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Abstract 

Background:  Accurate estimation of the burden of Plasmodium falciparum is essential for strategic planning for 
control and elimination. Due in part to the extreme heterogeneity in malaria exposure, immunity, other causes of 
disease, direct measurements of fever and disease attributable to malaria can be difficult. This can make a comparison 
of epidemiological metrics both within and between populations hard to interpret. An essential part of untangling 
this is an understanding of the complex time-course of malaria infections.

Methods:  Historic data from malariatherapy infections, in which individuals were intentionally infected with malaria 
parasites, were reexamined in aggregate. In this analysis, the age of each infection was examined as a potential pre-
dictor describing aggregate patterns across all infections. A series of piecewise linear and generalized linear regres-
sions were performed to highlight the infection age-dependent patterns in both parasitaemia and gametocytaemia, 
and from parasitaemia and gametocytaemia to fever and transmission probabilities, respectively.

Results:  The observed duration of untreated patent infection was 130 days. As infections progressed, the fraction of 
infections subpatent by microscopy was seen to increase steadily. The time-averaged malaria infections had three dis-
tinct phases in parasitaemia: a growth phase for the first 6 days of patency, a rapid decline from day 6 to day 18, and a 
slowly declining chronic phase for the remaining duration of the infection. During the growth phase, parasite densi-
ties increased sharply to a peak. Densities sharply decline for a short period of time after the peak. During the chronic 
phase, infections declined steadily as infections age. gametocytaemia was strongly correlated with lagged asexual 
parasitaemia. Fever rates and transmission efficiency were strongly correlated with parasitaemia and gametocytaemia. 
The comparison between raw data and prediction from the age of infection has good qualitative agreement across all 
quantities of interest for predicting averaged effects.

Conclusion:  The age of infection was established as a potentially useful covariate for malaria epidemiology. Infec-
tion age can be estimated given a history of exposure, and accounting for exposure history may potentially provide a 
new way to estimate malaria-attributable fever rates, transmission efficiency, and patent fraction in immunologically 
naïve individuals such as children and people in low-transmission regions. These data were collected from American 
adults with neurosyphilis, so there are reasons to be cautious about extending the quantitative results reported here 
to general populations in malaria-endemic regions. Understanding how immune responses modify these statistical 
relationships given past exposure is key for being able to apply these results more broadly.
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Background
Despite great progress in recent decades, malaria from 
Plasmodium falciparum infection continues to claim 
approximately 435 thousand lives each year [1, 2]. 
Deaths represent only part of the overall burden, as an 
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estimated 194 million cases occurred in 2017 alone [1, 2] 
despite the existence of cures and preventative measures. 
Malaria therefore represents a major source of avert-
ible disease burden, with a major challenge being how to 
efficiently allocate resources to people in need. Assess-
ments of potential targeted interventions to efficiently 
reduce prevalence depend on detailed knowledge of the 
epidemiology in the region of interest gained from local 
research studies.

Epidemiological surveys of malaria typically report 
some combination of asexual parasite counts, clinical 
incidence, prevalence, and rates of fever to compare age-
specific patterns of disease and transmission among pop-
ulations [3, 4]. However these multifaceted data paint a 
complex picture, with patterns in routine clinical surveil-
lance data that are difficult to interpret due to ambiguity 
in the causes of observed trends. Therefore it is impor-
tant to characterize patterns which appear in first infec-
tions in order to determine how they may be altered with 
different levels of past exposure. To this end, this study 
aims to establish time since infection as a predictor of 
patent infection probability by microscopy, asexual para-
site densities, gametocyte densities, fever probabilities, 
and transmission efficiency. This relationship can be lev-
eraged in future modelling studies which can track theo-
retical estimates of infection age given rates of exposure, 
and incorporate the effects of immunity to see how these 
baseline patterns in individuals may be altered to lead to 
the population level patterns seen in data.

Previous research on the time course of infection 
has described the highly volatile trajectories of parasi-
taemia in a single individual over time, whose counts 
can jump orders of magnitude over the course of a day 
[5, 6]. Studies focused on infection durations have esti-
mated that the average time to the last observed patent 
infection ranges from around 100 days to over 1000 days 
[7–9], with at least one confirmed infection persisting for 
over a decade [10]. Patterns in the spikes and troughs of 
parasite counts have been investigated for evidence of 
mechanisms driving patterns such as VAR gene switch-
ing in parasite densities [9] or blood cell age preferences 
of the parasites [11]. Insight derived from these studies 
are valuable, but it is difficult to interpret these mecha-
nisms’ role in the efficacy of a particular intervention, 
or to scale to the impact on country or continent level 
estimates of burden. Asexual parasitaemia is a standard 
covariate for estimating the malaria attributable fraction 
of fever [3] and the heterogeneous relationship between 
gametocytaemia and transmission efficiency [12–14] at 
the population level, but there remain lingering issues of 
identifiability regarding the impact of immunity.

Due in part to widely varying histories of past exposure 
among individuals in a population, observational studies 

of the relationship between quantities such as preva-
lence, malaria attributable fever, and per capita trans-
mission rate may be misleading if they do not take into 
account the heterogeneous effects of immunity. Innate 
immune responses may differ in individuals depending 
on exposure, age, and other possible underlying condi-
tions, and adaptive immune responses may differ based 
on an individual’s history of past exposure. The effects 
of immunity limit an infection, reducing parasite popu-
lation growth and eventually clearing infections. The 
impact of adaptive immunity on subsequent infections 
can further be decomposed into five categorical effects: 
pre-erythrocytic immunity, anti-(asexual) parasitic 
immunity, parasite tolerance, anti-gametocytic immu-
nity, and transmission blocking immunity. Pre-erythro-
cytic immunity slows or prevents the establishment of 
an infection before or in the liver. Anti-parasitic immu-
nity acts to reduce the blood stage parasitaemia, which 
is correlated with disease. Parasite tolerance modifies 
the relationship between parasitaemia and disease; it is 
measured as a reduction in the likelihood of fever and 
other clinical symptoms for a given parasitaemia. Anti-
gametocytic immunity reduces gametocyte densities. 
Gametocytes infect mosquitoes, and their densities are 
correlated with transmission efficiency. Transmission 
blocking immunity reduces transmission efficiency for a 
given gametocytaemia, analogous to parasite tolerance 
[13]. This is mediated through immune effectors which 
target gametocyte-specific antigens, compounding the 
impact of antiparasite immunity which reduces the num-
ber of asexual parasites which produce gametocytes. 
Malaria epidemiology and immunity can therefore be 
understood as a set of cascading consequences of para-
sitaemia (Fig. 1). As these different modalities will impact 
fever, patency, and transmission rates, a direct translation 
from parasitaemia or prevalence to other epidemiological 
measures without previous exposure taken into account 
may be difficult to establish at best and lead to spurious 
patterns at worst.

Understanding how P. falciparum infections develop in 
the absence of acquired immunity is thus key to under-
standing and interpreting malaria data in which immu-
nity has modified baseline patterns. Baseline data are 
difficult to obtain in malaria-endemic areas, but data 
describing some malaria infections in non-immune indi-
viduals is available from the historical data describing 
carefully monitored, deliberate malaria infections used to 
induce a fever to treat neurosyphilis, called malariather-
apy [5, 15–19]. The malariatherapy data used in this study 
was initiated through either intravenous injection with 
asexual parasites directly or mosquito bite with sporozo-
ites. They have previously been used to study the dura-
tion of single infections [20]. This is difficult to estimate 
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from longitudinal studies due to the relatively common 
occurrence of superinfection, in which individuals are 
infected with multiple cohorts of parasites simultane-
ously, and unknown past exposure. Some recent studies 
have used genetic data to follow individual infections and 
estimate the multiplicity of infection [21, 22] but such 
studies can only detect genetically distinct strains spo-
radically, and infections with the highest densities at the 
time of measurement mask the presence of lower density 
infections. Some malariatherapy patients were infected 
several times, and their records have been used to study 
the effects of adaptive immunity by comparing the differ-
ence between homologous and heterologous challenge; 
effects of immunity to homologous challenge appear to 
be present after one or two infections, but it may take 
more exposure for strain transcending immunity to occur 
[23].

In this study, focus was placed on population-aver-
aged patterns in parasite densities over the time course 
of the infection in individuals with no prior exposure as 

a reference for uncomplicated malaria with no effects 
of previously acquired immunity in adults using a sam-
ple from the malariatherapy patient data. Statistical 
relationships were established between average para-
sitaemia and epidemiological measures such as fever 
rates and transmission efficiency in relation to recent 
exposure in immunologically naïve individuals (Fig. 1). 
Given an infection has not been cleared, it can either 
be patent or subpatent; given patency, individuals will 
have some measurable asexual parasitaemia. This par-
asitaemia is used as a measure of severity of disease, 
and therefore risk of symptoms such as fever. Asexual 
parasites also produce gametocytes after some matura-
tion period, previously estimated to be 9–12 days [24, 
25], which persist with a short half-life [26]. In turn, 
gametocytaemia is used as a predictor for transmission 
efficiency [13, 14]. This framework was used as a lens 
through which to statistically view the aggregate data, 
demonstrating that the age of an infection can be used 
as a potentially powerful surrogate for estimating these 
hard to measure and dynamic quantities.

Fig. 1  Schematic breakdown of infections. Given infections are active, some fraction will be subpatent (i.e., undetectable by light microscopy) 
and the rest will be patent. Given the parasitaemia is patent, we can estimate the parasitaemia which will inform fever probability today and 
gametocytaemia roughly 9 days in the future. Fever rates presumably are correlated with treatment rates as symptomatic individuals are much 
more likely to seek treatment, and gametocytaemia is positively correlated with the transmission efficiency per mosquito bite
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Methods
The data set consists of 316 adult patient records, 258 
males and 58 females of unreported ages, between 1941 
and 1954 in the American south. The participants were 
patients with neurosyphilis being treated with malaria 
parasites, which were intended to induce a fever and 
effective immune response against spirochetes to miti-
gate outcomes of neurosyphilis. The infections were initi-
ated through injection with either sporozoites to induce 
a liver infection or merozoites to directly induce blood 
stage infection. Results were aggregated across both inoc-
ulation methods, as previous results have shown little 
difference in measured quantities in this study between 
the two groups or by dose administered beyond the pre-
patent period, which was not investigated here [27, 28]. 
Infection age was counted from the first day of patency of 
an infection. Little clinical difference in outcomes aside 
from latency before first measurement was noticed, so 
both types of exposure were included here. Once patent 
by microscopy, daily measurements were taken of asexual 
and sexual stage parasites, and body temperature if there 
was an apparent fever. If symptoms of malaria became 
severe or if parasite densities were too high, patients were 
given treatment inadequate to cure malaria but sufficient 
to reduce parasitaemia. Treatment was not standard-
ized and included a range of 28 different drug regimens. 
When there were detectable gametocytes in the blood, 
mosquito feedings were performed to determine the 
transmission efficiency from human to mosquito. Once 
the infection had been subpatent for some time, full 
treatment was given to clear the parasites entirely. In a 
subset of patients, secondary infections were initiated 
through either homologous or heterologous challenge. 
No deaths were reported.

For the estimate of duration of patent infection, we 
excluded treated cases (treated n = 189). For all other 
estimation, we included infections that were treated until 
the day they were first treated, where they were trun-
cated (n = 299). On any day that an individual had patent 
gametocytaemia, a mosquito feeding was performed and 
after the estimated extrinsic incubation period the mos-
quitoes were dissected to determine the fraction which 
became sporozoite positive (n = 2029 observations). The 
subsequent infection challenges that occurred in some 
patients were excluded, as we were interested in the 
course of first infections.

The primary features of interest included infection 
duration, patent fraction over time, asexual parasitaemia 
over time, gametocytaemia over time, fever risk asso-
ciated with parasitaemia, and transmission efficiency 
associated with gametocytaemia. The fits of the relation-
ships between all the observable quantities are summa-
rized in Table  1. For patency, asexual parasitaemia, and 

gametocytaemia, piecewise linear or generalized lin-
ear fits were performed and summarized. The distribu-
tions of asexual parasitaemia and gametocytaemia were 
also represented in violin plots aggregated by month to 
show general trends. Daily means and variances appeared 
to have a relationship, so a power law was fit. Logistic 
regressions were performed to translate daily average 
parasitaemia to fever risk, and smoothed gametocytae-
mia to transmission efficiency. The degree of zero infla-
tion in the transmission efficiency and the beta-fitted 
histograms of transmission efficiency across binned lev-
els of gametocytaemia were also plotted to emphasize the 
overdispersion of the relationship. Code for the analysis 
is included in additional file 1.

Results
The average duration of the infection, restricted to 
the subset of patients who were untreated during the 
entire infection (n = 110), was estimated to be 130 days 
(Fig.  2b). Here the duration was defined as the age of 
infection on the last day with patent asexual parasitaemia 
by microscopy, which was followed by a sequence of par-
asite negative observations and the cessation of measure-
ment. We compared exponential, gamma, weibull, and 
lognormal survival curves, with delta AIC (23.3, 0, 1.7, 
6.8, respectively) and delta BIC (20.6, 0, 1.7, 6.8, respec-
tively) confirming exponential as a poorest fit and gamma 
and weibull as being the best candidates. The plotted blue 
curve is the gamma survival curve, with shape parameter 
2.058 and rate parameter 0.015 per day.

For the analyses that follow all infections were 
included, in particular observations of all infections 

Table 1  Fitted relationships between infection age and 
quantities of interest

Patent fraction consisted of two piecewise-linear fits and a generalized linear 
fit at each of the transitions mentioned in the text. Log parasitaemia likewise 
is piecewise linear. Fever probability and transmission efficiency are logistic 
functions of their predictors, which are linear functions of infection age

Quantity of interest Fitted equation of Kernel

Patent Fraction, D(α)






1 if α ≤ 6

1.12− .02 α if 6 < α ≤ 18
�

1+ e
−1.52+0.0151α

�−1
if α > 18

log10 Asexual parasitaemia, 
P(α)











0, if α ≤ 0
3.10+ .278 α, if 0 < α ≤ 6
5.12− .0743 α, if 6 < α ≤ 18
3.85− .00843 α, if α > 18

Fever Probability, F(P(α)) .859e3.45P(α)

58200+e3.45P(α)

log10 gametocytaemia, 
G(L9P(α))

−0.684+ .892L9P(α), L9P(α) = P(α − 9)

Transmission Efficiency, c(G(α)) .683e2.14G(α)

131+e2.14G(α)
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until they were ended by treatment. This allowed a 
reduction of the bias introduced by removing all infec-
tions with higher parasitaemia which tended to be 
treated at higher rates.

Asexual parasite densities followed a three-phase pat-
tern (Fig.  2). For the first six days of a patent infection, 
parasite densities had increased geometrically. This was 
followed by a sharp decline between days 6–20. After 
that, here referred to as the chronic phase, parasite 
densities and the fraction patent on a given day slows 
to a shallower nearly linear trend in time. Among pat-
ent infections, the log10 transformed daily average 
declined linearly (Fig.  2a). In the chronic phase, infec-
tions sometimes had subpatent periods before spikes in 
parasitaemia occurred again. The proportion of perist-
ent infections which were patent on a given day declined 
steadily (Fig. 2c). Older infections tend to spend a sign-
ficant fraction of time at submicroscopic densities in 
the blood with occasional bouts above that theshold of 
detectability, somewhere around 88 parasites per cmm 
of blood [29]. The increasing variance in points around 
the fitted average was due in part to the sample size in 
the daily averages decreasing as individuals either receive 
treatment or recover. Additional variation had occurred 
to a smaller fraction of those with persisting infection 

remaining patent, so many of the later plotted points are 
representative of a small number of individuals with late 
spikes in parasitaemia.

A strong relationship between asexual parasitaemia 
and gametocytaemia became apparent. The log10 of the 
average parasitaemia and gametocytaemia appeared to 
be shifted and scaled versions of one another (Fig.  3a). 
Lagged average parasitaemia as a linear predictor of 
gametocytaemia was therefore explored. The optimal lag 
was determined to be 9 days, which minimized the stand-
ard deviation of the residuals (see the trough of Fig. 3c). 
The flat nature of the standard deviation as a function of 
the lag around days 8–12 suggests that other lags may be 
nearly as good of fits, which is consistent with the esti-
mated maturation period of gametocytes [24, 25]. Game-
tocyte densities in the chronic phase had also declined 
linearly (Fig 3b). After accounting for the lag, gametocyte 
densities were approximately 10-fold lower than parasite 
densities.

In addition to patterns in average asexual parasitaemia 
and gametocytaemia, patterns in the distribution across 
all individuals on a given day were investigated (Fig.  4). 
Monthly violin plots of the asexual parasitaemia and 
gametocytaemia after log-transformation appeared to 
maintain their shape while shifting down as infections 

Fig. 2  Plots of parasitaemia, duration, and patency. A Shows a scatter plot of the log10 of the daily average parastemia among patent infections 
conditioned on continued infection. The blue lines are a three piecewise linear fit in three parts, with a gray shaded region representing the middle 
of the three. B Shows a plot of the empirical survival function of infections that had positive measures of parasitaemia on or after that day of 
infection. The blue curve represents the best fit gamma survival curve, that is the complement of the corresponding gamma CDF. Finally C is a plot 
of the proportion patent conditioned on continued infection. The gray shaded region is the same highlighted in panel A, showing that during the 
initial growth phase nearly all infections remain patent; then patency drops about 20 percent over a short time, then it slowly decays to around 10 
percent by day 250
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aged. A power law relationship between mean and vari-
ance of both asexual parasitaemia and gametocytae-
mia for patent infections was quantified (Fig 4b, d). 
Power laws are often known to exist in higher density 
regions [30], although a decrease in variance may occur 
in measurements near the threshold of detectability by 
light microscopy as lower measurements are likely to be 
recorded as subpatent and therefore not included in daily 
measurements.

Log10 daily measurements of parasitaemia were then 
fit as a predictor of the proportion of individuals with 
fever, conditioned on patent parasitaemia. The best fit 
was a sigmoid function from the GLM with logit link 
(Fig. 5). There was a different relationship between par-
asite densities and fever in the first five days of patency 
compared to the rest of the infection. Note the five pur-
ple points laying above the sigmoid, with the leftmost 
two in particular being strong outliers. These points rep-
resent the first five days of infection, with the days being 
ordered from left to right. This would imply parasitaemia 
is a poor predictor in the first few days of infection, and 
in particular fever may come days before high parasitae-
mia. Unsurprisingly, fever was also a function of the age 
of the infection. The fit appears to follow the data very 
well, though underestimates the first few days of infec-
tion as expected.

Finally the relationship between gametocytaemia and 
transmission efficiency was quantified. Transmission effi-
ciency was measured as the fraction of mosquitoes that 
developed sporozoites after feeding on individuals with 
patent gametocytaemia. The relationship between game-
tocytaemia and transmission efficiency was consistent 
but noisy. To fit the data, the data generating process was 
modeled as a mixture process, a zero-inflated beta-bino-
mial distribution. Smoothing individual measurements 
across log10 gametocytaemia by averaging over measure-
ments with similar gametocytaemia resulted in the blue 
points in Fig. 6a. A logistic regression was performed on 
the blue points, with weights proportional to the num-
ber of measurements used in the average. Analogous to 
Figs. 5b, 6b shows the log linear fit of gametocytaemia fil-
tered through the sigmoid in green.

The beta-binomial interpretation had allowed for quan-
tification of overdispersion, with zero-inflation added 
due to the large abundance of zeroes. Interestingly, the 
amount of zero inflation had appeared to decrease with 
increasing gametocytaemia, as shown in Fig. 6c. Condi-
tioning on a nonzero number of mosquitoes counted, the 
histograms were plotted in binned gametocytemia with 
beta distributions fit in Fig. 6d–i. As expected, increasing 
gametocytaemia had shifted likelihood to higher trans-
mission efficiency but with a large amount of variabil-
ity. Therefore even highly gametocytemic patients often 

Fig. 3  A Shows two time series of points, the top representing the log10 of the daily mean parasitaemia on a given day across all continued 
patent infections as in Fig. 2A and the bottom green time series represents the corresponding log10 daily mean gametocytaemia. A fit to predict 
gametocytaemia from lagged parasitaemia was performed across many lags, and the optimal lag was determined by the minimum of the standard 
deviation of the lagged residuals shown in C. The linear fit at the optimal lag of 9 days in presented in panel B 
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infected less than expected mosquitoes, or even none at 
all, during a particular feeding. This could have been par-
tially explained by a result of fairly small samples of mos-
quitoes feeding successfully per patient per day, though 
another mechanism cannot be ruled out such as differ-
ences in sex ratios of gametocytes or strain-specific dif-
ferences that are accentuated in transmission more than 
disease states [31].

Discussion
It was shown that asexual parasite densities were strongly 
predicted by the age of infection, the relationship 
between parasite densities and fever and gametocytaemia 
and the relationship between gametocytaemia and infec-
tiousness were quantified. In particular, estimation of the 
expected asexual parasitaemia was determined as a func-
tion of infection age, from which every other quantity 
can be estimated. The diagram in Fig. 1 shows pathways 
through intermediate quantities to translate from infec-
tion age to outcomes of interest. As there is also have a 
relationship between the mean and variance of asexual 
parasitaemia and gametocytaemia, fitting a family of 

distributions allows for estimation of full distributions of 
fever rates and transmission efficiencies as well. There-
fore this represents a potentially powerful framework for 
future estimation.

This analysis suggests it may be possible to translate 
knowledge of a history of exposure to epidemiologi-
cally important quantities which are strongly correlated 
to the age of the infection if acquired immunity can also 
be estimated. Averaging these conditional rates on the 
probability an individual has had an infection for some 
duration across all present infection ages weighted by the 
fraction of the population who has had an infection for 
that duration gives expected population-level metrics in 
a given transmission setting. The basic idea follows the 
law of the unconscious statistician. If for example one 
were to estimate some observable X which depends on 
the concentration of the pathogen p, the following could 
be computed:

E[Xp] =

∫

∞

0

P(p = p0)E[Xp0 |p0]dp0.

Fig. 4  A, C Represent violin plots of the distributions across individuals of respectively the log10 daily parasitaemia and log10 daily 
gametocytaemia across all individuals, aggregated across 30 day periods for compactness. Despite being log transformed, the distribution shapes 
appear to shift down with infection age but maintain the same general shape, suggesting a power-law relationship between the mean and 
variance of parasitaemia. Power laws are then fit to log10 transformed daily mean and variances in B and D, restricted to those above the estimated 
sensitivity of light microscopy (88 parasites per cmm blood)
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Examples of such X would include fever rates and trans-
mission efficiency, as each would reasonably increase 
on average with pathogen density. However, this would 
require knowledge of the probability that an individual 
in the population has a pathogen concentration of p. 
This is rarely known and difficult to measure directly, as 
surveys often only measure incident cases which tend 
to have higher parasitaemia, and detection rates them-
selves depend on pathogen densities. However due to the 
observation that malaria appears to exhibit strong aver-
age parasite density patterns with respect to the age of 
an infection, it would be possible to parameterize p (and 
therefore X) through the infection age α . This would give

One advantage to this formulation would be to allow one 
to estimate the probability of having an infection of age 
α through the use of standard age of infection dynamics 
given estimates of exposure [32]. The resulting distribu-
tion could give a reasonable estimate on the unknown 
probability given patterns in rates of exposure, allowing 
one to compute the desired expectation.

E[Xp(α)] =

∫

∞

0

P(α = α0)E[Xp(α0)|α0]dα0.

Past work on malaria attributable fever [3], which esti-
mated malaria attributable fraction of total fever based 
on parasitological survey data of children, is analogous 
to the parasitaemia-to-fever risk regression done here. 
This interpretation would allow for the logistic regression 
to assign a probability to any child with parasite density 
measurements and a fever to determine how likely it is 
that the fever they have is attributable to malaria. The 
data was restricted to relatively young children, so the 
effects of adaptive immunity could be largely ignored 
as they were here. However to apply those results to 
an entire population, the regression would need to be 
reworked across measurements of all age groups as their 
past exposure and developed immunity will modify para-
site densities and fever tolerance. Additionally, exposure 
history may vary dramatically from location to location, 
so the method would require an enormous amount of 
data and each location with its unique history of expo-
sure could have a very different estimate from even other 
locations with the same current day prevalence. The anal-
ysis which was presented here shows that if one is instead 
able to estimate how long ago individuals were most 
recently infected based on a history of exposure from his-
torical prevalence data, it would be possible to estimate 
a malaria attributable fraction of fever in the absence 
of parasite density surveys given a reasonable model of 
immunity.

Although parasitaemia appears to be a very good pre-
dictor of fever after the first week or so of patent para-
sitaemia, the fever rate was seen to be consistently 
higher than predicted by parasitaemia in the early days 
of patency. This would suggest the notion of a differ-
ence between primary fever, caused at the beginning of 
an infection, and a secondary fever, correlated strongly 
with parasitaemia and occurring later in the infection. 
This could be a consequence of the inflammatory cascade 
early in infection which is subsequently tempered by 
anti-inflammatory responses as the immune response has 
matured. An uncontrolled early inflammatory response is 
often found in severe cases of malaria [33, 34], so mortal-
ity in cases may be closely correlated with this early stage 
of infection.

Analogous to the fever and asexual parasitaemia rela-
tionship, the infection reservoir and its impact on estima-
tion of the human-to-mosquito transmission potential in 
environments with seasonal transmission may be largely 
impacted by the additional heterogeneity presented here. 
In addition to the overdispersion shown in the transla-
tion from gametocytaemia to transmission efficiency, the 
infection-age dependent patterns of infectivity may be 
leveraged to improve our understanding of which loca-
tions may be a “source” or “sink” for malaria transmis-
sion, and how a location may switch from one to another 

Fig. 5  A Shows a logistic fit of the log10 of daily mean asexual 
parasitaemia to the fraction of individuals with objective fever. The 
five points in purple above the logistic curve are the first 5 days of 
infection, suggesting that many febrile individuals got primary fevers 
before high density infections. B Shows a time series of the daily 
fraction of individuals with active infections who have fever. The 
red curve represents the transformed piecewise fit of parasitaemia 
transformed through the fitted logistic curve
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Fig. 6  The black points in A represent the transmission efficiency, measured through the fraction of fed mosquitoes who developed sporozoites, 
against the log10 gametocytaemia measured on that day for each individual on every day they were gametocyte positive. Treated infections 
were not included in this analysis. Blue points are a rolling average of transmission efficiency as a function of log10 gametocytaemia, and the 
green curve is a sigmoid curve fit to these points with weights given by the number of points included in their rolling average. B Shows the daily 
average transmission efficency as a function of infection age, with the green curve representing the measured log10 daily average gametocytaemia 
composed with the sigmoid fit in A, showing good qualitative agreement. As the relationship between gametocytaemia and transmission 
efficiency is highly heterogeneous and zero-inflated, zero-inflated beta distributions were fit to binned values of gametocytaemia to quantify this. C 
shows the degree of zero inflation, that is the fraction of mosquito feedings resulting in no infections at all, as a function of log10 gametocytaemia. 
The blue sigmoid curve was fit to these points, showing the apparent zero-inflation decreases with increasing gametocytaemia. Finally, D–I are 
histograms of transmission efficiency for a given range of gametocytaemia conditioned on nonzero measurements, with beta distributions fit to 
each. Despite the high degree of heterogeneity, density can be seen to aggregate to the right with increasing gametocytaemia
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based on the history of recent exposure and the age 
group of individuals in question [35, 36].

The fit for transmission efficiency as a function of 
gametocyte densities had appeared to be consistently 
above the data. This was due to a technical difference in 
the fitting procedure compared to fever. While fever was 
predicted from daily average parasitaemia, transmission 
efficiency was predicted from a function of the gameto-
cytaemia measurements and not to the averaged time 
series data directly. Combined with the fact that most of 
the gametocytaemia measurements in the time series are 
from the top half the fitted sigmoid and therefore filtered 
through a concave function, Jensen’s inequality would 
guarantee that plugging in the mean to the function 
rather than taking an average of the data filtered through 
the sigmoid is expected to be an overestimate. However 
either through computing the conditional expectation 
mentioned above or simulating draws of gametocytaemia 
on a given day then converting through the sigmoid func-
tion, this problem would be avoided completely.

The power law relationships demonstrated between 
the mean and the variance, which suggests evidence of 
the well-known Taylor’s Law from ecology [37], could be 
used for practical computations here. This relationship is 
often seen between the means and variances of popula-
tions across different spatial regions, but would apply 
here as each human host can be imagined as an inde-
pendent habitat for the parasite populations. One of the 
significant advantages of it is it would allow one to use 
the relatively simple pattern in mean parasitaemia over 
time to obtain a similar pattern in variance over time, and 
therefore parametrically could describe a wide class of 
two-parameter distributions for parasitaemia as a func-
tion of infection age through moment matching. This 
allows for the propagation of uncertainty of estimates 
through the relationships in a way which would circum-
vent the issues of Jensen’s inequality mentioned above.

It is necessary to highlight several limitations to the 
extensibility of these observations. The atypical immuno-
logical states of the patients considered here were a clear 
concern. Naturally questions could be asked about the 
application of trends found in adults with neurosyphilis 
to otherwise healthy individuals in endemic settings. Fur-
ther, all subjects were adults with presumably fully devel-
oped immune systems, and therefore their response may 
differ from children in endemic settings as well. However, 
none of these individuals have previously had exposure 
to malaria and therefore represent a sort of baseline for 
trends in first exposure, even if the exact values of the 
parameter values are not perfectly representative.

A conscious decision was made here to not limit the 
analysis to a single strain of P. falciparum. Strain-specific 
differences may play a large role in overall transmission 

dynamics [9], but often genetic information of strain 
diversity is limited in a particular setting. Additionally, no 
simple mapping between strain and pathogenicity or spe-
cific parasitaemia profiles is known to exist. Inflamma-
tory signalling would also change in response to recent 
exposure [33], possibly altering the baseline relationship 
between fever and infections. Often in endemic settings 
individuals will have multiple infections simultaneously, 
so any mapping would also need to account for pairwise 
interactions or work on an assumption of independence. 
Handling the possibility of superinfection on this age of 
infection relationship would warrant further investiga-
tion in the future.

The five modalities of immunity as well as any age 
dependent trends will vary over time and impact all of 
the statistics presented here. With exposure, parasitae-
mia and gametocytaemia will decline; separate from 
that, higher parasitaemias can be tolerated before a fever 
develops, and transmission given a set gametocytaemia 
may decline. For these reasons, a static mapping from 
prevalence to fever rates or transmitting fraction in the 
absence of information on the history of exposure may 
be a poor representation of the epidemiological reality. 
Patterns of exposure (seasonality, source/sink dynam-
ics, human travel patterns, etc) should play a large role 
in developing a dynamic mapping, which coincides with 
the understanding that malaria is a very heterogeneous 
disease by location. Given an understanding of the pat-
terns of exposure, it may be possible to estimate the likely 
distribution of immune states in the population and take 
that into account for estimation of quantities of interest.

In light of these statistical relationships, if one knows 
an infection age distribution one can obtain estimates of 
fever rates and transmission potential in the absence of 
immunity. If a direct measure of these quantities is avail-
able, this may be able to act as a counterfactual for meas-
uring the impact of immunity; if a model of immunity is 
included, one can obtain estimates of the quantities. In 
both cases, an infection age distribution is a crucial piece. 
Therefore, it places particular emphasis on the impor-
tance in determining such infection age distributions. 
Subsequent work is aimed to provide a model-based 
approach for constructing reasonable families of distri-
butions of the age of infection given an exposure history.

Difficulty interpreting data arises in part from the 
extreme range of unknown previous exposure history 
across locations. Exposure has been measured at levels 
varying from no bites to more than a thousand bites by 
infectious mosquitoes, per person, per year; transmis-
sion efficiency, detection, and clinical manifestations 
of malaria depend on previous exposure and acquired 
immunity; exposure is often seasonal, and highly het-
erogeneous across individuals; and acquired immunity 
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to malaria develops slowly, varies by exposure, pro-
tects poorly, and has poor memory [23, 38]. This 
prompts many studies to focus on the prevalence and 
outcomes in children, who can be reasonably assumed 
to have had little previous exposure [39]. Often pat-
terns in children appear to more closely match trends 
in exposure intensity, but this leads to an identifiabil-
ity problem: differences may arise due to the acquisi-
tion of immunity directly, or due to differences in the 
developing immune systems of children. Observed age-
dependent patterns are likely a combination of both of 
these effects. Integrating the statistical patterns demon-
strated here with mechanistic models of immunity may 
help to address this.

Conclusions
Patterns relating the age of malaria infections to 
patency, parasitaemia, gametocytaemia, fever rates, and 
transmission efficiency were quantified and described. 
These patterns can be leveraged in population-level 
models of disease transmission to obtain dynamic esti-
mates of each of these quantities. Future investigations 
can use these models to determine the impact of public 
health interventions on fever and transmission.
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