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The density and architecture of leaf veins determine the network and efficiency

of water transport within laminae and resultant leaf gas exchange and vary

widely among plant species. Leaf hydraulic conductance (Kleaf ) can be regu-

lated by vein architecture in conjunction with the water channel protein

aquaporin. However, our understanding of how leaf veins and aquaporins

affect leaf hydraulics and stomatal conductance (gs) remains poor. By inducing

blockage of the major veins and inhibition of aquaporin activity using HgCl2,

we examined the effects of major veins and aquaporins on Kleaf and gs in species

with different venation types. A vine species, with thick first-order veins and

low vein density, displayed a rapidly declined gs with high leaf water potential

in response to vein blockage and a greatly reduced Kleaf and gs in response to

aquaporin inhibition, suggesting that leaf aquaporins are involved in isohyd-

ric/anisohydric stomatal behaviour. Across species, the decline in Kleaf and gs

due to aquaporin inhibition increased linearly with decreasing major vein

density, possibly indicating that a trade-off function between vein architec-

ture (apoplastic pathway) and aquaporin activity (cell-to-cell pathway) affects

leaf hydraulics.
1. Introduction
Plants cannot survive without water, and it is crucial to plants for water to be

transported to the leaves; therefore, plant hydraulic properties strongly influence

plant performance [1–3]. Leaves account for 30% or more of whole-plant hydrau-

lic resistance, constituting an important hydraulic bottleneck [4,5]. Leaf hydraulic

conductance (Kleaf ¼ inverse of hydraulic resistance) has a strong influence on

stomatal conductance (gs) and photosynthetic capacity (Amax) [6,7], and ulti-

mately on plant ecology [8–10]. Leaf venation, whose architecture varies

widely among plant species [11], forms the transport network for water within

a lamina and thus affects Kleaf [5]. Water flow in the xylem of a leaf vein has

lower resistance per length than water flow outside the xylem between xylem

and the intercellular space. Therefore, in comparison to leaves with low vein den-

sity, leaves with a high vein density have a shorter path length of outside xylem,

potentially leading to higher Kleaf and Amax [6,12]. The ratio of hydraulic resist-

ance inside and outside the xylem in a whole leaf varies among species [5].

Among the 10 species studied in a tropical rain forest, on average, 50% of the

resistance was from inside the veins and 39% from outside the veins; in compari-

son to species that were not sun-adapted, those that were sun-adapted had a

higher proportion inside the xylem [13].

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.0799&domain=pdf&date_stamp=2019-06-05
mailto:harahisa@ffpri.affrc.go.jp
https://dx.doi.org/10.6084/m9.figshare.c.4508276
https://dx.doi.org/10.6084/m9.figshare.c.4508276
http://orcid.org/
http://orcid.org/0000-0002-6493-2021
http://orcid.org/0000-0003-4806-0996
http://orcid.org/0000-0002-0058-4857
http://orcid.org/0000-0003-0620-5819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


control cut B cut Ccut A

(a)

Quercus glauca Q. serrata Pueraria lobata

(b)

Figure 1. (a) Experimental vein blockage design according to Nardini &
Salleo [25] and (b) images of laminae from study species. Cut surfaces indi-
cated by red and blue lines were sealed with cyanoacrylate. (a) Control: intact
leaves. Cut A: the midrib was cut at a quarter of the length. Cut B: the midrib
was cut at three points, and all second-order veins were cut approximately
4 mm from their base. Cut C: the midrib was cut approximately 2 mm from
its base; in Pueraria lobata, the large two second-order veins nearest to the
base of the lamina were additionally cut. (b) Blue and red lines indicate
cutting points in cuts A and C, respectively. A bar represents 1 cm.
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While a steady-state maximum Kleaf strongly correlates with

gs and Amax among species, Kleaf is not constant and is highly

dynamic in response to environmental stimuli [5]. During

drought, for example, a decrease in leaf water potential (Cleaf )

can result in embolism formation in the xylem of leaf veins,

thereby reducing their hydraulic conductivity and Kleaf

[14,15]. Leaf vascular redundancy (i.e. high vein density) can

enhance tolerance against hydraulic disfunction in veins

because water can flow around the dysfunctional vein through

nearby functioning veins [16]. In addition, hydraulic conduc-

tance outside the xylem can also be modified [5]. One of the

main pathways of the outside xylem is a cell-to-cell pathway

through cell membranes, regulated by water channel proteins

called aquaporins [17,18]. Aquaporin gene expression in a leaf

can potentially be stimulated by light [19], defoliation [20] and

rewatering after drought stress [21–23], resulting in an increase

in Kleaf. A decline in Kleaf associated with the deactivation of

aquaporins in response to environmental stimuli can result in

a decline in gs [24]. Accordingly, Kleaf, and thus gs, are regulated

by the network structure of leaf veins and water channel aqua-

porins; however, the mutual involvement of leaf veins and

aquaporins in Kleaf and gs remains poorly understood.

In this study, we conducted two experiments to artificially

decrease Kleaf by blocking or inhibiting water flow through

major veins and aquaporins in five species with various leaf

vein densities and architectures. In the major vein blocking

experiments, where three vein blockage patterns were applied

to mimic the embolisms in major veins with different intensi-

ties [25] (figure 1), we investigated the response of gs with

respect to Cleaf in dehydrated leaves in an open field. In the

aquaporin inhibition experiments [26], we investigated

the decrease in Kleaf and gs by aquaporin inhibition in fully

hydrated leaves in a laboratory set-up. By integrating the
results of the two experiments, we discuss the effects of leaf

aquaporins and leaf venation on the interspecific difference

in leaf hydraulics and gs from physiological and ecological

points of view. We hypothesized that species with lower vein

density may experience greater impacts of Kleaf and gs on aqua-

porin inhibition because a low vein density can provide a

sensitive Kleaf response against hydraulic disfunction in veins

[16], and aquaporin upregulation can offset the decline in

Kleaf. This hypothesis may contribute to delayed gs reduction

and prolonged photosynthesis (higher C acquisition) in vulner-

able leaves with low vein density and may be connected to the

trade-off function between vein architecture and aquaporin

activity. The study species had different arrangements of

thick leaf veins (i.e. pinnate and pinnipalmate venation;

figure 1b), which can differentially affect Kleaf and gs responses

to hydraulic failure in the midrib of leaves [16]. The Quercus
genus was also included because some Quercus species have

shown an irradiance-dependent increase in Kleaf [27–29],

which was related to the expression of PIP1 (Plasma membrane

Intrinsic Protein) aquaporin [29].
2. Material and methods
Two sets of experiments, major vein blockage and aquaporin inhi-

bition, were conducted using fully expanded current-year leaves

from sunlit shoots of trees or vines grown in the arboretum of

the Forestry and Forest Products Research Institute, eastern

Japan (368000 N, 1408080 E, 20 m.a.s.l. [30]). We studied five angios-

perm species, two evergreen tree species (Quercus acuta Thunb.

and Quercus glauca Thunb.) and two winter deciduous tree species

(Castanea crenata Siebold et Zucc. and Quercus serrata Murray) trees

and a winter deciduous vine species (Pueraria lobata [Willd.] Ohwi),

all common in the warm-temperate forests of Japan. The leaf long-

evities of the evergreen Q. acuta and Q. glauca were 26 and 14

months, respectively [30]. Two to four individual trees were

studied. Leaves from the vine were selected at least 5 m apart

from each other because individual vines could not be identified.

All trees were 20–25 years old, and their height and diameter at

breast height were 10–15 m and 20–30 cm, respectively. ‘Leaf’

refers to ‘leaflet’ of the compound leaf of P. lobata, for brevity.

(a) Measurement of leaf hydraulic conductance
A vacuum chamber method [31–33] was used to measure Kleaf.

Briefly, a leaf was placed in a vacuum chamber (7 l) connected to

a vacuum pump and a pressure gauge. The petiole of the leaf was

attached to a Tygon tube filled with 20 mM KCl solution filtered

with a 0.22 mm membrane filter and degassed overnight via a

vacuum pump. The other end of the Tygon tube was placed into

a KCl solution container, which was placed on a balance (model

AG204+0.1 mg sensitivity; Mettler Toledo Japan, Tokyo, Japan).

Five vacuum levels in the range 0.035–0.065 MPa were applied

(0.005 MPa interval). At each pressure level, the mass of water on

the balance was logged every 30 or 60 s at stable flow rates (F).

Kleaf was calculated as the slope of the flow rate against vacuum

pressure, normalized for leaf area, which was determined by a digi-

tal image analysis after scanning. Leaves were illuminated with

�500 mmol m22 s21 photosynthetically active radiation (PAR), pro-

vided as white and blue (9 : 1) LED light, starting one hour before

measurements and lasting until the measurements were complete.

The room temperature was maintained at �258C.

(b) Major vein blockage experiment
Vein blockage experiments were conducted according to Nardini &

Salleo [25] in three species with different life forms—the evergreen
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tree Q. glauca, the deciduous tree Q. serrata and the deciduous vine

P. lobata—between August and September 2003. In the evening of

the day before the Kleaf measurements, sunlit shoots were sampled,

immediately recut under water and then transported to the labora-

tory. The cut ends of the shoots were kept in the water until the

measurements started. Three different patterns of vein cuttings

were performed with a fresh razor blade (figure 1): (1) the

midrib was cut at one-quarter of the length (cut A); (2) the

midrib was cut at three points, and all second-order veins were

cut at approximately 4 mm from their base (cut B); and (3) the

midrib was cut at approximately 2 mm from the base in Q.
glauca and Q. serrata, and the midrib and the two large second-

order veins nearest the lamina base were cut at approximately

2 mm from the base in P. lobata (cut C). In cut A, water flow was

interrupted at a quarter of the midrib, but water could pass

through the lateral secondary veins connected to up to a quarter

of the midrib. In cut B, water flow through all second-order

veins was interrupted, but water could flow through a quarter

of the midrib and via minor veins and outside-xylem pathways.

In cut C, water inlet into the leaf was extremely limited, and

the only path for water flow was through minor veins and

outside-xylem pathways. After vein cutting, all cut surfaces were

immediately sealed with cyanoacrylate to prevent water flow

[25]. On the next day, Kleaf of the treated and untreated leaves

was measured. Five or six leaves per treatment per species were

measured, except for four leaves for cut C in Q. serrata.

To investigate the effects of vein blockage on stomatal conduc-

tance (gs) in situ, treatments were conducted on intact leaves of the

trees and vine in the field during the evening. The next day, treated

and untreated leaves were measured (10.00–14.00) for gs and leaf

water potential (Cleaf ) using a steady-state porometer (Li1600,

Li-Cor, Lincoln, USA) and a pressure chamber (Soilmoisture

Equipment, Santa Barbara, USA). gs was measured at the distal

third of the lamina. Six to eight leaves per treatment per species

were measured. The percentage loss of conductance (PLC) of

Kleaf and gs was calculated as follows:

PLC ¼ 100

� 1–
Kleaf or gs of treated leaves

Kleaf or gs of control ði:e: untreated leavesÞ

� �
:

ð2:1Þ

Leaf water relations were analysed by the pressure–volume

technique [34], and the leaf water potential at the turgor loss

point (Cw.tlp), osmotic potential at full turgor (Cs.sat) and bulk

modulus of elasticity (emax) were calculated [35]. Sunlit shoots

were collected in the evening and rehydrated overnight. Seven

to ten leaves of each species were measured.
(c) Aquaporin inhibition experiment
The inhibition of water flow through aquaporins was performed

using the common aquaporin inhibitor HgCl2 in all study species

between August and September 2009. Sunlit shoots were

sampled before 09.00, immediately recut under water, and trans-

ported to the laboratory. A leaf was connected to a Tigon tube

filled with degassed and filtered 20 mM KCl solution, and gs

was monitored using a portable open gas exchange system

(Li-6400, Li-Cor, Lincoln, USA) equipped with a 2 � 3 cm broad-

leaf chamber and an integrated light source (Li-6400-02B; Li-Cor)

until gs stabilized. The chamber conditions were set as follows:

700 mmol m22 s21 PAR, 370 mmol mol21 CO2, 258C block temp-

erature and roughly 60% relative humidity. After gs stabilization,

the leaf was removed and connected to a Tigon tube filled with a

degassed and filtered 20 mM KCl þ 0.2 mM HgCl2 solution (this

HgCl2 concentration can fully inhibit the water channel function

of aquaporin [23,26]), and gs was re-monitored and measured

under the same chamber conditions. The HgCl2 solution was
perfused to the leaf by a transpiration stream for 1 h, and then,

gs was recorded. No infiltration of water into intercellular

spaces was observed during the gs measurement. After the gs

measurement with HgCl2, the leaf was placed in the vacuum

chamber, and Kleaf was measured. We repeated the same pro-

cedure with a 20 mM KCl solution without 0.2 mM HgCl2 and

examined whether the experimental water inflow to the leaves

over the course of 1 h affected gs (n ¼ 5 per species); no signifi-

cant difference was observed between the gs readings before

and after perfusion ( p ¼ 0.37 2 0.95, paired t-test). After the gs

measurement, Kleaf was measured for the control. The PLC of

Kleaf and gs was calculated by equation (2.1); gs before the

HgCl2 treatment served as the control. After the experiment,

whole leaf area and dry mass were measured, and leaf dry

mass per area (LMA) was calculated.
(d) Leaf vein density and vessel area
The major and minor vein densities and largest vessel area in the

midrib were measured using IMAGEJ 1.43u (National Institutes of

Health, USA https://imagej.nih.gov/ij/). The major vein density

(midrib and second- and third-order veins) was measured from a

whole leaf image taken by a digital scanner. Minor vein density

was measured from a digital image of a 4–10 mm2 leaf section at

the centre of the lamina taken by a digital camera attached to a

light microscope. We did not apply a leaf clearing treatment

for the minor vein observation because all study species had

heterobaric leaves with bundle sheath extensions, which enabled

us to observe the highest order veins (5th) from fresh leaves [36].

The largest vessel area at the base of the midrib was measured

from a digital image of the section of the midrib, which was

fixed in a formalin-acetic acid-alcohol solution. Five to seven

leaves per species were measured.
(e) Statistical analysis
All statistical analyses were performed with R v. 3.2.2 [37] at a level

of statistical significance of a ¼ 0.05. One-way analysis of variance

(ANOVA) with a post hoc Tukey test was used to test the differ-

ences in the major and minor vein density, largest vessel area in

the midrib, leaf area, LMA and leaf water relation parameters

among species and in Kleaf, gs and Cleaf among the vein blockage

treatment within a species. Two-way ANOVA was used to test

differences in Kleaf, gs and Cleaf among the species and veins or

aquaporin inhibition treatments. Weibull functions were fitted to

the relationships between Cleaf and gs with the R package fitplc

[38]. The maximum gs in each species was calculated from the

control leaves to fit a Weibull function.
3. Results
(a) Leaf properties in the study species
Among the studied species, P. lobata, a deciduous vine with a

pinnipalmate venation pattern, had the lowest LMA and den-

sity of major and minor veins, the largest leaf area and vessel

area in the midrib (ANOVA with post hoc Tukey test; electronic

supplementary material, table S1). Quercus glauca, an evergreen

tree, had the highest densities of the major and minor veins.

LMA was higher in the evergreen trees than in the deciduous

trees, while there was no distinct difference between evergreen

and deciduous trees for the other leaf properties (electronic

supplementary material, table S1).

Among the three species tested in the vein blockage exper-

iment, Cw.tlp and Cs.sat were higher in P. lobata than in Q. glauca
and Q. serrata (electronic supplementary material, table S2).

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/


g s (
m

m
ol

 m
−

2  
s−

1 )

K
le

af
 (

m
m

ol
 m

−
2  

s−
1 )

T; ***
S; ***
T × S; ***

a

b

c
c

a

b

c
c

a

a

b

b
0

5

10

15

Qg Qs Pl

Qg Qs Pl

Qg Qs Pl

species

control
cut A
cut B
cut C

T; ***

S; ***

T × S; ***
a

b
bc c

a
b b b

a

a

b

b
0

200

400

600

800

species

control
cut A
cut B
cut C

T; ***

S; ***

T × S; **

a
b

b

c

a

b b

c

a
a

a
a

−3

−2

−1

0

species

le
af

 w
at

er
 p

ot
en

tia
l (

M
Pa

)

control
cut A
cut B
cut C

0

20

40

60

80

100

0 20 40 60 80 100

PLC Kleaf (%)

PL
C

 g
s (

%
)

Qg

Qs

Pl

cut A

cut B

cut C

(a) (b)

(c) (d)

Figure 2. Effects of vein blockage on (a) leaf hydraulic conductance (Kleaf, measured in the laboratory), (b) stomatal conductance (gs, measured in the field), (c) leaf
water potential at midday (measured in the field) and (d ) the relationship between PLC of Kleaf and gs. Qg: Quercus glauca (evergreen tree); Qs: Q. serrata (deciduous
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The value of emax was highest in the evergreen Q. glauca and

lowest in the vine P. lobata.

(b) Leaf major vein blockage experiment
The three types of vein blockage caused similar decreases in

Kleaf and gs in the three species (figure 2a,b), although statistical

significance was not observed between some blockage treat-

ments. Of the cut types, cut A had the least effect on Kleaf

and gs, and the PLCs of the Kleaf and gs were 40–50% in Q.
glauca and Q. serrata and �20% in P. lobata (figure 2d ). Cut B

had an intermediate effect, and the PLCs of Kleaf and gs were

80% for all three species (except for Kleaf in P. lobata, which

was approx. �60%). Cut C had the greatest effect, and the

PLCs of Kleaf and gs were�90% in all species. Leaf water poten-

tial at midday (Cleaf ) also tended to decline in the order of

control , cut A , cut B , cut C in Q. glauca (figure 2c); how-

ever, the effect of vein blockage was unclear in comparison

to the effects on Kleaf and gs (i.e. the orders of cut A and cut B

were reversed in Q. serrata, and there was no significant

difference in Cleaf between the cutting treatments in P. lobata).

In Q. glauca, gs gradually decreased with decreasing Cleaf,

which decreased below turgor loss points in leaves with the

cut C treatment (figure 3). In Q. serrata, gs also gradually

decreased with decreasing Cleaf, but Cleaf did not decrease

below the turgor loss point in any leaves. In P. lobata, gs rapidly

decreased in most leaves even with cut C, where Cleaf was more

than –0.5 MPa, and almost all leaves maintainedCleaf above the

turgor loss point.
(c) Aquaporin inhibition experiment
Kleaf and gs were significantly affected by aquaporin inhi-

bition in all species (figure 4a,b). The effects of aquaporin

blockage on Kleaf and gs were relatively small in the evergreen

and deciduous trees, with a 10–35% reduction in Kleaf and

5–19% in gs on average, but the effects were higher in the

deciduous vine P. lobata, with a 57% reduction in Kleaf and

69% in gs. There was a significant interaction between species

and HgCl2 treatment for gs (figure 4b). Pooling the data by

species, the PLC of Kleaf by aquaporin blockage was posi-

tively correlated with the PLC of gs (r2 ¼ 0.84, p ¼ 0.028;

figure 4c). In evergreen and deciduous tree species, the PLC

of Kleaf tended to be higher than the PLC of gs, whereas in

the deciduous vine P. lobata, the PLC of Kleaf was lower

than the PLC of gs.

The PLCs of Kleaf and gs by aquaporin blockage were sig-

nificantly negatively correlated with major vein density, but

not correlated with minor vein density (i.e. species with

lower major vein density experienced greater effects on Kleaf

and gs; figure 5).
4. Discussion
The results of the major vein blockage treatment showed a

similar tendency to those found in previous studies [16,25].

When water flow was blocked a quarter of the way along the

midrib in the cut A treatment, P. lobata with large and long
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second-order veins extending from the base of the midrib to the

outer margins of the leaf (i.e. pinnipalmate venation, figure 1b)

showed a lower reduction in Kleaf and gs than that in Q. glauca
and Q. serrata with pinnate leaves (which have a single midrib).

A minimal impact against a blockage of the middle position of

the midrib has also been reported in palmate leaves, which

have three or more primary veins at the base of the leaf blade

[16]. In addition, recent studies have shown that in comparison

with minor veins, lower-order veins with larger conduits were
more vulnerable to embolism during leaf dehydration,

suggesting a trade-off between efficiency and safety in the

leaf venation network, where larger conduits can transport

water more efficiently but are more vulnerable to losing their

hydraulic function by embolism [15,39,40]. Therefore, leaves

with the largest vessel in P. lobata would be most vulnerable

to xylem embolism; that is, they would be likely to experience

hydraulic failure, such as in the cut B and cut C treatments

during leaf dehydration. In leaves with the cut C treatment, a
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higher PLC of Kleaf and gs was observed in P. lobata with a lower

density of minor veins, and a lower PLC was observed in

Q. glauca with a higher density of minor veins (figure 2d ).

This result may have partially occurred due to the longer out-

side-xylem pathway with high hydraulic resistance from the

lower minor vein density in P. lobata. Our results suggest that

the specific difference in venation properties, such as a large

venation arrangement, minor vein density and vessel area,

can affect a gs decline due to midrib damage [16] and vein

embolism during dehydration.

While aquaporin inhibition by the HgCl2 solution reduced

both Kleaf and gs in all species studied (figure 4a,b), the extent of

the decrease varied among species, ranging from a 10% to 57%

reduction in Kleaf and a 5% to 69% reduction in gs. Similar

reductions in Kleaf by a HgCl2 treatment have been reported

in other species: Populus (22–67% reduction [41,42]), decid-

uous trees (32–60% reduction [43]), Vitis (25 and 61%

reduction [21]), and Arabidopsis (50% reduction [44]). A physio-

logical mechanism of stomatal closure mediated by aquaporin

during drought was proposed; drought-induced abscisic acid

(ABA) in the xylem sap flows into the laminae from the petiole,

and then, ABA downregulates the activity of aquaporins in

bundle sheath cells surrounding veins, leading to reduced

Kleaf. In turn, this results in rapid Cleaf reduction and conse-

quently in stomatal closure [44–46]. Thus, ABA can have

dual effects on stomatal closure: a biochemical direct effect

on the guard cells and an indirect hydraulic effect through

aquaporin-mediated decline in Kleaf [45]. Since aquaporin

inhibition experiments would cause effects analogous to aqua-

porin downregulation, our results, in which species with

higher reductions in Kleaf by the aquaporin blocker HgCl2
tended to have a greater reduction in gs (figure 4c), would

support the aquaporin-mediated and hydraulically induced

stomatal closure.

Notably, the specific difference in aquaporin activity within

a leaf might involve differences in water-use strategies via iso-

hydric or anisohydric stomatal regulation [45,47]. Isohydric

plants rapidly close their stomata under drought, which results

in the maintenance of a constant Cleaf and avoids the risk of cat-

astrophic cavitation, as observed in P. lobata (figure 3). By

contrast, anisohydric plants slowly close their stomata during

drought, resulting in a lower Cleaf, which, although increasing

the risk of cavitation, maintains photosynthetic production

[48], as observed in Q. glauca and Q. serrata. Scoffoni et al.
reported that water flow through the outside-xylem pathway

was more vulnerable to drought than that through leaf vein

xylem in eight species with diverse phylogenies, origins,

drought tolerances and life forms, and that reduced aquaporin

activity would be the main determinant of the decline in out-

side-xylem conductance from a model analysis [49].

Therefore, our results that large declines in Kleaf and gs follow-

ing aquaporin inhibition were found in isohydric P. lobata and

that small declines in Kleaf and gs were found in anisohydric Q.
acuta and Q. serrata support the hypothesis that hydraulic regu-

lation through aquaporin downregulation might be involved

in specific water-use strategies, such as isohydric and aniso-

hydric stomatal regulation. In addition, the low emax in P.
lobata (electronic supplementary material, table S2) would be

susceptible to mesophyll shrinkage during drought, possibly

resulting in rapid reduction in Kleaf via a reduction in hydraulic

conductivity in another outside-xylem pathway, a mesophyll

route [50]. The high vulnerability of the outside-xylem path-

way could lead to rapid stomatal closure that would protect
against catastrophic hydraulic failure in the stem xylem

during drought, which would induce plant death [49]. Because

the stem of P. lobata can be highly sensitive to drought-induced

cavitation, such as when the mean cavitation pressure is

–0.58 MPa [51], the rapid stomatal closure involved in aqua-

porin as well as mesophyll shrinkage would protect the plant

from not only major vein embolism but also stem embolism

and subsequent plant death during drought.

In comparison with minor veins, major veins potentially

have greater water transport capacity and a greater carbon

cost, and the higher major vein density potentially contributes

to higher Kleaf and gas exchange rates under moist conditions

[52]. We found that species with lower major vein density

had a higher PLC for Kleaf and gs due to aquaporin inhibition

in a rehydrated leaf (figure 5a). This result may suggest that a

trade-off function exists between vein architecture (apoplastic

pathway) and aquaporin activity (cell-to-cell pathway) with

respect to leaf hydraulics. That is, species with higher costs of

the major veins can supply enough water to the whole

lamina, such that they do not necessarily need to significantly

increase the outside-xylem hydraulic conductivity by the aqua-

porins, whereas species with lower costs of the major veins

need to increase the outside-xylem hydraulic conductivity by

increasing the aquaporin expression level in a hydrated leaf.

Higher major vein density can influence higher LMA and

longer leaf spans across species [7]. In addition, high aquaporin

dependence on Kleaf in P. lobata may be related to the life form of

the species. Enhanced aquaporin expression and activity in

roots and shoots promote an increase in whole-plant hydraulic

conductance, thus mitigating Cleaf decline and facilitating sto-

matal opening [47]. A great extent of aquaporin regulation in P.
lobata would be advantageous for plastic and rapid responses

of plant water use to the changing environment because P.
lobata is a vine species; thus, in comparison with woody

species, a vine can easily move to a new expanding environ-

ment by extending the new shoots. More studies are needed

to clarify the underlying constraint in the trade-off relationship

related to leaf hydraulics.

Overall, our results suggest that specific differences in leaf

venation architecture, especially major vein density and

arrangement, and in the activity of leaf aquaporin, can

affect Kleaf and gs, potentially due to their ecological proper-

ties, such as growth form, isohydry/anisohydry and

vulnerability to embolism, possibly providing a trade-off

function between vein architecture and aquaporin activity.

Leaf vulnerability to embolism is one of the most central

traits for plant drought tolerance [53]; therefore, regulation

of Kleaf by aquaporins and tolerance of embolism in major

veins (and leaf venation architecture) are important traits

that determine drought tolerance in angiosperms. Further

studies of aquaporins in relation to leaf hydraulics across a

wider range of phylogeny and species will provide a

deeper understanding of specific drought tolerance and

drought-induced vegetation mortality.
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