes and host resequencing. Our find-
ings highlight the crucial involvement of highly herit-
able rumen microbial composition and function in the 
modulation of rumen fermentation patterns, with con-
sequential impacts on the efficiency of ECM production. 
Furthermore, we discovered a host-microbe interaction 
that was influenced by host SNP variants, wherein the 
rumen microbiome composition, function, and metabo-
lites exert a significant impact on cows’ lactation perfor-
mance. Specifically, our results showed that the influence 
of chr25:11,177 (5s_rRNA) on lactation performance may 
be mediated through the enhanced niche advantages of 
Pseudobutyrivibrio within the rumen microbiota, facili-
tated by the action of GH24 (lysozyme). This, in turn, 
leads to an increase in metabolites involved in linoleic 
acid metabolism (9,10,13-TRIHOME). In a meticulously 
controlled large-scale population with carefully regulated 
environment and diet, our study uniquely integrated the 
variations in composition, function, and metabolism of 
rumen microbiota with host SNP variations. This com-
prehensive approach allowed us to unravel the intricate 
interplay between the host and microbiota, revealing how 
dairy cows actively shape and select their rumen micro-
biota to regulate lactation performance. These findings 
establish a direct connection between the nutrition and 
genetics of dairy cows through the mediation of rumen 
microbiota, thereby providing a solid theoretical founda-
tion for precision nutrition strategies in modern farming 
practices.

Abbreviations
A:P	� Acetate and propionate ratio
BWA	� Burrows-Wheeler-Alignment Tool
CAZy	� Carbohydrate-Active enZYmes
CFI	� Comparative fit index
chisq	� Chi-squared test
CLR	� Centered log-ratio transformation
ECM	� Energy-corrected milk
GATK	� Genome Analysis Toolkit
GRM	� Genetic relationship matrix
GREML	� Genome-based restricted maximum likelihood
GWAS	� Genome-wide association studies

h2	� Heritability
hh	� Highly heritable latent variable
KEGG	� Kyoto Encyclopedia of Genes and Genomes
HMDB	� The Human Metabolome Database
LC-MS	� Liquid chromatography‒mass spectrometry
lh	� Lowly heritable latent variable
MDA	� Mean decrease accuracy
MF	� Milk fat
m-GWAS	� Metabolome-genome-wide association studies
m-GWAS	� Microbiome-genome-wide association studies
ML	� Milk lactose
MLM	� Mixed linear model
MP	� Milk protein
mWAS	� Microbiota-wide association studies
MY	� Milk yield
OPLS-DA	� Orthogonal partial least-squares discriminant analysis
ORF	� Open reading frames
RMSEA	� Root-mean-square error of approximation
SCFAs	� Short-chain fatty acids
SEM	� Structural equation model
SNPs	� Single nucleotide polymorphisms
TA	� Total acid

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​024-​01937-3.

 Additional file 1: Fig. S1. Data characteristics of phenotype and their 
relationships. Fig. S2. The differences of rumen microbial diversity and 
compositions at species level among low, medium, and high group of 
ECM. Fig. S3. Individual genetic information of 304 dairy cows. Fig. S4. 
The heritability and genetic information of rumen microbiota. Fig. S5. The 
variants information of highly heritable CAZy modules at family level by 
GWAS. Fig. S6. The characteristic and variant information of rumen highly 
heritable metabolites. Fig. S7. The relationships among ECM, GH24, Pseu-
dobutryrivibrio , and 9,10,13-TriHOME.

Additional file 2: Table S1. Diet and Animal cohort information. Table S2. 
The information (classification, relative abundance, heritability, node 
attribute, and FDR for A:P and ECM) of rumen microbes with relative abun-
dance exceeding 0.01% at species level of 304 dairy cows. Table S3. GWAS 
for lactation performance and rumen SCFA. Table S4. The information 
(classification, relative abundance, and heritability) of rumen microbial 
pathways at KEGG level3 of 304 dairy cows. Table S5. The information 
(classification, relative abundance, and heritability) of CAZy modules at 
family level of 304 dairy cows. Table S6. GWAS for rumen highly heritability 
subsets from top 100 microbes at species level. Table S7. The relative con-
tribution (%) matrix between lowly, highly heritable microbes and KEGG 
pathways of “Metabolism.” Table S8. GWAS for rumen highly heritability 
subsets from top 100 CAZy module at family level. Table S9. The informa-
tion (classification, relative quantitation, heritability) of rumen microbes 
with relative abundance exceeding 0.01% at species level of 304 dairy 
cows. Table S10. GWAS for rumen highly heritability subsets from top 50 
metabolites. Table S11. The heritability of enzymes involved in metabolic 
pathways and their relationship with rumen A:P.

Acknowledgements
The authors would like to express our appreciation to all the members of 
the Leyuan Animal Husbandry for their help in experimental farm. And we 
also thank the High Performance Computing Platform of Northwest A&F 
University.

Authors’ contributions
Conception and design: JY, SW, CZ. Sample collection: CZ, HL, XJ, ZZ, and HX. 
Development of methodology: CZ, SW, JY. Acquisition of data: CZ. Analysis 
and interpretation of the data: CZ, SW, SH. Manuscript writing and revision: CZ, 
SW, and SH. Review of the manuscript: All the authors. Lead contact author: 
SRW. The author(s) read and approved the final manuscript.

https://doi.org/10.1186/s40168-024-01937-3
https://doi.org/10.1186/s40168-024-01937-3


Page 19 of 21Zhang et al. Microbiome          (2024) 12:232 	

Funding
The raw sequencing data used and described in this study have been depos-
ited into CNGB Sequence Archive (CNSA) (https://db.cngb.org/cnsa/) of China 
National GeneBank DataBase (CNGBdb) with accession number CNP0005323 
(Metagenome data), CNP0005324 (whole-genome resequencing data), and 
CNP0005479 (Metabolome data). All data have now been publicly available 
since 21st March 2024.
The private link that the reviewers can use to access data is provided as 
follows:
Metagenome data:
http://​db.​cngb.​org/​cnsa/​proje​ct/​CNP00​05323_​2afb0​8a6/​revie​wlink/
Whole-genome resequencing data:
http://​db.​cngb.​org/​cnsa/​proje​ct/​CNP00​05324_​13546​68f/​revie​wlink/
Metabolome data:
https://​db.​cngb.​org/​cnsa/​proje​ct/​CNP00​05479_​d4c88​f7b/​revie​wlink/
All information is included in the manuscript or supporting files.

Data availability
The readers can contact the corresponding authors as needed to request raw 
data.
The raw sequencing data used and described in this study have been depos-
ited into CNGB Sequence Archive (CNSA) (https://​db.​cngb.​org/​cnsa/) of China 
National GeneBank DataBase (CNGBdb) with accession number CNP0005323 
(Metagenome data, link: https://​db.​cngb.​org/​search/​proje​ct/​CNP00​05323/), 
CNP0005324 (Whole genome resequencing data, link: https://​db.​cngb.​org/​
search/​proje​ct/​CNP00​05324/), and CNP0005479 (Metabolome data, link: 
https://db.cngb.org/search/project/CNP0005479/). All information is included 
in the manuscript or supporting files.

Declarations

Ethics approval and consent to participate
This experiment was conducted at the Animal Research and Technology 
Centre of Northwest A&F University (Yangling, Shaanxi, China). All analyses 
were performed in accordance with the guidelines recommended by the 
Administration of Affairs Concerning Experimental Animals (Ministry of Sci-
ence and Technology, China, revised 2004). The protocol was approved by the 
Institutional Animal Care and Use Committee of Northwest A&F University.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 College of Animal Science and Technology, Northwest A&F University, 22 
Nt, Xinong Road, Yangling, Shaanxi, China. 2 Institute of Global Food Security, 
School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, 
Belfast, Northern Ireland BT9 5DL, UK. 3 Key Laboratory of Livestock Biology, 
Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China. 
4 JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, 
Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China. 

Received: 8 March 2024   Accepted: 20 September 2024

References
	1.	 FAO. Food Outlook Biannual report on global food markets. Rome: Food 

and Agriculture Organization of the United Nations; 2022. https://​doi.​org/​
10.​4060/​cb942​7en.

	2.	 Rask KJ, Rask N. Economic development and food production–consump-
tion balance: a growing global challenge. Food Policy. 2011;36(2):186–96. 
https://​doi.​org/​10.​1016/j.​foodp​ol.​2010.​11.​015.

	3.	 Tricarico JM, Kebreab E, Wattiaux MA. MILK symposium review: sustain-
ability of dairy production and consumption in low-income countries 
with emphasis on productivity and environmental impact*. J Dairy Sci. 
2020;103(11):9791–802. https://​doi.​org/​10.​3168/​jds.​2020-​18269.

	4.	 Xue M-Y, Xie Y-Y, Zhong Y, Ma X-J, Sun H-Z, Liu J-X. Integrated meta-omics 
reveals new ruminal microbial features associated with feed efficiency 
in dairy cattle. Microbiome. 2022;10(1):32. https://​doi.​org/​10.​1186/​
s40168-​022-​01228-9.

	5.	 Schennink A, Stoop WM, Visker MHPW, Heck JML, Bovenhuis H, Van Der 
Poel JJ, Van Valenberg HJF, Van Arendonk JAM. DGAT1 underlies large 
genetic variation in milk-fat composition of dairy cows. Animal Genet. 
2007;38(5):467–73. https://​doi.​org/​10.​1111/j.​1365-​2052.​2007.​01635.x.

	6.	 Wang T, Li J, Gao X, Song W, Chen C, Yao D, Ma J, Xu L, Ma Y: Genome-
wide association study of milk components in Chinese Holstein 
cows using single nucleotide polymorphism. Livestock Science. 
2020;233103951. https://​doi.​org/​10.​1016/j.​livsci.​2020.​103951.

	7.	 Coppieters W, Riquet J, Arranz J-J, Berzi P, Cambisano N, Grisart B, Karim 
L, Marcq F, Moreau L, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, 
Georges M. A QTL with major effect on milk yield and composition maps 
to bovine Chromosome 14. Mamm Genome. 1998;9(7):540–4. https://​doi.​
org/​10.​1007/​s0033​59900​815.

	8.	 Heyen DW, Weller JI, Ron M, Band M, Beever JE, Feldmesser E, Da Y, Wig-
gans GR, VanRaden PM, Lewin HA. A genome scan for QTL influencing 
milk production and health traits in dairy cattle. Physiol Genomics. 
1999;1(3):165–75. https://​doi.​org/​10.​1152/​physi​olgen​omics.​1999.1.​3.​165.

	9.	 Conte G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari 
P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol 
regulatory element binding protein 1 gene polymorphisms and milk 
fatty acid composition in Italian rown cattle. J Dairy Sci. 2010;93(2):753–
63. https://​doi.​org/​10.​3168/​jds.​2009-​2581.

	10.	 Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni 
M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate 
cloning of a QTL in dairy cattle: identification of a missense mutation in 
the bovine DGAT1 gene with major effect on milk yield and composition. 
Genome Res. 2002;12(2):222–31. https://​doi.​org/​10.​1101/​gr.​224202.

	11.	 Yang H, Wu J, Huang X, Zhou Y, Zhang Y, Liu M, Liu Q, Ke S, He M, Fu H, 
Fang S, Xiong X, Jiang H, Chen Z, Wu Z, Gong H, Tong X, Huang Y, Ma J, 
Gao J, Charlier C, Coppieters W, Shagam L, Zhang Z, Ai H, Yang B, Georges 
M, Chen C, Huang L. ABO genotype alters the gut microbiota by regulat-
ing GalNAc levels in pigs. Nature. 2022;606(7913):358–67. https://​doi.​org/​
10.​1038/​s41586-​022-​04769-z.

	12.	 Zhernakova DV, Wang D, Liu L, Andreu-Sánchez S, Zhang Y, Ruiz-Moreno 
AJ, Peng H, Plomp N, Del Castillo-Izquierdo Á, Gacesa R, Lopera-Maya 
EA, Temba GS, Kullaya VI, van Leeuwen SS, Aguirre-Gamboa R, Deelen 
P, Franke L, Kuivenhoven JA, Nolte IM, Sanna S, Snieder H, Swertz MA, 
Visscher PM, Vonk JM, Xavier RJ, de Mast Q, Joosten LAB, Riksen NP, Rut-
ten JHW, Netea MG, Sanna S, Wijmenga C, Weersma RK, Zhernakova A, 
Harmsen HJM, Fu J, Lifelines Cohort S. Host genetic regulation of human 
gut microbial structural variation. Nature. 2024;625(7996):813–21. https://​
doi.​org/​10.​1038/​s41586-​023-​06893-w.

	13.	 Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An 
overview of host-derived molecules that interact with gut microbiota. 
iMeta. 2023;2(2):e88. https://​doi.​org/​10.​1002/​imt2.​88.

	14.	 Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, 
Huhtanen P, Bayat AR, Strozzi F, Biscarini F, Snelling TJ, Saunders N, 
Potterton SL, Craigon J, Minuti A, Trevisi E, Callegari ML, Cappelli FP, 
Cabezas-Garcia EH, Vilkki J, Pinares-Patino C, Fliegerová KO, Mrázek J, 
Sechovcová H, Kopečný J, Bonin A, Boyer F, Taberlet P, Kokou F, Halperin E, 
Williams JL, Shingfield KJ. Mizrahi I: a heritable subset of the core rumen 
microbiome dictates dairy cow productivity and emissions. Sci Adv. 
2019;5(7):eaav8391. https://​doi.​org/​10.​1126/​sciadv.​aav83​91.

	15.	 Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector 
TD, Keinan A, Ley RE, Gevers D, Clark AG. Host genetic variation impacts 
microbiome composition across human body sites. Genome Biol. 
2015;16(1):191. https://​doi.​org/​10.​1186/​s13059-​015-​0759-1.

	16.	 Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, 
Demirkan A, Le Roy CI, Raygoza Garay JA, Finnicum CT, Liu X, Zhernakova 
DV, Bonder MJ, Hansen TH, Frost F, Rühlemann MC, Turpin W, Moon J-Y, 
Kim H-N, Lüll K, Barkan E, Shah SA, Fornage M, Szopinska-Tokov J, Wallen 
ZD, Borisevich D, Agreus L, Andreasson A, Bang C, Bedrani L, Bell JT, 
Bisgaard H, Boehnke M, Boomsma DI, Burk RD, Claringbould A, Croitoru K, 
Davies GE, van Duijn CM, Duijts L, Falony G, Fu J, van der Graaf A, Hansen 
T, Homuth G, Hughes DA, Ijzerman RG, Jackson MA, Jaddoe VWV, Joos-
sens M, Jørgensen T, Keszthelyi D, Knight R, Laakso M, Laudes M, Launer 
LJ, Lieb W, Lusis AJ, Masclee AAM, Moll HA, Mujagic Z, Qibin Q, Rothschild 

https://db.cngb.org/cnsa/
http://db.cngb.org/cnsa/project/CNP0005323_2afb08a6/reviewlink/
http://db.cngb.org/cnsa/project/CNP0005324_1354668f/reviewlink/
https://db.cngb.org/cnsa/project/CNP0005479_d4c88f7b/reviewlink/
https://db.cngb.org/cnsa/
https://db.cngb.org/search/project/CNP0005323/
https://db.cngb.org/search/project/CNP0005324/
https://db.cngb.org/search/project/CNP0005324/
https://doi.org/10.4060/cb9427en
https://doi.org/10.4060/cb9427en
https://doi.org/10.1016/j.foodpol.2010.11.015
https://doi.org/10.3168/jds.2020-18269
https://doi.org/10.1186/s40168-022-01228-9
https://doi.org/10.1186/s40168-022-01228-9
https://doi.org/10.1111/j.1365-2052.2007.01635.x
https://doi.org/10.1016/j.livsci.2020.103951
https://doi.org/10.1007/s003359900815
https://doi.org/10.1007/s003359900815
https://doi.org/10.1152/physiolgenomics.1999.1.3.165
https://doi.org/10.3168/jds.2009-2581
https://doi.org/10.1101/gr.224202
https://doi.org/10.1038/s41586-022-04769-z
https://doi.org/10.1038/s41586-022-04769-z
https://doi.org/10.1038/s41586-023-06893-w
https://doi.org/10.1038/s41586-023-06893-w
https://doi.org/10.1002/imt2.88
https://doi.org/10.1126/sciadv.aav8391
https://doi.org/10.1186/s13059-015-0759-1


Page 20 of 21Zhang et al. Microbiome          (2024) 12:232 

D, Shin H, Sørensen SJ, Steves CJ, Thorsen J, Timpson NJ, Tito RY, Vieira-
Silva S, Völker U, Völzke H, Võsa U, Wade KH, Walter S, Watanabe K, Weiss S, 
Weiss FU, Weissbrod O, Westra H-J, Willemsen G, Payami H, Jonkers DMAE, 
Arias Vasquez A, de Geus EJC, Meyer KA, Stokholm J, Segal E, Org E, Wij-
menga C, Kim H-L, Kaplan RC, Spector TD, Uitterlinden AG, Rivadeneira F, 
Franke A, Lerch MM, Franke L, Sanna S, D’Amato M, Pedersen O, Paterson 
AD, Kraaij R, Raes J, Zhernakova A. Large-scale association analyses iden-
tify host factors influencing human gut microbiome composition. Nat 
Genet. 2021;53(2):156–65. https://​doi.​org/​10.​1038/​s41588-​020-​00763-1.

	17.	 Xu F, Fu Y, Sun T-y, Jiang Z, Miao Z, Shuai M, Gou W, Ling C-w, Yang J, 
Wang J, Chen Y-m, Zheng J-S. The interplay between host genetics and 
the gut microbiome reveals common and distinct microbiome features 
for complex human diseases. Microbiome. 2020;8(1):145. https://​doi.​org/​
10.​1186/​s40168-​020-​00923-9.

	18.	 Golder HM, Thomson J, Rehberger J, Smith AH, Block E, Lean IJ. Associa-
tions among the genome, rumen metabolome, ruminal bacteria, and 
milk production in early-lactation Holsteins. Journal of Dairy Science. 
2023;106(5):3176–91. https://​doi.​org/​10.​3168/​jds.​2022-​22573.

	19.	 Zang X-W, Sun H-Z, Xue M-Y, Zhang Z, Plastow G, Yang T, Guan LL, Liu 
J-X, Metcalf JL: Heritable and nonheritable rumen bacteria are associated 
with different characters of lactation performance of dairy cows. mSys-
tems. 2022;7(5):https://​doi.​org/​10.​1128/​msyst​ems.​00422-​22.

	20.	 Weimer PJ. Redundancy, resilience, and host specificity of the ruminal 
microbiota: implications for engineering improved ruminal fermenta-
tions. Front Microbiol. 2015;6https://​doi.​org/​10.​3389/​fmicb.​2015.​00296.

	21.	 Li C, Xue Y, Han M, Palmer LC, Rogers JA, Huang Y, Stupp SI. Synergis-
tic photoactuation of bilayered spiropyran hydrogels for predictable 
origami-like shape change. Matter. 2021;4(4):1377–90. https://​doi.​org/​10.​
1016/j.​matt.​2021.​01.​016.

	22.	 Wu S, Cui Z, Chen X, Zheng L, Ren H, Wang D, Yao J. Diet-ruminal micro-
biome-host crosstalk contributes to differential effects of calf starter and 
alfalfa hay on rumen epithelial development and pancreatic α-amylase 
activity in yak calves. Journal of Dairy Science. 2021;104(4):4326–40. 
https://​doi.​org/​10.​3168/​jds.​2020-​18736.

	23.	 Yu Z, Morrison M. Improved extraction of PCR-quality community DNA 
from digesta and fecal samples. Biotechniques. 2004;36(5):808–12. 
https://​doi.​org/​10.​2144/​04365​st04.

	24.	 Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preproc-
essor. Bioinformatics. 2018;34(17):i884–90. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bty560.

	25.	 Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​btp324.

	26.	 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via suc-
cinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​btv033.

	27.	 Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: 
prokaryotic gene recognition and translation initiation site identifica-
tion. BMC Bioinformatics. 2010;11(1): 119. https://​doi.​org/​10.​1186/​
1471-​2105-​11-​119.

	28.	 Noguchi H, Park JA, Takagi T: MetaGene: prokaryotic gene finding from 
environmental genome shotgun sequences. Nucleic Acids Research. 
2006;345623-5630.

	29.	 Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics. 2012;28(23):3150–2. https://​
doi.​org/​10.​1093/​bioin​forma​tics/​bts565.

	30.	 Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment 
program. Bioinformatics. 2008;24(5):713–4. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btn025.

	31.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using 
DIAMOND. Nat Methods. 2015;12(1):59–60. https://​doi.​org/​10.​1038/​
nmeth.​3176.

	32.	 Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D. 
Niche and host-associated functional signatures of the root surface 
microbiome. Nat Commun. 2014;5(1):4950. https://​doi.​org/​10.​1038/​
ncomm​s5950.

	33.	 Xue M-Y, Sun H-Z, Wu X-H, Liu J-X, Guan LL. Multi-omics reveals that the 
rumen microbiome and its metabolome together with the host metabo-
lome contribute to individualized dairy cow performance. Microbiome. 
2020;8(1):64. https://​doi.​org/​10.​1186/​s40168-​020-​00819-8.

	34.	 Paropkari AD, Leblebicioglu B, Christian LM, Kumar PS. Smoking, preg-
nancy and the subgingival microbiome. Sci Rep. 2016;6(1): 30388. https://​
doi.​org/​10.​1038/​srep3​0388.

	35.	 Walker MA, Pedamallu CS, Ojesina AI, Bullman S, Sharpe T, Whelan CW, 
Meyerson M. GATK PathSeq: a customizable computational tool for the 
discovery and identification of microbial sequences in libraries from 
eukaryotic hosts. Bioinformatics. 2018;34(24):4287–9. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​bty501.

	36.	 Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species 
comparisons of host genetic associations with the microbiome. Science. 
2016;352(6285):532–5. https://​doi.​org/​10.​1126/​scien​ce.​aad93​79.

	37.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-
wide complex trait analysis. The American Journal of Human Genetics. 
2011;88(1):76–82. https://​doi.​org/​10.​1016/j.​ajhg.​2010.​11.​011.

	38.	 Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for 
association studies. Nat Genet. 2012;44(7):821–4. https://​doi.​org/​10.​1038/​
ng.​2310.

	39.	 Wen T, Xie P, Yang S, Niu G, Liu X, Ding Z, Xue C, Liu Y-X, Shen Q, Yuan 
J. ggClusterNet: an R package for microbiome network analysis and 
modularity-based multiple network layouts. iMeta. 2022;1(3):e32. https://​
doi.​org/​10.​1002/​imt2.​32.

	40.	 Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Dja-
hanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, 
Cruaud C, d’Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, 
Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch 
M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-
Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone 
D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, 
Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P, Boss E, 
Bowler C, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sieracki 
M, Velayoudon D, coordinators TO. Structure and function of the global 
ocean microbiome. Science. 2015;348(6237):1261359. https://​doi.​org/​10.​
1126/​scien​ce.​12613​59.

	41.	 Cheung MW-L. metaSEM: an R package for meta-analysis using structural 
equation modeling. Front Psychol. 2015;5. https://​doi.​org/​10.​3389/​fpsyg.​
2014.​01521.

	42.	 Wen C, Yan W, Mai C, Duan Z, Zheng J, Sun C, Yang N. Joint contributions 
of the gut microbiota and host genetics to feed efficiency in chickens. 
Microbiome. 2021;9(1):126. https://​doi.​org/​10.​1186/​s40168-​021-​01040-x.

	43.	 Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, 
Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, 
Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A. The gut 
microbiome contributes to a substantial proportion of the variation in 
blood lipids. Circulation Research. 2015;117(9):817–24. https://​doi.​org/​10.​
1161/​CIRCR​ESAHA.​115.​306807.

	44.	 Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, 
Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk 
LG, Zhang Q, Province MA, Petri WA Jr, Ahmed T, Gordon JI. Persistent gut 
microbiota immaturity in malnourished Bangladeshi children. Nature. 
2014;510(7505):417–21. https://​doi.​org/​10.​1038/​natur​e13421.

	45.	 Wang W, Zhang Y, Zhang X, Li C, Yuan L, Zhang D, Zhao Y, Li X, Cheng 
J, Lin C, Zhao L, Wang J, Xu D, Yue X, Li W, Wen X, Jiang Z, Ding X, 
Salekdeh GH, Li F. Heritability and recursive influence of host genet-
ics on the rumen microbiota drive body weight variance in male Hu 
sheep lambs. Microbiome. 2023;11(1):197. https://​doi.​org/​10.​1186/​
s40168-​023-​01642-7.

	46.	 Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, Fitzsimmons C, Plastow G, Guan 
LL. Host genetics influence the rumen microbiota and heritable rumen 
microbial features associate with feed efficiency in cattle. Microbiome. 
2019;7(1):92. https://​doi.​org/​10.​1186/​s40168-​019-​0699-1.

	47.	 Stevenson DM, Weimer PJ. Dominance of revotella and low abundance 
of classical ruminal bacterial species in the bovine rumen revealed 
by relative quantification real-time PCR. Appl Microbiol Biotechnol. 
2007;75(1):165–74. https://​doi.​org/​10.​1007/​s00253-​006-​0802-y.

	48.	 Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as 
drivers of microbiome structure and functioning. Nat Rev Microbiol. 
2018;16(9):567–76. https://​doi.​org/​10.​1038/​s41579-​018-​0024-1.

	49.	 Ryle MER. Energy Nutrition in Ruminants. Springer Netherlands; 1990. 
https://​doi.​org/​10.​1007/​978-​94-​009-​0751-5.

	50.	 He Z, Liu R, Wang M, Wang Q, Zheng J, Ding J, Wen J, Fahey AG, Zhao G. 
Combined effect of microbially derived cecal SCFA and host genetics on 

https://doi.org/10.1038/s41588-020-00763-1
https://doi.org/10.1186/s40168-020-00923-9
https://doi.org/10.1186/s40168-020-00923-9
https://doi.org/10.3168/jds.2022-22573
https://doi.org/10.1128/msystems.00422-22
https://doi.org/10.3389/fmicb.2015.00296
https://doi.org/10.1016/j.matt.2021.01.016
https://doi.org/10.1016/j.matt.2021.01.016
https://doi.org/10.3168/jds.2020-18736
https://doi.org/10.2144/04365st04
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/ncomms5950
https://doi.org/10.1038/ncomms5950
https://doi.org/10.1186/s40168-020-00819-8
https://doi.org/10.1038/srep30388
https://doi.org/10.1038/srep30388
https://doi.org/10.1093/bioinformatics/bty501
https://doi.org/10.1093/bioinformatics/bty501
https://doi.org/10.1126/science.aad9379
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/ng.2310
https://doi.org/10.1038/ng.2310
https://doi.org/10.1002/imt2.32
https://doi.org/10.1002/imt2.32
https://doi.org/10.1126/science.1261359
https://doi.org/10.1126/science.1261359
https://doi.org/10.3389/fpsyg.2014.01521
https://doi.org/10.3389/fpsyg.2014.01521
https://doi.org/10.1186/s40168-021-01040-x
https://doi.org/10.1161/CIRCRESAHA.115.306807
https://doi.org/10.1161/CIRCRESAHA.115.306807
https://doi.org/10.1038/nature13421
https://doi.org/10.1186/s40168-023-01642-7
https://doi.org/10.1186/s40168-023-01642-7
https://doi.org/10.1186/s40168-019-0699-1
https://doi.org/10.1007/s00253-006-0802-y
https://doi.org/10.1038/s41579-018-0024-1
https://doi.org/10.1007/978-94-009-0751-5


Page 21 of 21Zhang et al. Microbiome          (2024) 12:232 	

feed efficiency in broiler chickens. Microbiome. 2023;11(1):198. https://​
doi.​org/​10.​1186/​s40168-​023-​01627-6.

	51.	 Gao Y, Fang L, Baldwin RL, Connor EE, Cole JB, Van Tassell CP, Ma L, Li C-j, 
Liu GE. Single-cell transcriptomic analyses of dairy cattle ruminal epithe-
lial cells during weaning. Genomics. 2021;113(4):2045–55. https://​doi.​org/​
10.​1016/j.​ygeno.​2021.​04.​039.

	52.	 Lin S, Fang L, Kang X, Liu S, Liu M, Connor EE, Baldwin RL, Liu G, Li C-J. 
Establishment and transcriptomic analyses of a cattle rumen epithelial 
primary cells (REPC) culture by bulk and single-cell RNA sequencing to 
elucidate interactions of butyrate and rumen development. Heliyon. 
2020;6(6): e04112. https://​doi.​org/​10.​1016/j.​heliy​on.​2020.​e04112.

	53.	 Li QS, Wang R, Ma ZY, Zhang XM, Jiao JZ, Zhang ZG, Ungerfeld EM, Yi KL, 
Zhang BZ, Long L, Long Y, Tao Y, Huang T, Greening C, Tan ZL, Wang M. 
Dietary selection of metabolically distinct microorganisms drives hydro-
gen metabolism in ruminants. ISME J. 2022;16(11):2535–46. https://​doi.​
org/​10.​1038/​s41396-​022-​01294-9.

	54.	 Gharechahi J, Vahidi MF, Sharifi G, Ariaeenejad S, Ding X-Z, Han J-L, Sale-
kdeh GH. Lignocellulose degradation by rumen bacterial communities: 
New insights from metagenome analyses. Environ Res. 2023;229115925. 
https://​doi.​org/​10.​1016/j.​envres.​2023.​115925.

	55.	 Kaneko S, Fujimoto Z. α-l-Rhamnosidases: Structures, substrate specifici-
ties, and their applications. chapter 16. 2023:349–64. https://​doi.​org/​10.​
1016/​B978-0-​323-​91805-3.​00019-8.

	56.	 Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk 
between zinc and free fatty acids in plasma. Biochim Biophys Acta (BBA) - 
Mol Cell Biol Lipids. 2019;1864(4):532–42. https://​doi.​org/​10.​1016/j.​bbalip.​
2018.​09.​007.

	57.	 Wang RL, Liang JG, Lu L, Zhang LY, Li SF, Luo XG. Effect of zinc source on 
performance, zinc status, immune response, and rumen fermentation of 
lactating cows. Biol Trace Elem Res. 2013;152(1):16–24. https://​doi.​org/​10.​
1007/​s12011-​012-​9585-4.

	58.	 Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu 
Y: Zinc essentiality, toxicity, and its bacterial bioremediation: a compre-
hensive insight. Front Microbiol. 2022;13https://​doi.​org/​10.​3389/​fmicb.​
2022.​900740.

	59.	 Do DN, Bissonnette N, Lacasse P, Miglior F, Sargolzaei M, Zhao X, 
Ibeagha-Awemu EM. Genome-wide association analysis and pathways 
enrichment for lactation persistency in Canadian Holstein cattle. Journal 
of Dairy Science. 2017;100(3):1955–70. https://​doi.​org/​10.​3168/​jds.​
2016-​11910.

	60.	 Taye M, Lee W, Jeon S, Yoon J, Dessie T, Hanotte O, Mwai OA, Kemp S, 
Cho S, Oh SJ, Lee H-K, Kim H. Exploring evidence of positive selection 
signatures in cattle breeds selected for different traits. Mamm Genome. 
2017;28(11):528–41. https://​doi.​org/​10.​1007/​s00335-​017-​9715-6.

	61.	 Marina H, Pelayo R, Suárez-Vega A, Gutiérrez-Gil B, Esteban-Blanco C, 
Arranz JJ. Genome-wide association studies (GWAS) and post-GWAS 
analyses for technological traits in Assaf and Churra dairy breeds. Journal 
of Dairy Science. 2021;104(11):11850–66. https://​doi.​org/​10.​3168/​jds.​
2021-​20510.

	62.	 Dias EAR, Campanholi SP, Rossi GF, Freitas Dell’Aqua CdP, Dell’Aqua JA, 
Papa FO, Zorzetto MF, de Paz CCP, Oliveira LZ, Mercadante MEZ, Monteiro 
FM. Evaluation of cooling and freezing systems of bovine semen. Animal 
Reprod Sci. 2018;195102–111. https://​doi.​org/​10.​1016/j.​anire​prosci.​2018.​
05.​012.

	63.	 Ahmad SF, Singh A, Gangwar M, Kumar S, Dutt T, Kumar A: Haplotype-
based association study of production and reproduction traits in multi-
generational Vrindavani population. Gene. 2023;867147365. https://​doi.​
org/​10.​1016/j.​gene.​2023.​147365.

	64.	 Sousa Junior LPB, Pinto LFB, Cruz VAR, Junior GAO, Oliveira HR, Chud TS, 
Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association 
and functional genomic analyses for various hoof health traits in North 
American Holstein cattle. J Dairy Sci. 2023. https://​doi.​org/​10.​3168/​jds.​
2023-​23806.

	65.	 Pelava A, Schneider C, Watkins Nicholas J. The importance of ribosome 
production, and the 5S RNP–MDM2 pathway, in health and disease. 
Biochem Soc Trans. 2016;44(4):1086–90. https://​doi.​org/​10.​1042/​bst20​
160106.

	66.	 Tripathi MK, Roy U, Jinwal UK, Jain SK, Roy PK. Cloning, sequencing and 
structural features of a novel Streptococcus lipase. Enzyme and Microbial 
Technology. 2004;34(5):437–45. https://​doi.​org/​10.​1016/j.​enzmi​ctec.​2003.​
11.​020.

	67.	 Grilli DJ, Mansilla ME, Giménez MC, Sohaefer N, Ruiz MS, Terebiznik MR, 
Sosa M, Arenas GN: Pseudobutyrivibrio xylanivorans adhesion to epithe-
lial cells. Anaerobe. 2019;561–7. https://​doi.​org/​10.​1016/j.​anaer​obe.​2019.​
01.​001.

	68.	 Yau S-y, Yip YSL, Formolo DA, He S, Lee THY, Wen C, Hryciw DH: Chronic 
consumption of a high linoleic acid diet during pregnancy, lactation and 
post-weaning period increases depression-like behavior in male, but not 
female offspring. Behavioural Brain Research. 2022;416113538. https://​
doi.​org/​10.​1016/j.​bbr.​2021.​113538.

	69.	 Bayat AR, Razzaghi A, Sari M, Kairenius P, Tröscher A, Trevisi E, Vilkki J. The 
effect of dietary rumen-protected trans-10, cis-12 conjugated linoleic 
acid or a milk fat-depressing diet on energy metabolism, inflammation, 
and oxidative stress of dairy cows in early lactation. Journal of Dairy Sci-
ence. 2022;105(4):3032–48. https://​doi.​org/​10.​3168/​jds.​2021-​20543.

	70.	 Denis P, Ferlay A, Nozière P, Gerard C, Schmidely P. Quantitative relation-
ships between ingested and intestinal flows of linoleic and alpha-
linolenic acids, body weight and milk performance in mid-lactation dairy 
cows. Animal. 2022;16(11):100661. https://​doi.​org/​10.​1016/j.​animal.​2022.​
100661.

	71.	 Biswas AA, Lee SS, Mamuad LL, Kim S-H, Choi Y-J, Bae G-S, Lee K, Sung 
H-G, Lee S-S. Use of lysozyme as a feed additive on in vitro rumen 
fermentation and methane emission. Asian-Australas J Anim Sci. 
2016;29(11):1601–7. https://​doi.​org/​10.​5713/​ajas.​16.​0575.

	72.	 Hardie LC, VandeHaar MJ, Tempelman RJ, Weigel KA, Armentano LE, 
Wiggans GR, Veerkamp RF, de Haas Y, Coffey MP, Connor EE, Hanigan MD, 
Staples C, Wang Z, Dekkers JCM, Spurlock DM. The genetic and biological 
basis of feed efficiency in mid-lactation Holstein dairy cows. Journal 
of Dairy Science. 2017;100(11):9061–75. https://​doi.​org/​10.​3168/​jds.​
2017-​12604.

	73.	 Lu Y, Vandehaar MJ, Spurlock DM, Weigel KA, Armentano LE, Connor 
EE, Coffey M, Veerkamp RF, de Haas Y, Staples CR, Wang Z, Hanigan MD, 
Tempelman RJ. Genome-wide association analyses based on a multiple-
trait approach for modeling feed efficiency. Journal of Dairy Science. 
2018;101(4):3140–54. https://​doi.​org/​10.​3168/​jds.​2017-​13364.

	74.	 Prinsen RTMM, Rossoni A, Gredler B, Bieber A, Bagnato A, Strillacci MG: A 
genome wide association study between CNVs and quantitative traits in 
Brown Swiss cattle. Livestock Science. 2017;2027–12. https://​doi.​org/​10.​
1016/j.​livsci.​2017.​05.​011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s40168-023-01627-6
https://doi.org/10.1186/s40168-023-01627-6
https://doi.org/10.1016/j.ygeno.2021.04.039
https://doi.org/10.1016/j.ygeno.2021.04.039
https://doi.org/10.1016/j.heliyon.2020.e04112
https://doi.org/10.1038/s41396-022-01294-9
https://doi.org/10.1038/s41396-022-01294-9
https://doi.org/10.1016/j.envres.2023.115925
https://doi.org/10.1016/B978-0-323-91805-3.00019-8
https://doi.org/10.1016/B978-0-323-91805-3.00019-8
https://doi.org/10.1016/j.bbalip.2018.09.007
https://doi.org/10.1016/j.bbalip.2018.09.007
https://doi.org/10.1007/s12011-012-9585-4
https://doi.org/10.1007/s12011-012-9585-4
https://doi.org/10.3389/fmicb.2022.900740
https://doi.org/10.3389/fmicb.2022.900740
https://doi.org/10.3168/jds.2016-11910
https://doi.org/10.3168/jds.2016-11910
https://doi.org/10.1007/s00335-017-9715-6
https://doi.org/10.3168/jds.2021-20510
https://doi.org/10.3168/jds.2021-20510
https://doi.org/10.1016/j.anireprosci.2018.05.012
https://doi.org/10.1016/j.anireprosci.2018.05.012
https://doi.org/10.1016/j.gene.2023.147365
https://doi.org/10.1016/j.gene.2023.147365
https://doi.org/10.3168/jds.2023-23806
https://doi.org/10.3168/jds.2023-23806
https://doi.org/10.1042/bst20160106
https://doi.org/10.1042/bst20160106
https://doi.org/10.1016/j.enzmictec.2003.11.020
https://doi.org/10.1016/j.enzmictec.2003.11.020
https://doi.org/10.1016/j.anaerobe.2019.01.001
https://doi.org/10.1016/j.anaerobe.2019.01.001
https://doi.org/10.1016/j.bbr.2021.113538
https://doi.org/10.1016/j.bbr.2021.113538
https://doi.org/10.3168/jds.2021-20543
https://doi.org/10.1016/j.animal.2022.100661
https://doi.org/10.1016/j.animal.2022.100661
https://doi.org/10.5713/ajas.16.0575
https://doi.org/10.3168/jds.2017-12604
https://doi.org/10.3168/jds.2017-12604
https://doi.org/10.3168/jds.2017-13364
https://doi.org/10.1016/j.livsci.2017.05.011
https://doi.org/10.1016/j.livsci.2017.05.011

	An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows
	Abstract 
	Background 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Animals, phenotypic data, and sample collection
	Ruminal SCFAs measurement
	Metagenome sequencing
	Metabolomic analysis
	Whole-genome resequencing
	Estimation of phenotypic and rumen microbial heritability
	Identification of significant SNPs based on GWASs using mixed linear model (MLM)
	Construction of the co-occurrence network
	The association between the rumen microbiotamatrix and phenotypematrix by using the Mantel test

	The causal relationships among highly heritable subsets of the rumen microbiota, rumen SCFAs, and MY according to structural equation model (SEM)
	Microbiota-wide association studies (mWAS)
	Random forest

	Results
	Overview of the core rumen microbiota that affects the ECM
	GWAS identified host genetics that affect rumen SCFAs and lactation performance
	Identification of highly heritable microbes and their regulatory SNPs via mGWAS
	The characteristics of highly heritable subsets in the rumen microbiota
	Carbohydrate metabolism characteristics of highly heritable microbes
	Heritable characteristics of the rumen microbiota related to rumen propionate and milk yield based on the mWAS

	Discussion
	Conclusion
	Acknowledgements
	References


